1
mirror of https://github.com/comfyanonymous/ComfyUI.git synced 2025-08-02 15:04:50 +08:00

Compare commits

...

326 Commits

Author SHA1 Message Date
comfyanonymous
e18f53cca9 ComfyUI version 0.3.43 2025-06-27 17:22:02 -04:00
comfyanonymous
c36be0ea09 Fix memory estimation bug with kontext. (#8709) 2025-06-27 17:21:12 -04:00
comfyanonymous
9093301a49 Don't add tiny bit of random noise when VAE encoding. (#8705)
Shouldn't change outputs but might make things a tiny bit more
deterministic.
2025-06-27 14:14:56 -04:00
comfyanonymous
bd951a714f Add Flux Kontext and Omnigen 2 models to readme. (#8682) 2025-06-26 12:26:29 -04:00
comfyanonymous
6493709d6a ComfyUI version 0.3.42 2025-06-26 11:47:07 -04:00
filtered
b976f934ae Update frontend to 1.23.4 (#8681) 2025-06-26 11:44:12 -04:00
comfyanonymous
7d8cf4cacc Update requirements.txt (#8680) 2025-06-26 11:39:40 -04:00
filtered
68f4496b8e Update frontend to 1.23.3 (#8678) 2025-06-26 11:29:03 -04:00
comfyanonymous
ef5266b1c1 Support Flux Kontext Dev model. (#8679) 2025-06-26 11:28:41 -04:00
comfyanonymous
a96e65df18 Disable omnigen2 fp16 on older pytorch versions. (#8672) 2025-06-26 03:39:09 -04:00
comfyanonymous
93a49a45de Bump minimum transformers version. (#8671) 2025-06-26 02:33:02 -04:00
comfyanonymous
ec70ed6aea Omnigen2 model implementation. (#8669) 2025-06-25 19:35:57 -04:00
comfyanonymous
7a13f74220 unet -> diffusion model (#8659) 2025-06-25 04:52:34 -04:00
chaObserv
8042eb20c6 Singlestep DPM++ SDE for RF (#8627)
Refactor the algorithm, and apply alpha scaling.
2025-06-24 14:59:09 -04:00
comfyanonymous
bd9f166c12 Cosmos predict2 model merging nodes. (#8647) 2025-06-24 05:17:16 -04:00
comfyanonymous
dd94416db2 Indicate that directml is not recommended in the README. (#8644) 2025-06-23 14:04:49 -04:00
comfyanonymous
ae0e7c4dff Resize and pad image node. (#8636) 2025-06-22 17:59:31 -04:00
comfyanonymous
78f79266a9 Allow padding in ImageStitch node to be white. (#8631) 2025-06-22 00:19:41 -04:00
comfyanonymous
1883e70b43 Fix exception when using a noise mask with cosmos predict2. (#8621)
* Fix exception when using a noise mask with cosmos predict2.

* Fix ruff.
2025-06-21 03:30:39 -04:00
Lucas - BLOCK33
31ca603ccb Improve the log time function for 10 minute + renders (#6207)
* modified:   main.py

* Update main.py
2025-06-20 23:04:55 -04:00
comfyanonymous
f7fb193712 Small flux optimization. (#8611) 2025-06-20 05:37:32 -04:00
comfyanonymous
7e9267fa77 Make flux controlnet work with sd3 text enc. (#8599) 2025-06-19 18:50:05 -04:00
comfyanonymous
91d40086db Fix pytorch warning. (#8593) 2025-06-19 11:04:52 -04:00
coderfromthenorth93
5b12b55e32 Add new fields to the config types (#8507) 2025-06-18 15:12:29 -04:00
comfyanonymous
e9e9a031a8 Show a better error when the workflow OOMs. (#8574) 2025-06-18 06:55:21 -04:00
filtered
d7430c529a Update frontend to 1.22.2 (#8567) 2025-06-17 18:58:28 -04:00
ComfyUI Wiki
cd88f709ab Update template version (#8563) 2025-06-17 04:11:59 -07:00
comfyanonymous
4459a17e82 Add Cosmos Predict2 to README. (#8562) 2025-06-17 05:18:01 -04:00
comfyanonymous
483b3e62e0 ComfyUI version v0.3.41 2025-06-16 23:34:46 -04:00
chaObserv
8e81c507d2 Multistep DPM++ SDE samplers for RF (#8541)
Include alpha in sampling and minor refactoring
2025-06-16 14:47:10 -04:00
comfyanonymous
e1c6dc720e Allow setting min_length with tokenizer_data. (#8547) 2025-06-16 13:43:52 -04:00
comfyanonymous
7ea79ebb9d Add correct eps to ltxv rmsnorm. (#8542) 2025-06-15 12:21:25 -04:00
comfyanonymous
ae75a084df SaveLora now saves in the same filename format as all the other nodes. (#8538) 2025-06-15 03:44:59 -04:00
comfyanonymous
d6a2137fc3 Support Cosmos predict2 image to video models. (#8535)
Use the CosmosPredict2ImageToVideoLatent node.
2025-06-14 21:37:07 -04:00
chaObserv
53e8d8193c Generalize SEEDS samplers (#8529)
Restore VP algorithm for RF and refactor noise_coeffs and half-logSNR calculations
2025-06-14 16:58:16 -04:00
comfyanonymous
29596bd53f Small cosmos attention code refactor. (#8530) 2025-06-14 05:02:05 -04:00
Terry Jia
803af1e0c3 allow extra settings from pyproject.toml (#8526) 2025-06-13 23:11:55 -04:00
ComfyUI Wiki
6673939e76 Bump template to 0.1.28 (#8510) 2025-06-13 23:11:00 -04:00
ComfyUI Wiki
f74778e75d Bump embedded docs to 0.2.2 (#8512) 2025-06-13 23:06:28 -04:00
Kohaku-Blueleaf
520eb77b72 LoRA Trainer: LoRA training node in weight adapter scheme (#8446) 2025-06-13 19:25:59 -04:00
comfyanonymous
5bf69bde35 Add cosmos_rflow option to ModelSamplingContinuousEDM node. (#8523)
This is for the cosmos predict2 model.
2025-06-13 17:47:52 -04:00
comfyanonymous
c69af655aa Uncap cosmos predict2 res and fix mem estimation. (#8518) 2025-06-13 07:30:18 -04:00
comfyanonymous
251f54a2ad Basic initial support for cosmos predict2 text to image 2B and 14B models. (#8517) 2025-06-13 07:05:23 -04:00
Christian Byrne
c6529c0d77 don't validate string inputs with VALIDATE_INPUTS (#8508) 2025-06-12 20:17:10 -04:00
filtered
baa8c8cdd3 Add '@prerelease' to use latest test frontend (#8501)
* Add '@prerelease' to use latest test frontend

Allows download of pre-release versions.

Will always get the latest pre-release version - even if it's older than the latest stable release.

* nit
2025-06-12 17:03:27 -07:00
comfyanonymous
40fd39c7cb debug -> warning (#8506) 2025-06-12 17:14:59 -04:00
Terry Jia
4d1c4b9797 Auto register web folder (#8505)
* auto register web folder from pyproject

* need pydantic-settings as dependency

* wrapped try/except for config_parser

* sf
2025-06-12 16:24:39 -04:00
comfyanonymous
d2566eb4b2 Add a warning for old python versions. (#8504) 2025-06-12 15:38:33 -04:00
filtered
ef7e885fe4 Revert "Update requirements.txt (#8487)" (#8502)
This reverts commit 373a9386a4.
2025-06-12 14:10:48 -04:00
filtered
ecb8d15e7a Allow specifying any frontend semver suffixes (#8498) 2025-06-11 21:41:30 -04:00
comfyanonymous
365f9ed157 Revert "auto register web folder from pyproject (#8478)" (#8497)
This reverts commit 9685d4f3c3.
2025-06-11 17:28:04 -04:00
pythongosssss
50c605e957 Add support for sqlite database (#8444)
* Add support for sqlite database

* fix
2025-06-11 16:43:39 -04:00
Terry Jia
9685d4f3c3 auto register web folder from pyproject (#8478)
* auto register web folder from pyproject

* need pydantic-settings as dependency
2025-06-11 16:21:28 -04:00
comfyanonymous
8a4ff747bd Fix mistake in last commit. (#8496)
* Move to right place.
2025-06-11 15:13:29 -04:00
comfyanonymous
af1eb58be8 Fix black images on some flux models in fp16. (#8495) 2025-06-11 15:09:11 -04:00
ComfyUI Wiki
373a9386a4 Update requirements.txt (#8487) 2025-06-11 05:10:46 -04:00
comfyanonymous
6e28a46454 Apple most likely is never fixing the fp16 attention bug. (#8485) 2025-06-10 13:06:24 -04:00
Kent Mewhort
c7b25784b1 Fix WebcamCapture IS_CHANGED signature (#8413) 2025-06-09 13:05:54 -04:00
comfyanonymous
7f800d04fa Enable AMD fp8 and pytorch attention on some GPUs. (#8474)
Information is from the pytorch source code.
2025-06-09 12:50:39 -04:00
comfyanonymous
97755eed46 Enable fp8 ops by default on gfx1201 (#8464) 2025-06-08 14:15:34 -04:00
comfyanonymous
daf9d25ee2 Cleaner torch version comparisons. (#8453) 2025-06-07 10:01:15 -04:00
comfyanonymous
3b4b171e18 Alternate fix for #8435 (#8442) 2025-06-06 09:43:27 -04:00
Olexandr88
d8759c772b Update README.md (#8427) 2025-06-05 10:44:29 -07:00
comfyanonymous
4248b1618f Let chroma TE work on regular flux. (#8429) 2025-06-05 10:07:17 -04:00
comfyanonymous
866f6cdab4 ComfyUI version 0.3.40 2025-06-04 22:18:54 -04:00
Christian Byrne
3aa83feeec [refactor] remove version prefixes from Ideogram node categories (#8418)
Simplifies node organization by consolidating all Ideogram nodes under a single category instead of version-specific subcategories.
2025-06-04 21:56:38 -04:00
comfyanonymous
871749c208 Add batch to GetImageSize node. (#8419) 2025-06-04 09:40:21 -04:00
SD
fcc1643c52 Sub call to deprecated pillow API Image.ANTIALIAS (#8415)
ANTIALIAS was removed in Pillow 10.0.0
2025-06-04 09:03:42 -04:00
filtered
20687293fe Update frontend to 1.21.7 (#8410) 2025-06-04 08:57:13 -04:00
Terry Jia
47d55b8b45 add support to read pyproject.toml from custom node (#8357)
* add support to read pyproject.toml from custom node

* sf

* use pydantic instead

* sf

* use pydantic_settings

* remove unnecessary try/catch and handle single-file python node

* sf
2025-06-03 19:59:13 -04:00
comfyanonymous
310f4b6ef8 Add api nodes to readme. (#8402) 2025-06-03 04:26:44 -04:00
Christian Byrne
856448060c [feat] Add GetImageSize node (#8386)
* [feat] Add GetImageSize node to return image dimensions

Added a simple GetImageSize node in comfy_extras/nodes_images.py that returns width and height of input images. The node displays dimensions on the UI via PromptServer and provides width/height as outputs for further processing.

* add display name mapping

* [fix] Add server module mock to unit tests for PromptServer import

Updated test to mock server module preventing import errors from the new PromptServer usage in GetImageSize node. Uses direct import pattern consistent with rest of codebase.
2025-06-02 21:57:50 -04:00
comfyanonymous
312d511630 Style fix. (#8390) 2025-06-02 07:22:02 -04:00
Jesse Gonyou
4f4f1c642a Update fix for potential XSS on /view (#8384)
* Update fix for potential XSS on /view

This commit uses mimetypes to add more restricted filetypes to prevent from being served, since mimetypes are what browsers use to determine how to serve files.

* Fix typo

Fixed a typo that prevented the program from running
2025-06-02 06:52:44 -04:00
filtered
010954d277 [BugFix] Update frontend to 1.21.6 (#8383) 2025-06-02 14:57:44 +10:00
filtered
6d46bb4b4c [BugFix] Update frontend to 1.21.5 (#8382) 2025-06-01 16:47:14 -04:00
Christian Byrne
67f57c5bcc [feat] add custom node testing requirement to issue templates (#8374)
Adds mandatory checkbox to bug report and user support templates requiring users to confirm they've tested with custom nodes disabled before submitting issues.
2025-06-01 15:47:07 -04:00
filtered
fd943c928f [BugFix] Update frontend to 1.21.4 (#8377) 2025-06-01 13:57:53 -04:00
ComfyUI Wiki
d3bd983b91 Bump template to 0.1.25 (#8372) 2025-06-01 05:41:17 -04:00
comfyanonymous
fb4754624d Make the casting in lists the same as regular inputs. (#8373) 2025-06-01 05:39:54 -04:00
Benjamin Lu
180db6753f Add Help Menu in NodeLibrarySidebarTab (#8179) 2025-06-01 04:32:32 -04:00
Christian Byrne
d062fcc5c0 [feat] Add ImageStitch node for concatenating images (#8369)
* [feat] Add ImageStitch node for concatenating images with borders

Add ImageStitch node that concatenates images in four directions with optional borders and intelligent size handling. Features include optional second image input, configurable borders with color selection, automatic batch size matching, and dimension alignment via padding or resizing.

Upstreamed from https://github.com/kijai/ComfyUI-KJNodes with enhancements for better error handling and comprehensive test coverage.

* [fix] Fix CI issues with CUDA dependencies and linting

- Mock CUDA-dependent modules in tests to avoid CI failures on CPU-only runners
- Fix ruff linting issues for code style compliance

* [fix] Improve CI compatibility by mocking nodes module import

Prevent CUDA initialization chain by mocking the nodes module at import time,
which is cleaner than deep mocking of CUDA-specific functions.

* [refactor] Clean up ImageStitch tests

- Remove unnecessary sys.path manipulation (pythonpath set in pytest.ini)
- Remove metadata tests that test framework internals rather than functionality
- Rename complex scenario test to be more descriptive of what it tests

* [refactor] Rename 'border' to 'spacing' for semantic accuracy

- Change border_width/border_color to spacing_width/spacing_color in API
- Update all tests to use spacing terminology
- Update comments and variable names throughout
- More accurately describes the gap/separator between images
2025-06-01 04:28:52 -04:00
filtered
456abad834 Update frontend to 1.21 (#8366) 2025-06-01 01:10:04 -04:00
comfyanonymous
19e45e9b0e Make it easier to pass lists of tensors to models. (#8358) 2025-05-31 20:00:20 -04:00
ComfyUI Wiki
97f23b81f3 Bump template to 0.1.23 (#8353)
Correct some error settings in VACE
2025-05-30 23:05:42 -07:00
drhead
08b7cc7506 use fused multiply-add pointwise ops in chroma (#8279) 2025-05-30 18:09:54 -04:00
BennyKok
6c319cbb4e fix: custom comfy-api-base works with subpath (#8332) 2025-05-30 17:51:28 -04:00
Chenlei Hu
df1aebe52e Remove huchenlei from CODEOWNERS (#8350) 2025-05-30 17:27:52 -04:00
comfyanonymous
704fc78854 Put ROCm version in tuple to make it easier to enable stuff based on it. (#8348) 2025-05-30 15:41:02 -04:00
JettHu
1d9fee79fd Add node for regex replace(sub) operation (#8340)
* Add node for regex replace(sub) operation

* Apply suggestions from code review

add tooltips

Co-authored-by: Christian Byrne <abolkonsky.rem@gmail.com>

* Fix indentation

---------

Co-authored-by: Christian Byrne <abolkonsky.rem@gmail.com>
2025-05-30 15:08:59 -04:00
Jedrzej Kosinski
aeba0b3a26 Reduce code duplication for [pro] and [max], rename Pro and Max to [pro] and [max] to be consistent with other BFL nodes, make default seed for Kontext nodes be 1234. since 0 is interpreted by API as 'choose random seed' (#8337) 2025-05-29 17:14:27 -04:00
comfyanonymous
094306b626 ComfyUI version 0.3.39 2025-05-29 14:26:39 -04:00
filtered
31260f0275 Update templates 0.1.22 (#8334) 2025-05-30 03:52:27 +10:00
Robin Huang
f1c9ca816a Add BFL Kontext API Nodes. (#8333)
* Added initial Flux.1 Kontext Pro Image node - recreated branch to save myself sanity from rebase crap after master got rebased

* Add safety filter to Kontext.

* Make safety = 2 and input image is optional.

* Add BFL kontext API nodes.

---------

Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>
2025-05-29 13:27:40 -04:00
comfyanonymous
f2289a1f59 Delete useless file. (#8327) 2025-05-29 08:29:37 -04:00
Robin Huang
fb83eda287 Revert "Add support for Veo3 API node." (#8322)
This reverts commit 592d056100.
2025-05-29 03:03:11 -04:00
comfyanonymous
5e5e46d40c Not really tested WAN Phantom Support. (#8321) 2025-05-28 23:46:15 -04:00
Yoland Yan
4eba3161cf Refactor Pika API node imports and fix unique_id issue. (#8319)
Added unique_id to hidden parameters and corrected description formatting in PikAdditionsNode.
2025-05-28 23:42:25 -04:00
Robin Huang
592d056100 Add support for Veo3 API node. (#8320) 2025-05-28 23:42:02 -04:00
comfyanonymous
1c1687ab1c Support HiDream SimpleTuner loras. (#8318) 2025-05-28 18:47:15 -04:00
comfyanonymous
e6609dacde ComfyUI version 0.3.38 2025-05-28 02:15:11 -04:00
Christian Byrne
ba37e67964 update frontend patch 1.20.7 (#8312) 2025-05-28 01:42:18 -04:00
comfyanonymous
06c661004e Memory estimation code can now take into account conds. (#8307) 2025-05-27 15:09:05 -04:00
comfyanonymous
c9e1821a7b ComfyUI version 0.3.37 2025-05-27 07:07:44 -04:00
Robin Huang
f58f0f5696 More API nodes: Gemini/Open AI Chat, Tripo, Rodin, Runway Image (#8295)
* Add Ideogram generate node.

* Add staging api.

* Add API_NODE and common error for missing auth token (#5)

* Add Minimax Video Generation + Async Task queue polling example (#6)

* [Minimax] Show video preview and embed workflow in ouput (#7)

* Remove uv.lock

* Remove polling operations.

* Revert "Remove polling operations."

This reverts commit 8415404ce8fbc0262b7de54fc700c5c8854a34fc.

* Update stubs.

* Added Ideogram and Minimax back in.

* Added initial BFL Flux 1.1 [pro] Ultra node (#11)

* Manually add BFL polling status response schema (#15)

* Add function for uploading files. (#18)

* Add Luma nodes (#16)

Co-authored-by: Robin Huang <robin.j.huang@gmail.com>

* Refactor util functions (#20)

* Add rest of Luma node functionality (#19)

Co-authored-by: Robin Huang <robin.j.huang@gmail.com>

* Fix image_luma_ref not working (#28)

Co-authored-by: Robin Huang <robin.j.huang@gmail.com>

* [Bug] Remove duplicated option T2V-01 in MinimaxTextToVideoNode (#31)

* add veo2, bump av req (#32)

* Add Recraft nodes (#29)

* Add Kling Nodes (#12)

* Add Camera Concepts (luma_concepts) to Luma Video nodes (#33)

Co-authored-by: Robin Huang <robin.j.huang@gmail.com>

* Add Runway nodes (#17)

* Convert Minimax node to use VIDEO output type (#34)

* Standard `CATEGORY` system for api nodes (#35)

* Set `Content-Type` header when uploading files (#36)

* add better error propagation to veo2 (#37)

* Add Realistic Image and Logo Raster styles for Recraft v3 (#38)

* Fix runway image upload and progress polling (#39)

* Fix image upload for Luma: only include `Content-Type` header field if it's set explicitly (#40)

* Moved Luma nodes to nodes_luma.py (#47)

* Moved Recraft nodes to nodes_recraft.py (#48)

* Move and fix BFL nodes to node_bfl.py (#49)

* Move and edit Minimax node to nodes_minimax.py (#50)

* Add Recraft Text to Vector node, add Save SVG node to handle its output (#53)

* Added pixverse_template support to Pixverse Text to Video node (#54)

* Added Recraft Controls + Recraft Color RGB nodes (#57)

* split remaining nodes out of nodes_api, make utility lib, refactor ideogram (#61)

* Set request type explicitly (#66)

* Add `control_after_generate` to all seed inputs (#69)

* Fix bug: deleting `Content-Type` when property does not exist (#73)

* Add Pixverse and updated Kling types (#75)

* Added Recraft Style - Infinite Style Library node (#82)

* add ideogram v3 (#83)

* [Kling] Split Camera Control config to its own node (#81)

* Add Pika i2v and t2v nodes (#52)

* Remove Runway nodes (#88)

* Fix: Prompt text can't be validated in Kling nodes when using primitive nodes (#90)

* Update Pika Duration and Resolution options (#94)

* Removed Infinite Style Library until later (#99)

* fix multi image return (#101)

close #96

* Serve SVG files directly (#107)

* Add a bunch of nodes, 3 ready to use, the rest waiting for endpoint support (#108)

* Revert "Serve SVG files directly" (#111)

* Expose 4 remaining Recraft nodes (#112)

* [Kling] Add `Duration` and `Video ID` outputs (#105)

* Add Kling nodes: camera control, start-end frame, lip-sync, video extend (#115)

* Fix error for Recraft ImageToImage error for nonexistent random_seed param (#118)

* Add remaining Pika nodes (#119)

* Make controls input work for Recraft Image to Image node (#120)

* Fix: Nested `AnyUrl` in request model cannot be serialized (Kling, Runway) (#129)

* Show errors and API output URLs to the user (change log levels) (#131)

* Apply small fixes and most prompt validation (if needed to avoid API error) (#135)

* Node name/category modifications (#140)

* Add back Recraft Style - Infinite Style Library node (#141)

* [Kling] Fix: Correct/verify supported subset of input combos in Kling nodes (#149)

* Remove pixverse_template from PixVerse Transition Video node (#155)

* Use 3.9 compat syntax (#164)

* Handle Comfy API key based authorizaton (#167)

Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>

* [BFL] Print download URL of successful task result directly on nodes (#175)

* Show output URL and progress text on Pika nodes (#168)

* [Ideogram] Print download URL of successful task result directly on nodes (#176)

* [Kling] Print download URL of successful task result directly on nodes (#181)

* Merge upstream may 14 25 (#186)

Co-authored-by: comfyanonymous <comfyanonymous@protonmail.com>
Co-authored-by: AustinMroz <austinmroz@utexas.edu>
Co-authored-by: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com>
Co-authored-by: Benjamin Lu <benceruleanlu@proton.me>
Co-authored-by: Andrew Kvochko <kvochko@users.noreply.github.com>
Co-authored-by: Pam <42671363+pamparamm@users.noreply.github.com>
Co-authored-by: chaObserv <154517000+chaObserv@users.noreply.github.com>
Co-authored-by: Yoland Yan <4950057+yoland68@users.noreply.github.com>
Co-authored-by: guill <guill@users.noreply.github.com>
Co-authored-by: Chenlei Hu <hcl@comfy.org>
Co-authored-by: Terry Jia <terryjia88@gmail.com>
Co-authored-by: Silver <65376327+silveroxides@users.noreply.github.com>
Co-authored-by: catboxanon <122327233+catboxanon@users.noreply.github.com>
Co-authored-by: liesen <liesen.dev@gmail.com>
Co-authored-by: Kohaku-Blueleaf <59680068+KohakuBlueleaf@users.noreply.github.com>
Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>
Co-authored-by: Robin Huang <robin.j.huang@gmail.com>
Co-authored-by: thot experiment <94414189+thot-experiment@users.noreply.github.com>
Co-authored-by: blepping <157360029+blepping@users.noreply.github.com>

* Update instructions on how to develop API Nodes. (#171)

* Add Runway FLF and I2V nodes (#187)

* Add OpenAI chat node (#188)

* Update README.

* Add Google Gemini API node (#191)

* Add Runway Gen 4 Text to Image Node (#193)

* [Runway, Gemini] Update node display names and attributes (#194)

* Update path from "image-to-video" to "image_to_video" (#197)

* [Runway] Split I2V nodes into separate gen3 and gen4 nodes (#198)

* Update runway i2v ratio enum (#201)

* Rodin3D: implement Rodin3D API Nodes (#190)

Co-authored-by: WhiteGiven <c15838568211@163.com>
Co-authored-by: Robin Huang <robin.j.huang@gmail.com>

* Add Tripo Nodes. (#189)

Co-authored-by: Robin Huang <robin.j.huang@gmail.com>

* Change casing of categories "3D"  => "3d" (#208)

* [tripo] fix negtive_prompt and mv2model (#212)

* [tripo] set default param to None (#215)

* Add description and tooltip to Tripo Refine model. (#218)

* Update.

* Fix rebase errors.

* Fix rebase errors.

* Update templates.

* Bump frontend.

* Add file type info for file inputs.

---------

Co-authored-by: Christian Byrne <cbyrne@comfy.org>
Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>
Co-authored-by: Chenlei Hu <hcl@comfy.org>
Co-authored-by: thot experiment <94414189+thot-experiment@users.noreply.github.com>
Co-authored-by: comfyanonymous <comfyanonymous@protonmail.com>
Co-authored-by: AustinMroz <austinmroz@utexas.edu>
Co-authored-by: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com>
Co-authored-by: Benjamin Lu <benceruleanlu@proton.me>
Co-authored-by: Andrew Kvochko <kvochko@users.noreply.github.com>
Co-authored-by: Pam <42671363+pamparamm@users.noreply.github.com>
Co-authored-by: chaObserv <154517000+chaObserv@users.noreply.github.com>
Co-authored-by: Yoland Yan <4950057+yoland68@users.noreply.github.com>
Co-authored-by: guill <guill@users.noreply.github.com>
Co-authored-by: Terry Jia <terryjia88@gmail.com>
Co-authored-by: Silver <65376327+silveroxides@users.noreply.github.com>
Co-authored-by: catboxanon <122327233+catboxanon@users.noreply.github.com>
Co-authored-by: liesen <liesen.dev@gmail.com>
Co-authored-by: Kohaku-Blueleaf <59680068+KohakuBlueleaf@users.noreply.github.com>
Co-authored-by: blepping <157360029+blepping@users.noreply.github.com>
Co-authored-by: Changrz <51637999+WhiteGiven@users.noreply.github.com>
Co-authored-by: WhiteGiven <c15838568211@163.com>
Co-authored-by: seed93 <liangding1990@163.com>
2025-05-27 03:00:58 -04:00
filtered
3a10b9641c [BugFix] Update frontend to 1.20.6 (#8296) 2025-05-27 02:47:06 -04:00
comfyanonymous
89a84e32d2 Disable initial GPU load when novram is used. (#8294) 2025-05-26 16:39:27 -04:00
comfyanonymous
e5799c4899 Enable pytorch attention by default on AMD gfx1151 (#8282) 2025-05-26 04:29:25 -04:00
comfyanonymous
a0651359d7 Return proper error if diffusion model not detected properly. (#8272) 2025-05-25 05:28:11 -04:00
comfyanonymous
ad3bd8aa49 ComfyUI version 0.3.36 2025-05-24 17:30:37 -04:00
comfyanonymous
5a87757ef9 Better error if sageattention is installed but a dependency is missing. (#8264) 2025-05-24 06:43:12 -04:00
Christian Byrne
464aece92b update frontend package to v1.20.5 (#8260) 2025-05-23 21:53:49 -07:00
comfyanonymous
0b50d4c0db Add argument to explicitly enable fp8 compute support. (#8257)
This can be used to test if your current GPU/pytorch version supports fp8 matrix mult in combination with --fast or the fp8_e4m3fn_fast dtype.
2025-05-23 17:43:50 -04:00
drhead
30b2eb8a93 create arange on-device (#8255) 2025-05-23 16:15:06 -04:00
comfyanonymous
f85c08df06 Make VACE conditionings stackable. (#8240) 2025-05-22 19:22:26 -04:00
comfyanonymous
4202e956a0 Add append feature to conditioning_set_values (#8239)
Refactor unclipconditioning node.
2025-05-22 08:11:13 -04:00
Terry Jia
b838c36720 remove mtl from 3d model file list (#8192) 2025-05-22 08:08:36 -04:00
Chenlei Hu
fc39184ea9 Update frontend to 1.20 (#8232) 2025-05-22 02:24:36 -04:00
ComfyUI Wiki
ded60c33a0 Update templates to 0.1.18 (#8224) 2025-05-21 11:40:08 -07:00
Michael Abrahams
8bb858e4d3 Improve performance with large number of queued prompts (#8176)
* get_current_queue_volatile

* restore get_current_queue method

* remove extra import
2025-05-21 05:14:17 -04:00
编程界的小学生
57893c843f Code Optimization and Issues Fixes in ComfyUI server (#8196)
* Update server.py

* Update server.py
2025-05-21 04:59:42 -04:00
Jedrzej Kosinski
65da29aaa9 Make torch.compile LoRA/key-compatible (#8213)
* Make torch compile node use wrapper instead of object_patch for the entire diffusion_models object, allowing key assotiations on diffusion_models to not break (loras, getting attributes, etc.)

* Moved torch compile code into comfy_api so it can be used by custom nodes with a degree of confidence

* Refactor set_torch_compile_wrapper to support a list of keys instead of just diffusion_model, as well as additional torch.compile args

* remove unused import

* Moved torch compile kwargs to be stored in model_options instead of attachments; attachments are more intended for things to be 'persisted', AKA not deepcopied

* Add some comments

* Remove random line of code, not sure how it got there
2025-05-21 04:56:56 -04:00
comfyanonymous
10024a38ea ComfyUI version v0.3.35 2025-05-21 04:50:37 -04:00
comfyanonymous
87f9130778 Revert "This doesn't seem to be needed on chroma. (#8209)" (#8210)
This reverts commit 7e84bf5373.
2025-05-20 05:39:55 -04:00
comfyanonymous
7e84bf5373 This doesn't seem to be needed on chroma. (#8209) 2025-05-20 05:29:23 -04:00
filtered
4f3b50ba51 Update README ROCm text to match link (#8199)
- Follow-up on #8198
2025-05-19 16:40:55 -04:00
comfyanonymous
e930a387d6 Update AMD instructions in README. (#8198) 2025-05-19 04:58:41 -04:00
comfyanonymous
d8e5662822 Remove default delimiter. (#8183) 2025-05-18 04:12:12 -04:00
LaVie024
3d44a09812 Update nodes_string.py (#8173) 2025-05-18 04:11:11 -04:00
comfyanonymous
62690eddec Node to add pixel space noise to an image. (#8182) 2025-05-18 04:09:56 -04:00
Christian Byrne
05eb10b43a Validate video inputs (#8133)
* validate kling lip sync input video

* add tooltips

* update duration estimates

* decrease epsilon

* fix rebase error
2025-05-18 04:08:47 -04:00
Silver
f5e4e976f4 Add missing category for T5TokenizerOption (#8177)
Change it if you need to but it should at least have a category.
2025-05-18 02:59:06 -04:00
comfyanonymous
aee2908d03 Remove useless log. (#8166) 2025-05-17 06:27:34 -04:00
comfyanonymous
dc46db7aa4 Make ImagePadForOutpaint return a 3 channel mask. (#8157) 2025-05-16 15:15:55 -04:00
filtered
7046983d95 Remove Desktop versioning claim from README (#8155) 2025-05-16 10:45:36 -07:00
comfyanonymous
1c2d45d2b5 Fix typo in last PR. (#8144)
More robust model detection for future proofing.
2025-05-15 19:02:19 -04:00
George0726
c820ef950d Add Wan-FUN Camera Control models and Add WanCameraImageToVideo node (#8013)
* support wan camera models

* fix by ruff check

* change camera_condition type; make camera_condition optional

* support camera trajectory nodes

* fix camera direction

---------

Co-authored-by: Qirui Sun <sunqr0667@126.com>
2025-05-15 19:00:43 -04:00
comfyanonymous
6a2e4bb9e0 Remove old hack used to fix windows pytorch 2.4 on the portable. (#8139)
Not necessary anymore.
2025-05-15 08:21:47 -04:00
Christian Byrne
f1f9763b4c Add get_duration method to Comfy VIDEO type (#8122)
* get duration from VIDEO type

* video get_duration unit test

* fix Windows unit test: can't delete opened temp file
2025-05-15 00:11:41 -04:00
comfyanonymous
08368f8e00 Update comment on ROCm pytorch attention in README. (#8123) 2025-05-14 17:54:50 -04:00
Christian Byrne
f3ff5c40db don't retry if API returns task failure (#8111) 2025-05-14 01:28:30 -04:00
Christian Byrne
98ff01e148 Display progress and result URL directly on API nodes (#8102)
* [Luma] Print download URL of successful task result directly on nodes (#177)

[Veo] Print download URL of successful task result directly on nodes (#184)

[Recraft] Print download URL of successful task result directly on nodes (#183)

[Pixverse] Print download URL of successful task result directly on nodes (#182)

[Kling] Print download URL of successful task result directly on nodes (#181)

[MiniMax] Print progress text and download URL of successful task result directly on nodes (#179)

[Docs] Link to docs in `API_NODE` class property type annotation comment (#178)

[Ideogram] Print download URL of successful task result directly on nodes (#176)

[Kling] Print download URL of successful task result directly on nodes (#181)

[Veo] Print download URL of successful task result directly on nodes (#184)

[Recraft] Print download URL of successful task result directly on nodes (#183)

[Pixverse] Print download URL of successful task result directly on nodes (#182)

[MiniMax] Print progress text and download URL of successful task result directly on nodes (#179)

[Docs] Link to docs in `API_NODE` class property type annotation comment (#178)

[Luma] Print download URL of successful task result directly on nodes (#177)

[Ideogram] Print download URL of successful task result directly on nodes (#176)

Show output URL and progress text on Pika nodes (#168)

[BFL] Print download URL of successful task result directly on nodes (#175)

[OpenAI ] Print download URL of successful task result directly on nodes (#174)

* fix ruff errors

* fix 3.10 syntax error
2025-05-14 00:33:18 -04:00
thot experiment
bab836d88d rework client.py to be more robust, add logging of api requests (#7988)
* rework how errors are handled on the client side

* add logging to /temp

* fix ruff

* fix rebase, stupid vscode gui
2025-05-13 20:42:29 -04:00
comfyanonymous
4a9014e201 Hunyuan Custom initial untested implementation. (#8101) 2025-05-13 15:53:47 -04:00
thot experiment
8a7c894d54 fix negative momentum (#8100) 2025-05-13 10:50:32 -07:00
comfyanonymous
a814f2e8cc Fix issue with old pytorch RMSNorm. (#8095) 2025-05-13 07:54:28 -04:00
comfyanonymous
481732a0ed Support official ACE Step loras. (#8094) 2025-05-13 07:32:16 -04:00
Christian Byrne
2156ce9453 add comment about using api key in headless (#8082) 2025-05-12 23:06:44 -04:00
thot experiment
4136502b7a implement APG guidance (#8081)
* first pass at impementing AGP

* rename, cleanup code

* fix ruff

* fix modified cond to match ref impl better, support different cond arity
2025-05-12 21:10:24 -04:00
Terry Jia
9ad287ff20 add support to record video as output for 3d node (#7927)
* add support to record video as output for 3d node

* source format

* add support to record video for load3d animation node
2025-05-12 16:47:14 -04:00
Chenlei Hu
f5cacaeb14 Update frontend to v1.19 (#8076)
* Update frontend to v1.19

* Update requirements.txt
2025-05-12 16:47:02 -04:00
Terry Jia
b7ed5f57bd string node (#7952) 2025-05-12 16:29:32 -04:00
thot experiment
b4abca828e add opus and mp3 to audio output node (#8019)
* first pass at opus and mp3 as well as migrating flac to pyav

* minor mp3 encoding fix

* fix ruff

* delete dead code

* split out save audio to separate nodes per filetype

* fix ruff
2025-05-12 16:00:01 -04:00
comfyanonymous
158419f3a0 ComfyUI version 0.3.34 2025-05-12 15:58:28 -04:00
comfyanonymous
640c47e7de Fix torch warning about deprecated function. (#8075)
Drop support for torch versions below 2.2 on the audio VAEs.
2025-05-12 14:32:01 -04:00
Christian Byrne
31e9e36c94 remove aspect ratio from kling request (#8062) 2025-05-12 13:32:24 -04:00
comfyanonymous
577de83ca9 ACE VAE works in fp16. (#8055) 2025-05-11 04:58:00 -04:00
Christian Byrne
3535909eb8 Add support for Comfy API keys (#8041)
* Handle Comfy API key based authorizaton (#167)

Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>

* Bump frontend version to include API key features (#170)

* bump templates version

---------

Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>
2025-05-10 22:10:58 -04:00
Christian Byrne
235d3901fc Add method to stream text to node UI (#8018)
* show text progress preview

* include node id in message
2025-05-10 20:40:02 -04:00
comfyanonymous
d42613686f Fix issue with fp8 ops on some models. (#8045)
_scaled_mm errors when an input is non contiguous.
2025-05-10 07:52:56 -04:00
Pam
1b3bf0a5da Fix res_multistep_ancestral sampler (#8030) 2025-05-09 20:14:13 -04:00
Christian Byrne
ae60b150e5 update node tooltips and validation (#8036) 2025-05-09 20:02:45 -04:00
blepping
42da274717 Use normal ComfyUI attention in ACE-Steps model (#8023)
* Use normal ComfyUI attention in ACE-Steps model

* Let optimized_attention handle output reshape for ACE
2025-05-09 13:51:02 -04:00
thot experiment
28f178a840 move SVG to core (#7982)
* move SVG to core

* fix workflow embedding w/ unicode characters
2025-05-09 13:46:34 -04:00
comfyanonymous
8ab15c863c Add --mmap-torch-files to enable use of mmap when loading ckpt/pt (#8021) 2025-05-09 04:52:47 -04:00
comfyanonymous
924d771e18 Add ACE Step to README. (#8005) 2025-05-08 08:40:57 -04:00
comfyanonymous
02a1b01aad ComfyUI version 0.3.33 2025-05-08 07:36:48 -04:00
comfyanonymous
a692c3cca4 Make ACE VAE tiling work. (#8004) 2025-05-08 07:25:45 -04:00
comfyanonymous
5d3cc85e13 Make japanese hiragana and katakana characters work with ACE. (#7997) 2025-05-08 03:32:36 -04:00
comfyanonymous
c7c025b8d1 Adjust memory estimation code for ACE VAE. (#7990) 2025-05-08 01:22:23 -04:00
comfyanonymous
fd08e39588 Make torchaudio not a hard requirement. (#7987)
Some platforms can't install it apparently so if it's not there it should
only break models that actually use it.
2025-05-07 21:37:12 -04:00
comfyanonymous
56b6ee6754 Detection code to make ltxv models without config work. (#7986) 2025-05-07 21:28:24 -04:00
comfyanonymous
cc33cd3422 Experimental lyrics strength for ACE. (#7984) 2025-05-07 19:22:07 -04:00
comfyanonymous
b9980592c4 Refuse to load api nodes on old pyav version. (#7981) 2025-05-07 17:27:16 -04:00
comfyanonymous
16417b40d9 Initial ACE-Step model implementation. (#7972) 2025-05-07 08:33:34 -04:00
comfyanonymous
271c9c5b9e Better mem estimation for the LTXV 13B model. (#7963) 2025-05-06 09:52:37 -04:00
comfyanonymous
a4e679765e Change chroma to use Flux shift. (#7961) 2025-05-06 09:00:01 -04:00
comfyanonymous
0cf2e46b17 ComfyUI version 0.3.32 2025-05-06 07:39:54 -04:00
comfyanonymous
094e9ef126 Add a way to disable api nodes: --disable-api-nodes (#7960) 2025-05-06 04:53:53 -04:00
Jedrzej Kosinski
1271c4ef9d More API Nodes (#7956)
* Add Ideogram generate node.

* Add staging api.

* Add API_NODE and common error for missing auth token (#5)

* Add Minimax Video Generation + Async Task queue polling example (#6)

* [Minimax] Show video preview and embed workflow in ouput (#7)

* Remove uv.lock

* Remove polling operations.

* Revert "Remove polling operations."

* Update stubs.

* Added Ideogram and Minimax back in.

* Added initial BFL Flux 1.1 [pro] Ultra node (#11)

* Add --comfy-api-base launch arg (#13)

* Add instructions for staging development. (#14)

* remove validation to make it easier to run against LAN copies of the API

* Manually add BFL polling status response schema (#15)

* Add function for uploading files. (#18)

* Add Luma nodes (#16)

* Refactor util functions (#20)

* Add VIDEO type (#21)

* Add rest of Luma node functionality (#19)

* Fix image_luma_ref not working (#28)

* [Bug] Remove duplicated option T2V-01 in MinimaxTextToVideoNode (#31)

* Add utils to map from pydantic model fields to comfy node inputs (#30)

* add veo2, bump av req (#32)

* Add Recraft nodes (#29)

* Add Kling Nodes (#12)

* Add Camera Concepts (luma_concepts) to Luma Video nodes (#33)

* Add Runway nodes (#17)

* Convert Minimax node to use VIDEO output type (#34)

* Standard `CATEGORY` system for api nodes (#35)

* Set `Content-Type` header when uploading files (#36)

* add better error propagation to veo2 (#37)

* Add Realistic Image and Logo Raster styles for Recraft v3 (#38)

* Fix runway image upload and progress polling (#39)

* Fix image upload for Luma: only include `Content-Type` header field if it's set explicitly (#40)

* Moved Luma nodes to nodes_luma.py (#47)

* Moved Recraft nodes to nodes_recraft.py (#48)

* Add Pixverse nodes (#46)

* Move and fix BFL nodes to node_bfl.py (#49)

* Move and edit Minimax node to nodes_minimax.py (#50)

* Add Minimax Image to Video node + Cleanup (#51)

* Add Recraft Text to Vector node, add Save SVG node to handle its output (#53)

* Added pixverse_template support to Pixverse Text to Video node (#54)

* Added Recraft Controls + Recraft Color RGB nodes (#57)

* split remaining nodes out of nodes_api, make utility lib, refactor ideogram (#61)

* Add types and doctstrings to utils file (#64)

* Fix: `PollingOperation` progress bar update progress by absolute value (#65)

* Use common download function in kling nodes module (#67)

* Fix: Luma video nodes in `api nodes/image` category (#68)

* Set request type explicitly (#66)

* Add `control_after_generate` to all seed inputs (#69)

* Fix bug: deleting `Content-Type` when property does not exist (#73)

* Add preview to Save SVG node (#74)

* change default poll interval (#76), rework veo2

* Add Pixverse and updated Kling types (#75)

* Added Pixverse Image to VIdeo node (#77)

* Add Pixverse Transition Video node (#79)

* Proper ray-1-6 support as fix has been applied in backend (#80)

* Added Recraft Style - Infinite Style Library node (#82)

* add ideogram v3 (#83)

* [Kling] Split Camera Control config to its own node (#81)

* Add Pika i2v and t2v nodes (#52)

* Temporary Fix for Runway (#87)

* Added Stability Stable Image Ultra node (#86)

* Remove Runway nodes (#88)

* Fix: Prompt text can't be validated in Kling nodes when using primitive nodes (#90)

* Fix: typo in node name "Stabiliy" => "Stability" (#91)

* Add String (Multiline) node (#93)

* Update Pika Duration and Resolution options (#94)

* Change base branch to master. Not main. (#95)

* Fix UploadRequest file_name param (#98)

* Removed Infinite Style Library until later (#99)

* fix ideogram style types (#100)

* fix multi image return (#101)

* add metadata saving to SVG (#102)

* Bump templates version to include API node template workflows (#104)

* Fix: `download_url_to_video_output` return type (#103)

* fix 4o generation bug (#106)

* Serve SVG files directly (#107)

* Add a bunch of nodes, 3 ready to use, the rest waiting for endpoint support (#108)

* Revert "Serve SVG files directly" (#111)

* Expose 4 remaining Recraft nodes (#112)

* [Kling] Add `Duration` and `Video ID` outputs (#105)

* Fix: datamodel-codegen sets string#binary type to non-existent `bytes_aliased` variable  (#114)

* Fix: Dall-e 2 not setting request content-type dynamically (#113)

* Default request timeout: one hour. (#116)

* Add Kling nodes: camera control, start-end frame, lip-sync, video extend (#115)

* Add 8 nodes - 4 BFL, 4 Stability (#117)

* Fix error for Recraft ImageToImage error for nonexistent random_seed param (#118)

* Add remaining Pika nodes (#119)

* Make controls input work for Recraft Image to Image node (#120)

* Use upstream PR: Support saving Comfy VIDEO type to buffer (#123)

* Use Upstream PR: "Fix: Error creating video when sliced audio tensor chunks are non-c-contiguous" (#127)

* Improve audio upload utils (#128)

* Fix: Nested `AnyUrl` in request model cannot be serialized (Kling, Runway) (#129)

* Show errors and API output URLs to the user (change log levels) (#131)

* Fix: Luma I2I fails when weight is <=0.01 (#132)

* Change category of `LumaConcepts` node from image to video (#133)

* Fix: `image.shape` accessed before `image` is null-checked (#134)

* Apply small fixes and most prompt validation (if needed to avoid API error) (#135)

* Node name/category modifications (#140)

* Add back Recraft Style - Infinite Style Library node (#141)

* Fixed Kling: Check attributes of pydantic types. (#144)

* Bump `comfyui-workflow-templates` version (#142)

* [Kling] Print response data when error validating response (#146)

* Fix: error validating Kling image response, trying to use `"key" in` on Pydantic class instance (#147)

* [Kling] Fix: Correct/verify supported subset of input combos in Kling nodes (#149)

* [Kling] Fix typo in node description (#150)

* [Kling] Fix: CFG min/max not being enforced (#151)

* Rebase launch-rebase (private) on prep-branch (public copy of master) (#153)

* Bump templates version (#154)

* Fix: Kling image gen nodes don't return entire batch when `n` > 1 (#152)

* Remove pixverse_template from PixVerse Transition Video node (#155)

* Invert image_weight value on Luma Image to Image node (#156)

* Invert and resize mask for Ideogram V3 node to match masking conventions (#158)

* [Kling] Fix: image generation nodes not returning Tuple (#159)

* [Bug] [Kling] Fix Kling camera control (#161)

* Kling Image Gen v2 + improve node descriptions for Flux/OpenAI (#160)

* [Kling] Don't return video_id from dual effect video (#162)

* Bump frontend to 1.18.8 (#163)

* Use 3.9 compat syntax (#164)

* Use Python 3.10

* add example env var

* Update templates to 0.1.11

* Bump frontend to 1.18.9

---------

Co-authored-by: Robin Huang <robin.j.huang@gmail.com>
Co-authored-by: Christian Byrne <cbyrne@comfy.org>
Co-authored-by: thot experiment <94414189+thot-experiment@users.noreply.github.com>
2025-05-06 04:23:00 -04:00
comfyanonymous
d9c80a85e5 This should not be a warning. (#7946) 2025-05-05 07:49:07 -04:00
Christian Byrne
3e62c5513a make audio chunks contiguous before encoding (#7942) 2025-05-04 23:27:23 -04:00
Christian Byrne
cd18582578 Support saving Comfy VIDEO type to buffer (#7939)
* get output format when saving to buffer

* add unit tests for writing to file or stream with correct fmt

* handle `to_format=None`

* fix formatting
2025-05-04 23:26:57 -04:00
comfyanonymous
80a44b97f5 Change lumina to native RMSNorm. (#7935) 2025-05-04 06:39:23 -04:00
comfyanonymous
9187a09483 Change cosmos and hydit models to use the native RMSNorm. (#7934) 2025-05-04 06:26:20 -04:00
comfyanonymous
3041e5c354 Switch mochi and wan modes to use pytorch RMSNorm. (#7925)
* Switch genmo model to native RMSNorm.

* Switch WAN to native RMSNorm.
2025-05-03 19:07:55 -04:00
comfyanonymous
7689917113 ComfyUI version 0.3.31 2025-05-03 00:34:01 -04:00
comfyanonymous
486ad8fdc5 Fix updater issue with newer portable. (#7917) 2025-05-03 00:28:10 -04:00
Terry Jia
065d855f14 upstream Preview Any from rgthree-comfy (#7815)
* upstream Preview Any from rgthree-comfy

* use IO.ANY
2025-05-02 13:15:54 -04:00
Chenlei Hu
530494588d [BugFix] Update frontend 1.18.6 (#7910) 2025-05-02 13:14:52 -04:00
Kohaku-Blueleaf
2ab9618732 Fix the bugs in OFT/BOFT moule (#7909)
* Correct calculate_weight and load for OFT

* Correct calculate_weight and loading for BOFT
2025-05-02 13:12:37 -04:00
catboxanon
d9a87c1e6a Fix outdated comment about Internet connectivity (#7827) 2025-05-02 05:28:27 -04:00
catboxanon
551fe8dcee Add node to extend sigmas (#7901)
* Add ExpandSigmas node

* Rename, add interpolation functions

Co-authored-by: liesen <liesen.dev@gmail.com>

* Move computed interpolation outside loop

* Add type hints

---------

Co-authored-by: liesen <liesen.dev@gmail.com>
2025-05-02 05:28:05 -04:00
comfyanonymous
ff99861650 Make clipsave work with more TE models. (#7908) 2025-05-02 05:15:32 -04:00
catboxanon
8d0661d0ba Lint instance methods (#7903) 2025-05-01 19:32:04 -04:00
Chenlei Hu
6d32dc049e Update frontend to v1.18 (#7898) 2025-05-01 10:57:54 -04:00
comfyanonymous
aa9d759df3 Switch ltxv to use the pytorch RMSNorm. (#7897) 2025-05-01 06:33:42 -04:00
Christian Byrne
c6c19e9980 fix bug (#7894) 2025-05-01 03:24:32 -04:00
comfyanonymous
08ff5fa08a Cleanup chroma PR. 2025-04-30 20:57:30 -04:00
Silver
4ca3d84277 Support for Chroma - Flux1 Schnell distilled with CFG (#7355)
* Upload files for Chroma Implementation

* Remove trailing whitespace

* trim more trailing whitespace..oops

* remove unused imports

* Add supported_inference_dtypes

* Set min_length to 0 and remove attention_mask=True

* Set min_length to 1

* get_mdulations added from blepping and minor changes

* Add lora conversion if statement in lora.py

* Update supported_models.py

* update model_base.py

* add uptream commits

* set modelType.FLOW, will cause beta scheduler to work properly

* Adjust memory usage factor and remove unnecessary code

* fix mistake

* reduce code duplication

* remove unused imports

* refactor for upstream sync

* sync chroma-support with upstream via syncbranch patch

* Update sd.py

* Add Chroma as option for the OptimalStepsScheduler node
2025-04-30 20:57:00 -04:00
comfyanonymous
39c27a3705 Add updater test to stable release workflow. (#7887) 2025-04-30 14:42:18 -04:00
comfyanonymous
b1c7291569 Test updater in the windows release workflow. (#7886) 2025-04-30 14:18:20 -04:00
comfyanonymous
dbc726f80c Better vace memory estimation. (#7875) 2025-04-29 20:42:00 -04:00
comfyanonymous
7ee96455e2 Bump minimum pyav version to 14.2.0 (#7874) 2025-04-29 20:38:45 -04:00
comfyanonymous
0a66d4b0af Per device stream counters for async offload. (#7873) 2025-04-29 20:28:52 -04:00
Terry Jia
5c5457a4ef support more example folders (#7836)
* support more example folders

* add warning message
2025-04-29 11:28:04 -04:00
Chenlei Hu
45503f6499 Add release process section to README (#7855)
* Add release process section to README

* move

* Update README.md
2025-04-29 06:32:34 -04:00
comfyanonymous
005a91ce2b Latest desktop and portable should work on blackwell. (#7861)
Removed the mention about the cards from the readme.
2025-04-29 06:29:38 -04:00
guill
68f0d35296 Add support for VIDEO as a built-in type (#7844)
* Add basic support for videos as types

This PR adds support for VIDEO as first-class types. In order to avoid
unnecessary costs, VIDEO outputs must implement the `VideoInput` ABC,
but their implementation details can vary. Included are two
implementations of this type which can be returned by other nodes:

* `VideoFromFile` - Created with either a path on disk (as a string) or
  a `io.BytesIO` containing the contents of a file in a supported format
  (like .mp4). This implementation won't actually load the video unless
  necessary. It will also avoid re-encoding when saving if possible.
* `VideoFromComponents` - Created from an image tensor and an optional
  audio tensor.

Currently, only h264 encoded videos in .mp4 containers are supported for
saving, but the plan is to add additional encodings/containers in the
near future (particularly .webm).

* Add optimization to avoid parsing entire video

* Improve type declarations to reduce warnings

* Make sure bytesIO objects can be read many times

* Fix a potential issue when saving long videos

* Fix incorrect type annotation

* Add a `LoadVideo` node to make testing easier

* Refactor new types out of the base comfy folder

I've created a new `comfy_api` top-level module. The intention is that
anything within this folder would be covered by semver-style versioning
that would allow custom nodes to rely on them not introducing breaking
changes.

* Fix linting issue
2025-04-29 05:58:00 -04:00
comfyanonymous
83d04717b6 Support HiDream E1 model. (#7857) 2025-04-28 15:01:15 -04:00
Yoland Yan
7d329771f9 Add moderation level option to OpenAIGPTImage1 node and update api_call method signature (#7804) 2025-04-28 13:59:22 -04:00
chaObserv
c15909bb62 CFG++ for gradient estimation sampler (#7809) 2025-04-28 13:51:35 -04:00
Andrew Kvochko
772b4c5945 ltxv: overwrite existing mask on conditioned frame. (#7845)
This commit overwrites the noise mask on the latent frame that is being
conditioned with keyframe conditioning, setting it to one.
2025-04-28 13:42:04 -04:00
comfyanonymous
5a50c3c7e5 Fix stream priority to support older pytorch. (#7856) 2025-04-28 13:07:21 -04:00
Pam
30159a7fe6 Save v pred zsnr metadata (#7840) 2025-04-28 13:03:21 -04:00
Andrew Kvochko
cb9ac3db58 ltxv: add strength parameter to conditioning. (#7849)
This commit adds strength parameter to the LTXVImgToVideo node.
2025-04-28 12:59:17 -04:00
Benjamin Lu
8115a7895b Add /api/v2/userdata endpoint (#7817)
* Add list_userdata_v2

* nit

* nit

* nit

* nit

* please set me free

* \\\\

* \\\\
2025-04-27 20:06:55 -04:00
comfyanonymous
c8cd7ad795 Use stream for casting if enabled. (#7833) 2025-04-27 05:38:11 -04:00
comfyanonymous
542b4b36b6 Prevent custom nodes from hooking certain functions. (#7825) 2025-04-26 20:52:56 -04:00
comfyanonymous
ac10a0d69e Make loras work with --async-offload (#7824) 2025-04-26 19:56:22 -04:00
comfyanonymous
0dcc75ca54 Add experimental --async-offload lowvram weight offloading. (#7820)
This should speed up the lowvram mode a bit. It currently is only enabled when --async-offload is used but it will be enabled by default in the future if there are no problems.
2025-04-26 16:11:21 -04:00
comfyanonymous
b685b8a4e0 Update portable package workflow to cu128 (#7812) 2025-04-26 04:43:12 -04:00
comfyanonymous
23e39f2ba7 Add a T5TokenizerOptions node to set options for the T5 tokenizer. (#7803) 2025-04-25 19:36:00 -04:00
AustinMroz
78992c4b25 [NodeDef] Add documentation on widgetType (#7768)
* [NodeDef] Add documentation on widgetType

* Document required version for widgetType
2025-04-25 13:35:07 -04:00
comfyanonymous
f935d42d8e Support SimpleTuner lycoris lora format for HiDream. 2025-04-25 03:11:14 -04:00
comfyanonymous
a97f2f850a ComfyUI version 0.3.30 2025-04-24 16:03:01 -04:00
comfyanonymous
5acb705857 Switch LTXVPreprocess to libx264 (#7776) 2025-04-24 13:58:31 -04:00
thot experiment
5c80da31db fix multiple image return from api nodes (#7772) 2025-04-24 03:29:05 -04:00
thot experiment
e2eed9eb9b throw away alpha channel in clip vision preprocessor (#7769)
saves users having to explicitly discard the channel
2025-04-23 21:28:36 -04:00
filtered
11b68ebd22 [BugFix] Update frontend to 1.17.11 (#7766) 2025-04-23 18:16:12 -04:00
thot experiment
188b383c35 change timeout to 7 days (#7765) 2025-04-23 17:53:34 -04:00
thot experiment
2c1d686ec6 implement multi image prompting for gpt-image-1 and fix transparency in outputs (#7763)
* implement multi image prompting for GPTI Image 1

* fix transparency not working

* fix ruff
2025-04-23 16:10:10 -04:00
filtered
e8ddc2be95 [BugFix] Update frontend to 1.17.10 (#7762) 2025-04-23 16:02:41 -04:00
Robin Huang
dea1c7474a Add support for API Nodes in ComfyUI. (#7726)
* Add Ideogram generate node.

* Add staging api.

* COMFY_API_NODE_NAME node property

* switch to boolean flag and use original node name for id

* add optional to type

* Add API_NODE and common error for missing auth token (#5)

* Add Minimax Video Generation + Async Task queue polling example (#6)

* [Minimax] Show video preview and embed workflow in ouput (#7)

* [API Nodes] Send empty request body instead of empty dictionary. (#8)

* Fixed: removed function from rebase.

* Add pydantic.

* Remove uv.lock

* Remove polling operations.

* Update stubs workflow.

* Remove polling comments.

* Update stubs.

* Use pydantic v2.

* Use pydantic v2.

* Add basic OpenAITextToImage node

* Add.

* convert image to tensor.

* Improve types.

* Ruff.

* Push tests.

* Handle multi-form data.

- Don't set content-type for multi-part/form
- Use data field instead of JSON

* Change to api.comfy.org

* Handle error code 409.

* separate out nodes per openai model

* Update error message.

* fix wrong output type

* re-categorize nodes, remove ideogram (for now)

* oops, fix mappings

* fix ruff

* Update frontend  to 1.17.9

* embargo lift rename nodes

* remove unused autogenerated model code

* fix API type error and add b64 support for 4o

* fix ruff

* oops forgot mask scaling code

* Remove unused types.

---------

Co-authored-by: bymyself <cbyrne@comfy.org>
Co-authored-by: Yoland Y <4950057+yoland68@users.noreply.github.com>
Co-authored-by: thot-experiment <thot@thiic.cc>
2025-04-23 15:38:34 -04:00
comfyanonymous
154f2911aa Lower size of release package more. (#7754) 2025-04-23 06:33:09 -04:00
comfyanonymous
3eaad0590e Lower size of release package. (#7751) 2025-04-23 05:47:09 -04:00
comfyanonymous
7eaff81be1 fp16 accumulation can now be enabled on the stable package. (#7750) 2025-04-23 05:28:24 -04:00
comfyanonymous
21a11ef817 Pytorch stable 2.7 is out and support cu128 (#7749) 2025-04-23 05:12:59 -04:00
comfyanonymous
552615235d Fix for dino lowvram. (#7748) 2025-04-23 04:12:52 -04:00
Robin Huang
0738e4ea5d [API nodes] Add backbone for supporting api nodes in ComfyUI (#7745)
* Add Ideogram generate node.

* Add staging api.

* COMFY_API_NODE_NAME node property

* switch to boolean flag and use original node name for id

* add optional to type

* Add API_NODE and common error for missing auth token (#5)

* Add Minimax Video Generation + Async Task queue polling example (#6)

* [Minimax] Show video preview and embed workflow in ouput (#7)

* [API Nodes] Send empty request body instead of empty dictionary. (#8)

* Fixed: removed function from rebase.

* Add pydantic.

* Remove uv.lock

* Remove polling operations.

* Update stubs workflow.

* Remove polling comments.

* Update stubs.

* Use pydantic v2.

* Use pydantic v2.

* Add basic OpenAITextToImage node

* Add.

* convert image to tensor.

* Improve types.

* Ruff.

* Push tests.

* Handle multi-form data.

- Don't set content-type for multi-part/form
- Use data field instead of JSON

* Change to api.comfy.org

* Handle error code 409.

* Remove nodes.

---------

Co-authored-by: bymyself <cbyrne@comfy.org>
Co-authored-by: Yoland Y <4950057+yoland68@users.noreply.github.com>
2025-04-23 02:18:08 -04:00
Alex Butler
92cdc692f4 Replace aom-av1 with svt-av1 for saving webm videos, use preset 6 + yuv420p10le pixel format (#7736)
* Add support for saving svt-av1 webm videos & yuv420p10le pixel format

* Replace aom-av1 with svt-av1

Use yuv420p10le for av1
2025-04-22 17:57:17 -04:00
comfyanonymous
2d6805ce57 Add option for using fp8_e8m0fnu for model weights. (#7733)
Seems to break every model I have tried but worth testing?
2025-04-22 06:17:38 -04:00
Kohaku-Blueleaf
a8f63c0d5b Support dora_scale on both axis (#7727) 2025-04-22 05:01:27 -04:00
Terry Jia
454a635c1b upstream MaskPreview from ComfyUI_essentials (#7719) 2025-04-22 05:00:28 -04:00
Kohaku-Blueleaf
966c43ce26 Add OFT/BOFT algorithm in weight adapter (#7725) 2025-04-22 04:59:47 -04:00
comfyanonymous
3ab231f01f Fix issue with WAN VACE implementation. (#7724) 2025-04-21 23:36:12 -04:00
Kohaku-Blueleaf
1f3fba2af5 Unified Weight Adapter system for better maintainability and future feature of Lora system (#7540) 2025-04-21 20:15:32 -04:00
comfyanonymous
5d0d4ee98a Add strength control for vace. (#7717) 2025-04-21 19:36:20 -04:00
Alexander G. Morano
9d57b8afd8 Update nodes_primitive.py (#7716)
Allow FLOAT and INT types to support negative numbers. 
Caps the numbers at the user's own system min and max.
2025-04-21 18:51:31 -04:00
filtered
5d51794607 Add node type hint for socketless option (#7714)
* Add node type hint for socketless option

* nit - Doc
2025-04-21 16:13:00 -04:00
comfyanonymous
ce22f687cc Support for WAN VACE preview model. (#7711)
* Support for WAN VACE preview model.

* Remove print.
2025-04-21 14:40:29 -04:00
Chenlei Hu
b6fd3ffd10 Populate AUTH_TOKEN_COMFY_ORG hidden input (#7709) 2025-04-21 14:39:45 -04:00
comfyanonymous
11b72c9c55 CLIPTextEncodeHiDream. (#7703) 2025-04-21 02:41:51 -04:00
comfyanonymous
2c735c13b4 Slightly better fix for #7687 2025-04-20 11:33:27 -04:00
comfyanonymous
fd27494441 Use empty t5 of size 128 for hidream, seems to give closer results. 2025-04-19 19:49:40 -04:00
power88
f43e1d7f41 Hidream: Allow loading hidream text encoders in CLIPLoader and DualCLIPLoader (#7676)
* Hidream: Allow partial loading text encoders

* reformat code for ruff check.
2025-04-19 19:47:30 -04:00
Yoland Yan
4486b0d0ff Update CODEOWNERS and add christian-byrne (#7663) 2025-04-19 17:23:31 -04:00
comfyanonymous
636d4bfb89 Fix hard crash when the spiece tokenizer path is bad. 2025-04-19 15:55:43 -04:00
Robin Huang
dc300a4569 Add wanfun template workflows. (#7678) 2025-04-19 15:21:46 -04:00
Chenlei Hu
f3b09b9f2d [BugFix] Update frontend to 1.16.9 (#7655)
Backport https://github.com/Comfy-Org/ComfyUI_frontend/pull/3505
2025-04-18 15:12:42 -04:00
comfyanonymous
7ecd5e9614 Increase freq_cutoff in FreSca node. 2025-04-18 03:16:16 -04:00
City
2383a39e3b Replace CLIPType if with getattr (#7589)
* Replace CLIPType if with getattr

* Forgot to remove breakpoint from testing
2025-04-18 02:53:36 -04:00
Terry Jia
34e06bf7ec add support to output camera state (#7582) 2025-04-18 02:52:18 -04:00
Chenlei Hu
55822faa05 [Type] Annotate graph.get_input_info (#7386)
* [Type] Annotate graph.get_input_info

* nit

* nit
2025-04-17 21:02:24 -04:00
comfyanonymous
880c205df1 Add hidream to readme. 2025-04-17 16:58:27 -04:00
comfyanonymous
3dc240d089 Make fresca work on multi dim. 2025-04-17 15:46:41 -04:00
BVH
19373aee75 Add FreSca node (#7631) 2025-04-17 15:24:33 -04:00
comfyanonymous
93292bc450 ComfyUI version 0.3.29 2025-04-17 14:45:01 -04:00
Christian Byrne
05d5a75cdc Update frontend to 1.16 (Install templates as pip package) (#7623)
* install templates as pip package

* Update requirements.txt

* bump templates version to include hidream

---------

Co-authored-by: Chenlei Hu <hcl@comfy.org>
2025-04-17 14:25:33 -04:00
comfyanonymous
eba7a25e7a Add WanFirstLastFrameToVideo node to use the new model. 2025-04-17 13:23:22 -04:00
comfyanonymous
dbcfd092a2 Set default context_img_len to 257 2025-04-17 12:42:34 -04:00
comfyanonymous
c14429940f Support loading WAN FLF model. 2025-04-17 12:04:48 -04:00
comfyanonymous
0d720e4367 Don't hardcode length of context_img in wan code. 2025-04-17 06:25:39 -04:00
comfyanonymous
1fc00ba4b6 Make hidream work with any latent resolution. 2025-04-16 18:34:14 -04:00
comfyanonymous
9899d187b1 Limit T5 to 128 tokens for HiDream: #7620 2025-04-16 18:07:55 -04:00
comfyanonymous
f00f340a56 Reuse code from flux model. 2025-04-16 17:43:55 -04:00
Chenlei Hu
cce1d9145e [Type] Mark input options NotRequired (#7614) 2025-04-16 15:41:00 -04:00
comfyanonymous
b4dc03ad76 Fix issue on old torch. 2025-04-16 04:53:56 -04:00
comfyanonymous
9ad792f927 Basic support for hidream i1 model. 2025-04-15 17:35:05 -04:00
comfyanonymous
6fc5dbd52a Cleanup. 2025-04-15 12:13:28 -04:00
comfyanonymous
3e8155f7a3 More flexible long clip support.
Add clip g long clip support.

Text encoder refactor.

Support llama models with different vocab sizes.
2025-04-15 10:32:21 -04:00
comfyanonymous
8a438115fb add RMSNorm to comfy.ops 2025-04-14 18:00:33 -04:00
comfyanonymous
a14c2fc356 ComfyUI version v0.3.28 2025-04-13 12:21:12 -07:00
JNP
9ee6ca99d8 add_optimalsteps (#7584)
Co-authored-by: bebebe666 <jianningpei@tencent.com>
2025-04-12 20:33:36 -04:00
comfyanonymous
bb495cc9b8 Print python version in log. 2025-04-12 18:58:34 -04:00
chaObserv
e51d9ba5fc Add SEEDS (stage 2 & 3 DP) sampler (#7580)
* Add seeds stage 2 & 3 (DP) sampler

* Change the name to SEEDS in comment
2025-04-12 18:36:08 -04:00
Christian Byrne
c87a06f934 Update filter_files_content_types to support filtering 3d models (#7572)
* support 3d model filtering

* fix lint error: blank line contains whitespace

* add model extensions to test runner mimetype cache manually

* use unittest.mock.patch

* remove mtl file from testcase (actually plaintext support file)
2025-04-12 18:30:39 -04:00
catboxanon
1714a4c158 Add CublasOps support (#7574)
* CublasOps support

* Guard CublasOps behind --fast arg
2025-04-12 18:29:15 -04:00
Christian Byrne
73ecb75a3d filter image files in load image dropdown (#7573) 2025-04-12 18:27:59 -04:00
comfyanonymous
22ad513c72 Refactor node cache code to more easily add other types of cache. 2025-04-11 07:16:52 -04:00
Chargeuk
ed945a1790 Dependency Aware Node Caching for low RAM/VRAM machines (#7509)
* add dependency aware cache that removed a cached node as soon as all of its decendents have executed. This allows users with lower RAM to run workflows they would otherwise not be able to run. The downside is that every workflow will fully run each time even if no nodes have changed.

* remove test code

* tidy code
2025-04-11 06:55:51 -04:00
Chenlei Hu
f9207c6936 Update frontend to 1.15 (#7564) 2025-04-11 06:46:20 -04:00
Christian Byrne
8ad7477647 dont cache templates index (#7569) 2025-04-11 06:06:53 -04:00
Chenlei Hu
98bdca4cb2 Deprecate InputTypeOptions.defaultInput (#7551)
* Deprecate InputTypeOptions.defaultInput

* nit

* nit
2025-04-10 06:57:06 -04:00
comfyanonymous
a26da20a76 Fix custom nodes not importing when path contains a dot. 2025-04-10 03:37:52 -04:00
Jedrzej Kosinski
e346d8584e Add prepare_sampling wrapper allowing custom nodes to more accurately report noise_shape (#7500) 2025-04-09 09:43:35 -04:00
comfyanonymous
ab31b64412 Make "surface net" the default in the VoxelToMesh node. 2025-04-09 09:42:08 -04:00
thot experiment
fe29739c68 add VoxelToMesh node w/ surfacenet meshing (#7446)
* add VoxelToMesh node w/ surfacenet meshing

could delete the VoxelToMeshBasic node now probably?

* fix ruff
2025-04-09 09:41:03 -04:00
Chenlei Hu
e8345a9b7b Align /prompt response schema (#7423) 2025-04-09 09:10:36 -04:00
comfyanonymous
8c6b9f4481 Prevent custom nodes from accidentally overwriting global modules. (#7167)
* Prevent custom nodes from accidentally overwriting global modules.

* Improve.
2025-04-09 09:08:57 -04:00
Christian Byrne
cc7e023a4a handle palette mode in loadimage node (#7539) 2025-04-09 09:07:07 -04:00
comfyanonymous
2f7d8159c3 Show the user an error when the controlnet file is invalid. 2025-04-08 08:11:59 -04:00
comfyanonymous
70d7242e57 Support the wan fun reward loras. 2025-04-07 05:01:47 -04:00
comfyanonymous
49b732afd5 Show a proper error to the user when a vision model file is invalid. 2025-04-06 22:43:56 -04:00
comfyanonymous
3bfe4e5276 Support 512 siglip model. 2025-04-05 07:01:01 -04:00
Raphael Walker
89e4ea0175 Add activations_shape info in UNet models (#7482)
* Add activations_shape info in UNet models

* activations_shape should be a list
2025-04-04 21:27:54 -04:00
comfyanonymous
3a100b9a55 Disable partial offloading of audio VAE. 2025-04-04 21:24:56 -04:00
comfyanonymous
721253cb05 Fix problem. 2025-04-03 20:57:59 -04:00
comfyanonymous
3d2e3a6f29 Fix alpha image issue in more nodes. 2025-04-02 19:32:49 -04:00
BiologicalExplosion
2222cf67fd MLU memory optimization (#7470)
Co-authored-by: huzhan <huzhan@cambricon.com>
2025-04-02 19:24:04 -04:00
comfyanonymous
ab5413351e Fix comment.
This function does not support quads.
2025-04-01 14:09:31 -04:00
Laurent Erignoux
2b71aab299 User missing (#7439)
* Ensuring a 401 error is returned when user data is not found in multi-user context.

* Returning a 401 error when provided comfy-user does not exists on server side.
2025-04-01 13:53:52 -04:00
BVH
301e26b131 Add option to store TE in bf16 (#7461) 2025-04-01 13:48:53 -04:00
comfyanonymous
548457bac4 Fix alpha channel mismatch on destination in ImageCompositeMasked 2025-03-31 20:59:12 -04:00
comfyanonymous
0b4584c741 Fix latent composite node not working when source has alpha. 2025-03-30 21:47:05 -04:00
comfyanonymous
a3100c8452 Remove useless code. 2025-03-29 20:12:56 -04:00
Michael Kupchick
832fc02330 ltxv: fix preprocessing exception when compression is 0. (#7431) 2025-03-29 20:03:02 -04:00
comfyanonymous
2d17d8910c Don't error if wan concat image has extra channels. 2025-03-28 08:49:29 -04:00
Chenlei Hu
a40fcfc2d5 Update frontend to 1.14.6 (#7416)
Cherry-pick the fix: https://github.com/Comfy-Org/ComfyUI_frontend/pull/3252
2025-03-28 02:27:01 -04:00
comfyanonymous
0a1f8869c9 Add WanFunInpaintToVideo node for the Wan fun inpaint models. 2025-03-27 11:13:27 -04:00
comfyanonymous
3661c833bc Support the WAN 2.1 fun control models.
Use the new WanFunControlToVideo node.
2025-03-26 19:54:54 -04:00
comfyanonymous
84fdaf7b0e Add CFGZeroStar node.
Works on all models that use a negative prompt but is meant for rectified
flow models.
2025-03-26 05:09:52 -04:00
comfyanonymous
8edc1f44c1 Support more float8 types. 2025-03-25 05:23:49 -04:00
comfyanonymous
eade1551bb Add Hunyuan3D to readme. 2025-03-24 07:14:32 -04:00
comfyanonymous
581a9991ff Add model merging node for WAN 2.1 2025-03-23 08:06:36 -04:00
comfyanonymous
e471c726e5 Fallback to pytorch attention if sage attention fails. 2025-03-22 15:45:56 -04:00
214 changed files with 201805 additions and 1062 deletions

View File

@@ -63,7 +63,12 @@ except:
print("checking out master branch") # noqa: T201
branch = repo.lookup_branch('master')
if branch is None:
ref = repo.lookup_reference('refs/remotes/origin/master')
try:
ref = repo.lookup_reference('refs/remotes/origin/master')
except:
print("pulling.") # noqa: T201
pull(repo)
ref = repo.lookup_reference('refs/remotes/origin/master')
repo.checkout(ref)
branch = repo.lookup_branch('master')
if branch is None:

View File

@@ -15,6 +15,14 @@ body:
steps to replicate what went wrong and others will be able to repeat your steps and see the same issue happen.
If unsure, ask on the [ComfyUI Matrix Space](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) or the [Comfy Org Discord](https://discord.gg/comfyorg) first.
- type: checkboxes
id: custom-nodes-test
attributes:
label: Custom Node Testing
description: Please confirm you have tried to reproduce the issue with all custom nodes disabled.
options:
- label: I have tried disabling custom nodes and the issue persists (see [how to disable custom nodes](https://docs.comfy.org/troubleshooting/custom-node-issues#step-1%3A-test-with-all-custom-nodes-disabled) if you need help)
required: true
- type: textarea
attributes:
label: Expected Behavior

View File

@@ -11,6 +11,14 @@ body:
**2:** You have made an effort to find public answers to your question before asking here. In other words, you googled it first, and scrolled through recent help topics.
If unsure, ask on the [ComfyUI Matrix Space](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) or the [Comfy Org Discord](https://discord.gg/comfyorg) first.
- type: checkboxes
id: custom-nodes-test
attributes:
label: Custom Node Testing
description: Please confirm you have tried to reproduce the issue with all custom nodes disabled.
options:
- label: I have tried disabling custom nodes and the issue persists (see [how to disable custom nodes](https://docs.comfy.org/troubleshooting/custom-node-issues#step-1%3A-test-with-all-custom-nodes-disabled) if you need help)
required: true
- type: textarea
attributes:
label: Your question

View File

@@ -12,7 +12,7 @@ on:
description: 'CUDA version'
required: true
type: string
default: "126"
default: "128"
python_minor:
description: 'Python minor version'
required: true
@@ -22,7 +22,7 @@ on:
description: 'Python patch version'
required: true
type: string
default: "9"
default: "10"
jobs:
@@ -36,7 +36,7 @@ jobs:
- uses: actions/checkout@v4
with:
ref: ${{ inputs.git_tag }}
fetch-depth: 0
fetch-depth: 150
persist-credentials: false
- uses: actions/cache/restore@v4
id: cache
@@ -70,7 +70,7 @@ jobs:
cd ..
git clone --depth 1 https://github.com/comfyanonymous/taesd
cp taesd/*.pth ./ComfyUI_copy/models/vae_approx/
cp taesd/*.safetensors ./ComfyUI_copy/models/vae_approx/
mkdir ComfyUI_windows_portable
mv python_embeded ComfyUI_windows_portable
@@ -85,12 +85,14 @@ jobs:
cd ..
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=8 -mfb=64 -md=32m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=512m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
mv ComfyUI_windows_portable.7z ComfyUI/ComfyUI_windows_portable_nvidia.7z
cd ComfyUI_windows_portable
python_embeded/python.exe -s ComfyUI/main.py --quick-test-for-ci --cpu
python_embeded/python.exe -s ./update/update.py ComfyUI/
ls
- name: Upload binaries to release

View File

@@ -17,7 +17,7 @@ jobs:
path: "ComfyUI"
- uses: actions/setup-python@v4
with:
python-version: '3.9'
python-version: '3.10'
- name: Install requirements
run: |
python -m pip install --upgrade pip

56
.github/workflows/update-api-stubs.yml vendored Normal file
View File

@@ -0,0 +1,56 @@
name: Generate Pydantic Stubs from api.comfy.org
on:
schedule:
- cron: '0 0 * * 1'
workflow_dispatch:
jobs:
generate-models:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install 'datamodel-code-generator[http]'
npm install @redocly/cli
- name: Download OpenAPI spec
run: |
curl -o openapi.yaml https://api.comfy.org/openapi
- name: Filter OpenAPI spec with Redocly
run: |
npx @redocly/cli bundle openapi.yaml --output filtered-openapi.yaml --config comfy_api_nodes/redocly.yaml --remove-unused-components
- name: Generate API models
run: |
datamodel-codegen --use-subclass-enum --input filtered-openapi.yaml --output comfy_api_nodes/apis --output-model-type pydantic_v2.BaseModel
- name: Check for changes
id: git-check
run: |
git diff --exit-code comfy_api_nodes/apis || echo "changes=true" >> $GITHUB_OUTPUT
- name: Create Pull Request
if: steps.git-check.outputs.changes == 'true'
uses: peter-evans/create-pull-request@v5
with:
commit-message: 'chore: update API models from OpenAPI spec'
title: 'Update API models from api.comfy.org'
body: |
This PR updates the API models based on the latest api.comfy.org OpenAPI specification.
Generated automatically by the a Github workflow.
branch: update-api-stubs
delete-branch: true
base: master

View File

@@ -17,7 +17,7 @@ on:
description: 'cuda version'
required: true
type: string
default: "126"
default: "128"
python_minor:
description: 'python minor version'
@@ -29,7 +29,7 @@ on:
description: 'python patch version'
required: true
type: string
default: "9"
default: "10"
# push:
# branches:
# - master

View File

@@ -56,7 +56,7 @@ jobs:
cd ..
git clone --depth 1 https://github.com/comfyanonymous/taesd
cp taesd/*.pth ./ComfyUI_copy/models/vae_approx/
cp taesd/*.safetensors ./ComfyUI_copy/models/vae_approx/
mkdir ComfyUI_windows_portable_nightly_pytorch
mv python_embeded ComfyUI_windows_portable_nightly_pytorch

View File

@@ -7,7 +7,7 @@ on:
description: 'cuda version'
required: true
type: string
default: "126"
default: "128"
python_minor:
description: 'python minor version'
@@ -19,7 +19,7 @@ on:
description: 'python patch version'
required: true
type: string
default: "9"
default: "10"
# push:
# branches:
# - master
@@ -50,7 +50,7 @@ jobs:
- uses: actions/checkout@v4
with:
fetch-depth: 0
fetch-depth: 150
persist-credentials: false
- shell: bash
run: |
@@ -67,7 +67,7 @@ jobs:
cd ..
git clone --depth 1 https://github.com/comfyanonymous/taesd
cp taesd/*.pth ./ComfyUI_copy/models/vae_approx/
cp taesd/*.safetensors ./ComfyUI_copy/models/vae_approx/
mkdir ComfyUI_windows_portable
mv python_embeded ComfyUI_windows_portable
@@ -82,12 +82,14 @@ jobs:
cd ..
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=8 -mfb=64 -md=32m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=512m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
mv ComfyUI_windows_portable.7z ComfyUI/new_ComfyUI_windows_portable_nvidia_cu${{ inputs.cu }}_or_cpu.7z
cd ComfyUI_windows_portable
python_embeded/python.exe -s ComfyUI/main.py --quick-test-for-ci --cpu
python_embeded/python.exe -s ./update/update.py ComfyUI/
ls
- name: Upload binaries to release

3
.gitignore vendored
View File

@@ -21,3 +21,6 @@ venv/
*.log
web_custom_versions/
.DS_Store
openapi.yaml
filtered-openapi.yaml
uv.lock

View File

@@ -5,20 +5,20 @@
# Inlined the team members for now.
# Maintainers
*.md @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
/tests/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
/tests-unit/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
/notebooks/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
/script_examples/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
/.github/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
/requirements.txt @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
/pyproject.toml @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata @Kosinkadink
*.md @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/tests/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/tests-unit/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/notebooks/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/script_examples/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/.github/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/requirements.txt @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/pyproject.toml @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
# Python web server
/api_server/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata
/app/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata
/utils/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata
/api_server/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne
/app/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne
/utils/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne
# Node developers
/comfy_extras/ @yoland68 @robinjhuang @huchenlei @pythongosssss @ltdrdata @Kosinkadink @webfiltered
/comfy/comfy_types/ @yoland68 @robinjhuang @huchenlei @pythongosssss @ltdrdata @Kosinkadink @webfiltered
/comfy_extras/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne
/comfy/comfy_types/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne

View File

@@ -6,6 +6,7 @@
[![Website][website-shield]][website-url]
[![Dynamic JSON Badge][discord-shield]][discord-url]
[![Twitter][twitter-shield]][twitter-url]
[![Matrix][matrix-shield]][matrix-url]
<br>
[![][github-release-shield]][github-release-link]
@@ -20,6 +21,8 @@
<!-- Workaround to display total user from https://github.com/badges/shields/issues/4500#issuecomment-2060079995 -->
[discord-shield]: https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fdiscord.com%2Fapi%2Finvites%2Fcomfyorg%3Fwith_counts%3Dtrue&query=%24.approximate_member_count&logo=discord&logoColor=white&label=Discord&color=green&suffix=%20total
[discord-url]: https://www.comfy.org/discord
[twitter-shield]: https://img.shields.io/twitter/follow/ComfyUI
[twitter-url]: https://x.com/ComfyUI
[github-release-shield]: https://img.shields.io/github/v/release/comfyanonymous/ComfyUI?style=flat&sort=semver
[github-release-link]: https://github.com/comfyanonymous/ComfyUI/releases
@@ -49,7 +52,6 @@ Supports all operating systems and GPU types (NVIDIA, AMD, Intel, Apple Silicon,
## [Examples](https://comfyanonymous.github.io/ComfyUI_examples/)
See what ComfyUI can do with the [example workflows](https://comfyanonymous.github.io/ComfyUI_examples/).
## Features
- Nodes/graph/flowchart interface to experiment and create complex Stable Diffusion workflows without needing to code anything.
- Image Models
@@ -62,14 +64,23 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
- [HunyuanDiT](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_dit/)
- [Flux](https://comfyanonymous.github.io/ComfyUI_examples/flux/)
- [Lumina Image 2.0](https://comfyanonymous.github.io/ComfyUI_examples/lumina2/)
- [HiDream](https://comfyanonymous.github.io/ComfyUI_examples/hidream/)
- [Cosmos Predict2](https://comfyanonymous.github.io/ComfyUI_examples/cosmos_predict2/)
- Image Editing Models
- [Omnigen 2](https://comfyanonymous.github.io/ComfyUI_examples/omnigen/)
- [Flux Kontext](https://comfyanonymous.github.io/ComfyUI_examples/flux/#flux-kontext-image-editing-model)
- Video Models
- [Stable Video Diffusion](https://comfyanonymous.github.io/ComfyUI_examples/video/)
- [Mochi](https://comfyanonymous.github.io/ComfyUI_examples/mochi/)
- [LTX-Video](https://comfyanonymous.github.io/ComfyUI_examples/ltxv/)
- [Hunyuan Video](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_video/)
- [Nvidia Cosmos](https://comfyanonymous.github.io/ComfyUI_examples/cosmos/)
- [Nvidia Cosmos](https://comfyanonymous.github.io/ComfyUI_examples/cosmos/) and [Cosmos Predict2](https://comfyanonymous.github.io/ComfyUI_examples/cosmos_predict2/)
- [Wan 2.1](https://comfyanonymous.github.io/ComfyUI_examples/wan/)
- [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
- Audio Models
- [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
- [ACE Step](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
- 3D Models
- [Hunyuan3D 2.0](https://docs.comfy.org/tutorials/3d/hunyuan3D-2)
- Asynchronous Queue system
- Many optimizations: Only re-executes the parts of the workflow that changes between executions.
- Smart memory management: can automatically run models on GPUs with as low as 1GB vram.
@@ -91,11 +102,28 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
- [LCM models and Loras](https://comfyanonymous.github.io/ComfyUI_examples/lcm/)
- Latent previews with [TAESD](#how-to-show-high-quality-previews)
- Starts up very fast.
- Works fully offline: will never download anything.
- Works fully offline: core will never download anything unless you want to.
- Optional API nodes to use paid models from external providers through the online [Comfy API](https://docs.comfy.org/tutorials/api-nodes/overview).
- [Config file](extra_model_paths.yaml.example) to set the search paths for models.
Workflow examples can be found on the [Examples page](https://comfyanonymous.github.io/ComfyUI_examples/)
## Release Process
ComfyUI follows a weekly release cycle every Friday, with three interconnected repositories:
1. **[ComfyUI Core](https://github.com/comfyanonymous/ComfyUI)**
- Releases a new stable version (e.g., v0.7.0)
- Serves as the foundation for the desktop release
2. **[ComfyUI Desktop](https://github.com/Comfy-Org/desktop)**
- Builds a new release using the latest stable core version
3. **[ComfyUI Frontend](https://github.com/Comfy-Org/ComfyUI_frontend)**
- Weekly frontend updates are merged into the core repository
- Features are frozen for the upcoming core release
- Development continues for the next release cycle
## Shortcuts
| Keybind | Explanation |
@@ -146,8 +174,6 @@ Simply download, extract with [7-Zip](https://7-zip.org) and run. Make sure you
If you have trouble extracting it, right click the file -> properties -> unblock
If you have a 50 series Blackwell card like a 5090 or 5080 see [this discussion thread](https://github.com/comfyanonymous/ComfyUI/discussions/6643)
#### How do I share models between another UI and ComfyUI?
See the [Config file](extra_model_paths.yaml.example) to set the search paths for models. In the standalone windows build you can find this file in the ComfyUI directory. Rename this file to extra_model_paths.yaml and edit it with your favorite text editor.
@@ -179,11 +205,11 @@ Put your VAE in: models/vae
### AMD GPUs (Linux only)
AMD users can install rocm and pytorch with pip if you don't have it already installed, this is the command to install the stable version:
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.2.4```
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.3```
This is the command to install the nightly with ROCm 6.3 which might have some performance improvements:
This is the command to install the nightly with ROCm 6.4 which might have some performance improvements:
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm6.3```
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm6.4```
### Intel GPUs (Windows and Linux)
@@ -213,9 +239,9 @@ Additional discussion and help can be found [here](https://github.com/comfyanony
Nvidia users should install stable pytorch using this command:
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu126```
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu128```
This is the command to install pytorch nightly instead which supports the new blackwell 50xx series GPUs and might have performance improvements.
This is the command to install pytorch nightly instead which might have performance improvements.
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu128```
@@ -250,6 +276,8 @@ You can install ComfyUI in Apple Mac silicon (M1 or M2) with any recent macOS ve
#### DirectML (AMD Cards on Windows)
This is very badly supported and is not recommended. There are some unofficial builds of pytorch ROCm on windows that exist that will give you a much better experience than this. This readme will be updated once official pytorch ROCm builds for windows come out.
```pip install torch-directml``` Then you can launch ComfyUI with: ```python main.py --directml```
#### Ascend NPUs
@@ -283,7 +311,7 @@ For AMD 7600 and maybe other RDNA3 cards: ```HSA_OVERRIDE_GFX_VERSION=11.0.0 pyt
### AMD ROCm Tips
You can enable experimental memory efficient attention on pytorch 2.5 in ComfyUI on RDNA3 and potentially other AMD GPUs using this command:
You can enable experimental memory efficient attention on recent pytorch in ComfyUI on some AMD GPUs using this command, it should already be enabled by default on RDNA3. If this improves speed for you on latest pytorch on your GPU please report it so that I can enable it by default.
```TORCH_ROCM_AOTRITON_ENABLE_EXPERIMENTAL=1 python main.py --use-pytorch-cross-attention```

84
alembic.ini Normal file
View File

@@ -0,0 +1,84 @@
# A generic, single database configuration.
[alembic]
# path to migration scripts
# Use forward slashes (/) also on windows to provide an os agnostic path
script_location = alembic_db
# template used to generate migration file names; The default value is %%(rev)s_%%(slug)s
# Uncomment the line below if you want the files to be prepended with date and time
# see https://alembic.sqlalchemy.org/en/latest/tutorial.html#editing-the-ini-file
# for all available tokens
# file_template = %%(year)d_%%(month).2d_%%(day).2d_%%(hour).2d%%(minute).2d-%%(rev)s_%%(slug)s
# sys.path path, will be prepended to sys.path if present.
# defaults to the current working directory.
prepend_sys_path = .
# timezone to use when rendering the date within the migration file
# as well as the filename.
# If specified, requires the python>=3.9 or backports.zoneinfo library and tzdata library.
# Any required deps can installed by adding `alembic[tz]` to the pip requirements
# string value is passed to ZoneInfo()
# leave blank for localtime
# timezone =
# max length of characters to apply to the "slug" field
# truncate_slug_length = 40
# set to 'true' to run the environment during
# the 'revision' command, regardless of autogenerate
# revision_environment = false
# set to 'true' to allow .pyc and .pyo files without
# a source .py file to be detected as revisions in the
# versions/ directory
# sourceless = false
# version location specification; This defaults
# to alembic_db/versions. When using multiple version
# directories, initial revisions must be specified with --version-path.
# The path separator used here should be the separator specified by "version_path_separator" below.
# version_locations = %(here)s/bar:%(here)s/bat:alembic_db/versions
# version path separator; As mentioned above, this is the character used to split
# version_locations. The default within new alembic.ini files is "os", which uses os.pathsep.
# If this key is omitted entirely, it falls back to the legacy behavior of splitting on spaces and/or commas.
# Valid values for version_path_separator are:
#
# version_path_separator = :
# version_path_separator = ;
# version_path_separator = space
# version_path_separator = newline
#
# Use os.pathsep. Default configuration used for new projects.
version_path_separator = os
# set to 'true' to search source files recursively
# in each "version_locations" directory
# new in Alembic version 1.10
# recursive_version_locations = false
# the output encoding used when revision files
# are written from script.py.mako
# output_encoding = utf-8
sqlalchemy.url = sqlite:///user/comfyui.db
[post_write_hooks]
# post_write_hooks defines scripts or Python functions that are run
# on newly generated revision scripts. See the documentation for further
# detail and examples
# format using "black" - use the console_scripts runner, against the "black" entrypoint
# hooks = black
# black.type = console_scripts
# black.entrypoint = black
# black.options = -l 79 REVISION_SCRIPT_FILENAME
# lint with attempts to fix using "ruff" - use the exec runner, execute a binary
# hooks = ruff
# ruff.type = exec
# ruff.executable = %(here)s/.venv/bin/ruff
# ruff.options = check --fix REVISION_SCRIPT_FILENAME

4
alembic_db/README.md Normal file
View File

@@ -0,0 +1,4 @@
## Generate new revision
1. Update models in `/app/database/models.py`
2. Run `alembic revision --autogenerate -m "{your message}"`

64
alembic_db/env.py Normal file
View File

@@ -0,0 +1,64 @@
from sqlalchemy import engine_from_config
from sqlalchemy import pool
from alembic import context
# this is the Alembic Config object, which provides
# access to the values within the .ini file in use.
config = context.config
from app.database.models import Base
target_metadata = Base.metadata
# other values from the config, defined by the needs of env.py,
# can be acquired:
# my_important_option = config.get_main_option("my_important_option")
# ... etc.
def run_migrations_offline() -> None:
"""Run migrations in 'offline' mode.
This configures the context with just a URL
and not an Engine, though an Engine is acceptable
here as well. By skipping the Engine creation
we don't even need a DBAPI to be available.
Calls to context.execute() here emit the given string to the
script output.
"""
url = config.get_main_option("sqlalchemy.url")
context.configure(
url=url,
target_metadata=target_metadata,
literal_binds=True,
dialect_opts={"paramstyle": "named"},
)
with context.begin_transaction():
context.run_migrations()
def run_migrations_online() -> None:
"""Run migrations in 'online' mode.
In this scenario we need to create an Engine
and associate a connection with the context.
"""
connectable = engine_from_config(
config.get_section(config.config_ini_section, {}),
prefix="sqlalchemy.",
poolclass=pool.NullPool,
)
with connectable.connect() as connection:
context.configure(
connection=connection, target_metadata=target_metadata
)
with context.begin_transaction():
context.run_migrations()
if context.is_offline_mode():
run_migrations_offline()
else:
run_migrations_online()

28
alembic_db/script.py.mako Normal file
View File

@@ -0,0 +1,28 @@
"""${message}
Revision ID: ${up_revision}
Revises: ${down_revision | comma,n}
Create Date: ${create_date}
"""
from typing import Sequence, Union
from alembic import op
import sqlalchemy as sa
${imports if imports else ""}
# revision identifiers, used by Alembic.
revision: str = ${repr(up_revision)}
down_revision: Union[str, None] = ${repr(down_revision)}
branch_labels: Union[str, Sequence[str], None] = ${repr(branch_labels)}
depends_on: Union[str, Sequence[str], None] = ${repr(depends_on)}
def upgrade() -> None:
"""Upgrade schema."""
${upgrades if upgrades else "pass"}
def downgrade() -> None:
"""Downgrade schema."""
${downgrades if downgrades else "pass"}

View File

@@ -9,8 +9,14 @@ class AppSettings():
self.user_manager = user_manager
def get_settings(self, request):
file = self.user_manager.get_request_user_filepath(
request, "comfy.settings.json")
try:
file = self.user_manager.get_request_user_filepath(
request,
"comfy.settings.json"
)
except KeyError as e:
logging.error("User settings not found.")
raise web.HTTPUnauthorized() from e
if os.path.isfile(file):
try:
with open(file) as f:

View File

@@ -93,16 +93,20 @@ class CustomNodeManager:
def add_routes(self, routes, webapp, loadedModules):
example_workflow_folder_names = ["example_workflows", "example", "examples", "workflow", "workflows"]
@routes.get("/workflow_templates")
async def get_workflow_templates(request):
"""Returns a web response that contains the map of custom_nodes names and their associated workflow templates. The ones without templates are omitted."""
files = [
file
for folder in folder_paths.get_folder_paths("custom_nodes")
for file in glob.glob(
os.path.join(folder, "*/example_workflows/*.json")
)
]
files = []
for folder in folder_paths.get_folder_paths("custom_nodes"):
for folder_name in example_workflow_folder_names:
pattern = os.path.join(folder, f"*/{folder_name}/*.json")
matched_files = glob.glob(pattern)
files.extend(matched_files)
workflow_templates_dict = (
{}
) # custom_nodes folder name -> example workflow names
@@ -118,15 +122,22 @@ class CustomNodeManager:
# Serve workflow templates from custom nodes.
for module_name, module_dir in loadedModules:
workflows_dir = os.path.join(module_dir, "example_workflows")
if os.path.exists(workflows_dir):
webapp.add_routes(
[
web.static(
"/api/workflow_templates/" + module_name, workflows_dir
)
]
)
for folder_name in example_workflow_folder_names:
workflows_dir = os.path.join(module_dir, folder_name)
if os.path.exists(workflows_dir):
if folder_name != "example_workflows":
logging.debug(
"Found example workflow folder '%s' for custom node '%s', consider renaming it to 'example_workflows'",
folder_name, module_name)
webapp.add_routes(
[
web.static(
"/api/workflow_templates/" + module_name, workflows_dir
)
]
)
@routes.get("/i18n")
async def get_i18n(request):

112
app/database/db.py Normal file
View File

@@ -0,0 +1,112 @@
import logging
import os
import shutil
from app.logger import log_startup_warning
from utils.install_util import get_missing_requirements_message
from comfy.cli_args import args
_DB_AVAILABLE = False
Session = None
try:
from alembic import command
from alembic.config import Config
from alembic.runtime.migration import MigrationContext
from alembic.script import ScriptDirectory
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
_DB_AVAILABLE = True
except ImportError as e:
log_startup_warning(
f"""
------------------------------------------------------------------------
Error importing dependencies: {e}
{get_missing_requirements_message()}
This error is happening because ComfyUI now uses a local sqlite database.
------------------------------------------------------------------------
""".strip()
)
def dependencies_available():
"""
Temporary function to check if the dependencies are available
"""
return _DB_AVAILABLE
def can_create_session():
"""
Temporary function to check if the database is available to create a session
During initial release there may be environmental issues (or missing dependencies) that prevent the database from being created
"""
return dependencies_available() and Session is not None
def get_alembic_config():
root_path = os.path.join(os.path.dirname(__file__), "../..")
config_path = os.path.abspath(os.path.join(root_path, "alembic.ini"))
scripts_path = os.path.abspath(os.path.join(root_path, "alembic_db"))
config = Config(config_path)
config.set_main_option("script_location", scripts_path)
config.set_main_option("sqlalchemy.url", args.database_url)
return config
def get_db_path():
url = args.database_url
if url.startswith("sqlite:///"):
return url.split("///")[1]
else:
raise ValueError(f"Unsupported database URL '{url}'.")
def init_db():
db_url = args.database_url
logging.debug(f"Database URL: {db_url}")
db_path = get_db_path()
db_exists = os.path.exists(db_path)
config = get_alembic_config()
# Check if we need to upgrade
engine = create_engine(db_url)
conn = engine.connect()
context = MigrationContext.configure(conn)
current_rev = context.get_current_revision()
script = ScriptDirectory.from_config(config)
target_rev = script.get_current_head()
if target_rev is None:
logging.warning("No target revision found.")
elif current_rev != target_rev:
# Backup the database pre upgrade
backup_path = db_path + ".bkp"
if db_exists:
shutil.copy(db_path, backup_path)
else:
backup_path = None
try:
command.upgrade(config, target_rev)
logging.info(f"Database upgraded from {current_rev} to {target_rev}")
except Exception as e:
if backup_path:
# Restore the database from backup if upgrade fails
shutil.copy(backup_path, db_path)
os.remove(backup_path)
logging.exception("Error upgrading database: ")
raise e
global Session
Session = sessionmaker(bind=engine)
def create_session():
return Session()

14
app/database/models.py Normal file
View File

@@ -0,0 +1,14 @@
from sqlalchemy.orm import declarative_base
Base = declarative_base()
def to_dict(obj):
fields = obj.__table__.columns.keys()
return {
field: (val.to_dict() if hasattr(val, "to_dict") else val)
for field in fields
if (val := getattr(obj, field))
}
# TODO: Define models here

View File

@@ -16,26 +16,17 @@ from importlib.metadata import version
import requests
from typing_extensions import NotRequired
from utils.install_util import get_missing_requirements_message, requirements_path
from comfy.cli_args import DEFAULT_VERSION_STRING
import app.logger
# The path to the requirements.txt file
req_path = Path(__file__).parents[1] / "requirements.txt"
def frontend_install_warning_message():
"""The warning message to display when the frontend version is not up to date."""
extra = ""
if sys.flags.no_user_site:
extra = "-s "
return f"""
Please install the updated requirements.txt file by running:
{sys.executable} {extra}-m pip install -r {req_path}
{get_missing_requirements_message()}
This error is happening because the ComfyUI frontend is no longer shipped as part of the main repo but as a pip package instead.
If you are on the portable package you can run: update\\update_comfyui.bat to solve this problem
""".strip()
@@ -48,7 +39,7 @@ def check_frontend_version():
try:
frontend_version_str = version("comfyui-frontend-package")
frontend_version = parse_version(frontend_version_str)
with open(req_path, "r", encoding="utf-8") as f:
with open(requirements_path, "r", encoding="utf-8") as f:
required_frontend = parse_version(f.readline().split("=")[-1])
if frontend_version < required_frontend:
app.logger.log_startup_warning(
@@ -121,9 +112,22 @@ class FrontEndProvider:
response.raise_for_status() # Raises an HTTPError if the response was an error
return response.json()
@cached_property
def latest_prerelease(self) -> Release:
"""Get the latest pre-release version - even if it's older than the latest release"""
release = [release for release in self.all_releases if release["prerelease"]]
if not release:
raise ValueError("No pre-releases found")
# GitHub returns releases in reverse chronological order, so first is latest
return release[0]
def get_release(self, version: str) -> Release:
if version == "latest":
return self.latest_release
elif version == "prerelease":
return self.latest_prerelease
else:
for release in self.all_releases:
if release["tag_name"] in [version, f"v{version}"]:
@@ -184,6 +188,40 @@ comfyui-frontend-package is not installed.
)
sys.exit(-1)
@classmethod
def templates_path(cls) -> str:
try:
import comfyui_workflow_templates
return str(
importlib.resources.files(comfyui_workflow_templates) / "templates"
)
except ImportError:
logging.error(
f"""
********** ERROR ***********
comfyui-workflow-templates is not installed.
{frontend_install_warning_message()}
********** ERROR ***********
""".strip()
)
@classmethod
def embedded_docs_path(cls) -> str:
"""Get the path to embedded documentation"""
try:
import comfyui_embedded_docs
return str(
importlib.resources.files(comfyui_embedded_docs) / "docs"
)
except ImportError:
logging.info("comfyui-embedded-docs package not found")
return None
@classmethod
def parse_version_string(cls, value: str) -> tuple[str, str, str]:
"""
@@ -196,7 +234,7 @@ comfyui-frontend-package is not installed.
Raises:
argparse.ArgumentTypeError: If the version string is invalid.
"""
VERSION_PATTERN = r"^([a-zA-Z0-9][a-zA-Z0-9-]{0,38})/([a-zA-Z0-9_.-]+)@(v?\d+\.\d+\.\d+|latest)$"
VERSION_PATTERN = r"^([a-zA-Z0-9][a-zA-Z0-9-]{0,38})/([a-zA-Z0-9_.-]+)@(v?\d+\.\d+\.\d+[-._a-zA-Z0-9]*|latest|prerelease)$"
match_result = re.match(VERSION_PATTERN, value)
if match_result is None:
raise argparse.ArgumentTypeError(f"Invalid version string: {value}")

View File

@@ -197,6 +197,112 @@ class UserManager():
return web.json_response(results)
@routes.get("/v2/userdata")
async def list_userdata_v2(request):
"""
List files and directories in a user's data directory.
This endpoint provides a structured listing of contents within a specified
subdirectory of the user's data storage.
Query Parameters:
- path (optional): The relative path within the user's data directory
to list. Defaults to the root ('').
Returns:
- 400: If the requested path is invalid, outside the user's data directory, or is not a directory.
- 404: If the requested path does not exist.
- 403: If the user is invalid.
- 500: If there is an error reading the directory contents.
- 200: JSON response containing a list of file and directory objects.
Each object includes:
- name: The name of the file or directory.
- type: 'file' or 'directory'.
- path: The relative path from the user's data root.
- size (for files): The size in bytes.
- modified (for files): The last modified timestamp (Unix epoch).
"""
requested_rel_path = request.rel_url.query.get('path', '')
# URL-decode the path parameter
try:
requested_rel_path = parse.unquote(requested_rel_path)
except Exception as e:
logging.warning(f"Failed to decode path parameter: {requested_rel_path}, Error: {e}")
return web.Response(status=400, text="Invalid characters in path parameter")
# Check user validity and get the absolute path for the requested directory
try:
base_user_path = self.get_request_user_filepath(request, None, create_dir=False)
if requested_rel_path:
target_abs_path = self.get_request_user_filepath(request, requested_rel_path, create_dir=False)
else:
target_abs_path = base_user_path
except KeyError as e:
# Invalid user detected by get_request_user_id inside get_request_user_filepath
logging.warning(f"Access denied for user: {e}")
return web.Response(status=403, text="Invalid user specified in request")
if not target_abs_path:
# Path traversal or other issue detected by get_request_user_filepath
return web.Response(status=400, text="Invalid path requested")
# Handle cases where the user directory or target path doesn't exist
if not os.path.exists(target_abs_path):
# Check if it's the base user directory that's missing (new user case)
if target_abs_path == base_user_path:
# It's okay if the base user directory doesn't exist yet, return empty list
return web.json_response([])
else:
# A specific subdirectory was requested but doesn't exist
return web.Response(status=404, text="Requested path not found")
if not os.path.isdir(target_abs_path):
return web.Response(status=400, text="Requested path is not a directory")
results = []
try:
for root, dirs, files in os.walk(target_abs_path, topdown=True):
# Process directories
for dir_name in dirs:
dir_path = os.path.join(root, dir_name)
rel_path = os.path.relpath(dir_path, base_user_path).replace(os.sep, '/')
results.append({
"name": dir_name,
"path": rel_path,
"type": "directory"
})
# Process files
for file_name in files:
file_path = os.path.join(root, file_name)
rel_path = os.path.relpath(file_path, base_user_path).replace(os.sep, '/')
entry_info = {
"name": file_name,
"path": rel_path,
"type": "file"
}
try:
stats = os.stat(file_path) # Use os.stat for potentially better performance with os.walk
entry_info["size"] = stats.st_size
entry_info["modified"] = stats.st_mtime
except OSError as stat_error:
logging.warning(f"Could not stat file {file_path}: {stat_error}")
pass # Include file with available info
results.append(entry_info)
except OSError as e:
logging.error(f"Error listing directory {target_abs_path}: {e}")
return web.Response(status=500, text="Error reading directory contents")
# Sort results alphabetically, directories first then files
results.sort(key=lambda x: (x['type'] != 'directory', x['name'].lower()))
return web.json_response(results)
def get_user_data_path(request, check_exists = False, param = "file"):
file = request.match_info.get(param, None)
if not file:

View File

@@ -66,6 +66,7 @@ fpunet_group.add_argument("--bf16-unet", action="store_true", help="Run the diff
fpunet_group.add_argument("--fp16-unet", action="store_true", help="Run the diffusion model in fp16")
fpunet_group.add_argument("--fp8_e4m3fn-unet", action="store_true", help="Store unet weights in fp8_e4m3fn.")
fpunet_group.add_argument("--fp8_e5m2-unet", action="store_true", help="Store unet weights in fp8_e5m2.")
fpunet_group.add_argument("--fp8_e8m0fnu-unet", action="store_true", help="Store unet weights in fp8_e8m0fnu.")
fpvae_group = parser.add_mutually_exclusive_group()
fpvae_group.add_argument("--fp16-vae", action="store_true", help="Run the VAE in fp16, might cause black images.")
@@ -79,6 +80,7 @@ fpte_group.add_argument("--fp8_e4m3fn-text-enc", action="store_true", help="Stor
fpte_group.add_argument("--fp8_e5m2-text-enc", action="store_true", help="Store text encoder weights in fp8 (e5m2 variant).")
fpte_group.add_argument("--fp16-text-enc", action="store_true", help="Store text encoder weights in fp16.")
fpte_group.add_argument("--fp32-text-enc", action="store_true", help="Store text encoder weights in fp32.")
fpte_group.add_argument("--bf16-text-enc", action="store_true", help="Store text encoder weights in bf16.")
parser.add_argument("--force-channels-last", action="store_true", help="Force channels last format when inferencing the models.")
@@ -86,6 +88,7 @@ parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE"
parser.add_argument("--oneapi-device-selector", type=str, default=None, metavar="SELECTOR_STRING", help="Sets the oneAPI device(s) this instance will use.")
parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize default when loading models with Intel's Extension for Pytorch.")
parser.add_argument("--supports-fp8-compute", action="store_true", help="ComfyUI will act like if the device supports fp8 compute.")
class LatentPreviewMethod(enum.Enum):
NoPreviews = "none"
@@ -100,6 +103,7 @@ parser.add_argument("--preview-size", type=int, default=512, help="Sets the maxi
cache_group = parser.add_mutually_exclusive_group()
cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.")
cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.")
cache_group.add_argument("--cache-none", action="store_true", help="Reduced RAM/VRAM usage at the expense of executing every node for each run.")
attn_group = parser.add_mutually_exclusive_group()
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")
@@ -125,6 +129,7 @@ vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for e
parser.add_argument("--reserve-vram", type=float, default=None, help="Set the amount of vram in GB you want to reserve for use by your OS/other software. By default some amount is reserved depending on your OS.")
parser.add_argument("--async-offload", action="store_true", help="Use async weight offloading.")
parser.add_argument("--default-hashing-function", type=str, choices=['md5', 'sha1', 'sha256', 'sha512'], default='sha256', help="Allows you to choose the hash function to use for duplicate filename / contents comparison. Default is sha256.")
@@ -134,8 +139,11 @@ parser.add_argument("--deterministic", action="store_true", help="Make pytorch u
class PerformanceFeature(enum.Enum):
Fp16Accumulation = "fp16_accumulation"
Fp8MatrixMultiplication = "fp8_matrix_mult"
CublasOps = "cublas_ops"
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: fp16_accumulation fp8_matrix_mult")
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: fp16_accumulation fp8_matrix_mult cublas_ops")
parser.add_argument("--mmap-torch-files", action="store_true", help="Use mmap when loading ckpt/pt files.")
parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
@@ -143,6 +151,7 @@ parser.add_argument("--windows-standalone-build", action="store_true", help="Win
parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.")
parser.add_argument("--disable-all-custom-nodes", action="store_true", help="Disable loading all custom nodes.")
parser.add_argument("--disable-api-nodes", action="store_true", help="Disable loading all api nodes.")
parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")
@@ -187,6 +196,18 @@ parser.add_argument("--user-directory", type=is_valid_directory, default=None, h
parser.add_argument("--enable-compress-response-body", action="store_true", help="Enable compressing response body.")
parser.add_argument(
"--comfy-api-base",
type=str,
default="https://api.comfy.org",
help="Set the base URL for the ComfyUI API. (default: https://api.comfy.org)",
)
database_default_path = os.path.abspath(
os.path.join(os.path.dirname(__file__), "..", "user", "comfyui.db")
)
parser.add_argument("--database-url", type=str, default=f"sqlite:///{database_default_path}", help="Specify the database URL, e.g. for an in-memory database you can use 'sqlite:///:memory:'.")
if comfy.options.args_parsing:
args = parser.parse_args()
else:

View File

@@ -18,6 +18,7 @@ class Output:
setattr(self, key, item)
def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True):
image = image[:, :, :, :3] if image.shape[3] > 3 else image
mean = torch.tensor(mean, device=image.device, dtype=image.dtype)
std = torch.tensor(std, device=image.device, dtype=image.dtype)
image = image.movedim(-1, 1)
@@ -110,9 +111,13 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
embed_shape = sd["vision_model.embeddings.position_embedding.weight"].shape[0]
if sd["vision_model.encoder.layers.0.layer_norm1.weight"].shape[0] == 1152:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_384.json")
elif sd["vision_model.embeddings.position_embedding.weight"].shape[0] == 577:
if embed_shape == 729:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_384.json")
elif embed_shape == 1024:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_512.json")
elif embed_shape == 577:
if "multi_modal_projector.linear_1.bias" in sd:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336_llava.json")
else:

View File

@@ -0,0 +1,13 @@
{
"num_channels": 3,
"hidden_act": "gelu_pytorch_tanh",
"hidden_size": 1152,
"image_size": 512,
"intermediate_size": 4304,
"model_type": "siglip_vision_model",
"num_attention_heads": 16,
"num_hidden_layers": 27,
"patch_size": 16,
"image_mean": [0.5, 0.5, 0.5],
"image_std": [0.5, 0.5, 0.5]
}

View File

@@ -1,7 +1,7 @@
"""Comfy-specific type hinting"""
from __future__ import annotations
from typing import Literal, TypedDict
from typing import Literal, TypedDict, Optional
from typing_extensions import NotRequired
from abc import ABC, abstractmethod
from enum import Enum
@@ -37,6 +37,8 @@ class IO(StrEnum):
CONTROL_NET = "CONTROL_NET"
VAE = "VAE"
MODEL = "MODEL"
LORA_MODEL = "LORA_MODEL"
LOSS_MAP = "LOSS_MAP"
CLIP_VISION = "CLIP_VISION"
CLIP_VISION_OUTPUT = "CLIP_VISION_OUTPUT"
STYLE_MODEL = "STYLE_MODEL"
@@ -48,6 +50,7 @@ class IO(StrEnum):
FACE_ANALYSIS = "FACE_ANALYSIS"
BBOX = "BBOX"
SEGS = "SEGS"
VIDEO = "VIDEO"
ANY = "*"
"""Always matches any type, but at a price.
@@ -99,55 +102,68 @@ class InputTypeOptions(TypedDict):
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/datatypes
"""
default: bool | str | float | int | list | tuple
default: NotRequired[bool | str | float | int | list | tuple]
"""The default value of the widget"""
defaultInput: bool
"""Defaults to an input slot rather than a widget"""
forceInput: bool
"""`defaultInput` and also don't allow converting to a widget"""
lazy: bool
defaultInput: NotRequired[bool]
"""@deprecated in v1.16 frontend. v1.16 frontend allows input socket and widget to co-exist.
- defaultInput on required inputs should be dropped.
- defaultInput on optional inputs should be replaced with forceInput.
Ref: https://github.com/Comfy-Org/ComfyUI_frontend/pull/3364
"""
forceInput: NotRequired[bool]
"""Forces the input to be an input slot rather than a widget even a widget is available for the input type."""
lazy: NotRequired[bool]
"""Declares that this input uses lazy evaluation"""
rawLink: bool
rawLink: NotRequired[bool]
"""When a link exists, rather than receiving the evaluated value, you will receive the link (i.e. `["nodeId", <outputIndex>]`). Designed for node expansion."""
tooltip: str
tooltip: NotRequired[str]
"""Tooltip for the input (or widget), shown on pointer hover"""
socketless: NotRequired[bool]
"""All inputs (including widgets) have an input socket to connect links. When ``true``, if there is a widget for this input, no socket will be created.
Available from frontend v1.17.5
Ref: https://github.com/Comfy-Org/ComfyUI_frontend/pull/3548
"""
widgetType: NotRequired[str]
"""Specifies a type to be used for widget initialization if different from the input type.
Available from frontend v1.18.0
https://github.com/Comfy-Org/ComfyUI_frontend/pull/3550"""
# class InputTypeNumber(InputTypeOptions):
# default: float | int
min: float
min: NotRequired[float]
"""The minimum value of a number (``FLOAT`` | ``INT``)"""
max: float
max: NotRequired[float]
"""The maximum value of a number (``FLOAT`` | ``INT``)"""
step: float
step: NotRequired[float]
"""The amount to increment or decrement a widget by when stepping up/down (``FLOAT`` | ``INT``)"""
round: float
round: NotRequired[float]
"""Floats are rounded by this value (``FLOAT``)"""
# class InputTypeBoolean(InputTypeOptions):
# default: bool
label_on: str
label_on: NotRequired[str]
"""The label to use in the UI when the bool is True (``BOOLEAN``)"""
label_off: str
label_off: NotRequired[str]
"""The label to use in the UI when the bool is False (``BOOLEAN``)"""
# class InputTypeString(InputTypeOptions):
# default: str
multiline: bool
multiline: NotRequired[bool]
"""Use a multiline text box (``STRING``)"""
placeholder: str
placeholder: NotRequired[str]
"""Placeholder text to display in the UI when empty (``STRING``)"""
# Deprecated:
# defaultVal: str
dynamicPrompts: bool
dynamicPrompts: NotRequired[bool]
"""Causes the front-end to evaluate dynamic prompts (``STRING``)"""
# class InputTypeCombo(InputTypeOptions):
image_upload: bool
image_upload: NotRequired[bool]
"""Specifies whether the input should have an image upload button and image preview attached to it. Requires that the input's name is `image`."""
image_folder: Literal["input", "output", "temp"]
image_folder: NotRequired[Literal["input", "output", "temp"]]
"""Specifies which folder to get preview images from if the input has the ``image_upload`` flag.
"""
remote: RemoteInputOptions
remote: NotRequired[RemoteInputOptions]
"""Specifies the configuration for a remote input.
Available after ComfyUI frontend v1.9.7
https://github.com/Comfy-Org/ComfyUI_frontend/pull/2422"""
control_after_generate: bool
control_after_generate: NotRequired[bool]
"""Specifies whether a control widget should be added to the input, adding options to automatically change the value after each prompt is queued. Currently only used for INT and COMBO types."""
options: NotRequired[list[str | int | float]]
"""COMBO type only. Specifies the selectable options for the combo widget.
@@ -165,15 +181,15 @@ class InputTypeOptions(TypedDict):
class HiddenInputTypeDict(TypedDict):
"""Provides type hinting for the hidden entry of node INPUT_TYPES."""
node_id: Literal["UNIQUE_ID"]
node_id: NotRequired[Literal["UNIQUE_ID"]]
"""UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages)."""
unique_id: Literal["UNIQUE_ID"]
unique_id: NotRequired[Literal["UNIQUE_ID"]]
"""UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages)."""
prompt: Literal["PROMPT"]
prompt: NotRequired[Literal["PROMPT"]]
"""PROMPT is the complete prompt sent by the client to the server. See the prompt object for a full description."""
extra_pnginfo: Literal["EXTRA_PNGINFO"]
extra_pnginfo: NotRequired[Literal["EXTRA_PNGINFO"]]
"""EXTRA_PNGINFO is a dictionary that will be copied into the metadata of any .png files saved. Custom nodes can store additional information in this dictionary for saving (or as a way to communicate with a downstream node)."""
dynprompt: Literal["DYNPROMPT"]
dynprompt: NotRequired[Literal["DYNPROMPT"]]
"""DYNPROMPT is an instance of comfy_execution.graph.DynamicPrompt. It differs from PROMPT in that it may mutate during the course of execution in response to Node Expansion."""
@@ -183,11 +199,11 @@ class InputTypeDict(TypedDict):
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/more_on_inputs
"""
required: dict[str, tuple[IO, InputTypeOptions]]
required: NotRequired[dict[str, tuple[IO, InputTypeOptions]]]
"""Describes all inputs that must be connected for the node to execute."""
optional: dict[str, tuple[IO, InputTypeOptions]]
optional: NotRequired[dict[str, tuple[IO, InputTypeOptions]]]
"""Describes inputs which do not need to be connected."""
hidden: HiddenInputTypeDict
hidden: NotRequired[HiddenInputTypeDict]
"""Offers advanced functionality and server-client communication.
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/more_on_inputs#hidden-inputs
@@ -220,6 +236,8 @@ class ComfyNodeABC(ABC):
"""Flags a node as experimental, informing users that it may change or not work as expected."""
DEPRECATED: bool
"""Flags a node as deprecated, indicating to users that they should find alternatives to this node."""
API_NODE: Optional[bool]
"""Flags a node as an API node. See: https://docs.comfy.org/tutorials/api-nodes/overview."""
@classmethod
@abstractmethod
@@ -258,7 +276,7 @@ class ComfyNodeABC(ABC):
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lists#list-processing
"""
OUTPUT_IS_LIST: tuple[bool]
OUTPUT_IS_LIST: tuple[bool, ...]
"""A tuple indicating which node outputs are lists, but will be connected to nodes that expect individual items.
Connected nodes that do not implement `INPUT_IS_LIST` will be executed once for every item in the list.
@@ -277,7 +295,7 @@ class ComfyNodeABC(ABC):
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lists#list-processing
"""
RETURN_TYPES: tuple[IO]
RETURN_TYPES: tuple[IO, ...]
"""A tuple representing the outputs of this node.
Usage::
@@ -286,12 +304,12 @@ class ComfyNodeABC(ABC):
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#return-types
"""
RETURN_NAMES: tuple[str]
RETURN_NAMES: tuple[str, ...]
"""The output slot names for each item in `RETURN_TYPES`, e.g. ``RETURN_NAMES = ("count", "filter_string")``
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#return-names
"""
OUTPUT_TOOLTIPS: tuple[str]
OUTPUT_TOOLTIPS: tuple[str, ...]
"""A tuple of strings to use as tooltips for node outputs, one for each item in `RETURN_TYPES`."""
FUNCTION: str
"""The name of the function to execute as a literal string, e.g. `FUNCTION = "execute"`

View File

@@ -24,6 +24,10 @@ class CONDRegular:
conds.append(x.cond)
return torch.cat(conds)
def size(self):
return list(self.cond.size())
class CONDNoiseShape(CONDRegular):
def process_cond(self, batch_size, device, area, **kwargs):
data = self.cond
@@ -64,6 +68,7 @@ class CONDCrossAttn(CONDRegular):
out.append(c)
return torch.cat(out)
class CONDConstant(CONDRegular):
def __init__(self, cond):
self.cond = cond
@@ -78,3 +83,48 @@ class CONDConstant(CONDRegular):
def concat(self, others):
return self.cond
def size(self):
return [1]
class CONDList(CONDRegular):
def __init__(self, cond):
self.cond = cond
def process_cond(self, batch_size, device, **kwargs):
out = []
for c in self.cond:
out.append(comfy.utils.repeat_to_batch_size(c, batch_size).to(device))
return self._copy_with(out)
def can_concat(self, other):
if len(self.cond) != len(other.cond):
return False
for i in range(len(self.cond)):
if self.cond[i].shape != other.cond[i].shape:
return False
return True
def concat(self, others):
out = []
for i in range(len(self.cond)):
o = [self.cond[i]]
for x in others:
o.append(x.cond[i])
out.append(torch.cat(o))
return out
def size(self): # hackish implementation to make the mem estimation work
o = 0
c = 1
for c in self.cond:
size = c.size()
o += math.prod(size)
if len(size) > 1:
c = size[1]
return [1, c, o // c]

View File

@@ -390,8 +390,9 @@ class ControlLora(ControlNet):
pass
for k in self.control_weights:
if k not in {"lora_controlnet"}:
comfy.utils.set_attr_param(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device()))
if (k not in {"lora_controlnet"}):
if (k.endswith(".up") or k.endswith(".down") or k.endswith(".weight") or k.endswith(".bias")) and ("__" not in k):
comfy.utils.set_attr_param(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device()))
def copy(self):
c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling)
@@ -736,6 +737,7 @@ def load_controlnet_state_dict(state_dict, model=None, model_options={}):
return control
def load_controlnet(ckpt_path, model=None, model_options={}):
model_options = model_options.copy()
if "global_average_pooling" not in model_options:
filename = os.path.splitext(ckpt_path)[0]
if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling

View File

@@ -116,7 +116,7 @@ class Dino2Embeddings(torch.nn.Module):
def forward(self, pixel_values):
x = self.patch_embeddings(pixel_values)
# TODO: mask_token?
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
x = torch.cat((self.cls_token.to(device=x.device, dtype=x.dtype).expand(x.shape[0], -1, -1), x), dim=1)
x = x + comfy.model_management.cast_to_device(self.position_embeddings, x.device, x.dtype)
return x

View File

@@ -1,4 +1,5 @@
import math
from functools import partial
from scipy import integrate
import torch
@@ -142,6 +143,33 @@ class BrownianTreeNoiseSampler:
return self.tree(t0, t1) / (t1 - t0).abs().sqrt()
def sigma_to_half_log_snr(sigma, model_sampling):
"""Convert sigma to half-logSNR log(alpha_t / sigma_t)."""
if isinstance(model_sampling, comfy.model_sampling.CONST):
# log((1 - t) / t) = log((1 - sigma) / sigma)
return sigma.logit().neg()
return sigma.log().neg()
def half_log_snr_to_sigma(half_log_snr, model_sampling):
"""Convert half-logSNR log(alpha_t / sigma_t) to sigma."""
if isinstance(model_sampling, comfy.model_sampling.CONST):
# 1 / (1 + exp(half_log_snr))
return half_log_snr.neg().sigmoid()
return half_log_snr.neg().exp()
def offset_first_sigma_for_snr(sigmas, model_sampling, percent_offset=1e-4):
"""Adjust the first sigma to avoid invalid logSNR."""
if len(sigmas) <= 1:
return sigmas
if isinstance(model_sampling, comfy.model_sampling.CONST):
if sigmas[0] >= 1:
sigmas = sigmas.clone()
sigmas[0] = model_sampling.percent_to_sigma(percent_offset)
return sigmas
@torch.no_grad()
def sample_euler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_churn=0., s_tmin=0., s_tmax=float('inf'), s_noise=1.):
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
@@ -682,6 +710,7 @@ def sample_dpmpp_2s_ancestral_RF(model, x, sigmas, extra_args=None, callback=Non
# logged_x = torch.cat((logged_x, x.unsqueeze(0)), dim=0)
return x
@torch.no_grad()
def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
"""DPM-Solver++ (stochastic)."""
@@ -693,38 +722,49 @@ def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=N
seed = extra_args.get("seed", None)
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
sigma_fn = lambda t: t.neg().exp()
t_fn = lambda sigma: sigma.log().neg()
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
sigma_fn = partial(half_log_snr_to_sigma, model_sampling=model_sampling)
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
# Euler method
d = to_d(x, sigmas[i], denoised)
dt = sigmas[i + 1] - sigmas[i]
x = x + d * dt
# Denoising step
x = denoised
else:
# DPM-Solver++
t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1])
h = t_next - t
s = t + h * r
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
lambda_s_1 = lambda_s + r * h
fac = 1 / (2 * r)
sigma_s_1 = sigma_fn(lambda_s_1)
alpha_s = sigmas[i] * lambda_s.exp()
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
alpha_t = sigmas[i + 1] * lambda_t.exp()
# Step 1
sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(s), eta)
s_ = t_fn(sd)
x_2 = (sigma_fn(s_) / sigma_fn(t)) * x - (t - s_).expm1() * denoised
x_2 = x_2 + noise_sampler(sigma_fn(t), sigma_fn(s)) * s_noise * su
denoised_2 = model(x_2, sigma_fn(s) * s_in, **extra_args)
sd, su = get_ancestral_step(lambda_s.neg().exp(), lambda_s_1.neg().exp(), eta)
lambda_s_1_ = sd.log().neg()
h_ = lambda_s_1_ - lambda_s
x_2 = (alpha_s_1 / alpha_s) * (-h_).exp() * x - alpha_s_1 * (-h_).expm1() * denoised
if eta > 0 and s_noise > 0:
x_2 = x_2 + alpha_s_1 * noise_sampler(sigmas[i], sigma_s_1) * s_noise * su
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 2
sd, su = get_ancestral_step(sigma_fn(t), sigma_fn(t_next), eta)
t_next_ = t_fn(sd)
sd, su = get_ancestral_step(lambda_s.neg().exp(), lambda_t.neg().exp(), eta)
lambda_t_ = sd.log().neg()
h_ = lambda_t_ - lambda_s
denoised_d = (1 - fac) * denoised + fac * denoised_2
x = (sigma_fn(t_next_) / sigma_fn(t)) * x - (t - t_next_).expm1() * denoised_d
x = x + noise_sampler(sigma_fn(t), sigma_fn(t_next)) * s_noise * su
x = (alpha_t / alpha_s) * (-h_).exp() * x - alpha_t * (-h_).expm1() * denoised_d
if eta > 0 and s_noise > 0:
x = x + alpha_t * noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * su
return x
@@ -753,6 +793,7 @@ def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=No
old_denoised = denoised
return x
@torch.no_grad()
def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
"""DPM-Solver++(2M) SDE."""
@@ -768,9 +809,12 @@ def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
old_denoised = None
h_last = None
h = None
h, h_last = None, None
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
@@ -781,26 +825,29 @@ def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
x = denoised
else:
# DPM-Solver++(2M) SDE
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
h = s - t
eta_h = eta * h
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
h_eta = h * (eta + 1)
x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + (-h - eta_h).expm1().neg() * denoised
alpha_t = sigmas[i + 1] * lambda_t.exp()
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x + alpha_t * (-h_eta).expm1().neg() * denoised
if old_denoised is not None:
r = h_last / h
if solver_type == 'heun':
x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * (1 / r) * (denoised - old_denoised)
x = x + alpha_t * ((-h_eta).expm1().neg() / (-h_eta) + 1) * (1 / r) * (denoised - old_denoised)
elif solver_type == 'midpoint':
x = x + 0.5 * (-h - eta_h).expm1().neg() * (1 / r) * (denoised - old_denoised)
x = x + 0.5 * alpha_t * (-h_eta).expm1().neg() * (1 / r) * (denoised - old_denoised)
if eta:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
if eta > 0 and s_noise > 0:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise
old_denoised = denoised
h_last = h
return x
@torch.no_grad()
def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
"""DPM-Solver++(3M) SDE."""
@@ -814,6 +861,10 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
denoised_1, denoised_2 = None, None
h, h_1, h_2 = None, None, None
@@ -825,13 +876,16 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
# Denoising step
x = denoised
else:
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
h = s - t
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
h_eta = h * (eta + 1)
x = torch.exp(-h_eta) * x + (-h_eta).expm1().neg() * denoised
alpha_t = sigmas[i + 1] * lambda_t.exp()
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x + alpha_t * (-h_eta).expm1().neg() * denoised
if h_2 is not None:
# DPM-Solver++(3M) SDE
r0 = h_1 / h
r1 = h_2 / h
d1_0 = (denoised - denoised_1) / r0
@@ -840,20 +894,22 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
d2 = (d1_0 - d1_1) / (r0 + r1)
phi_2 = h_eta.neg().expm1() / h_eta + 1
phi_3 = phi_2 / h_eta - 0.5
x = x + phi_2 * d1 - phi_3 * d2
x = x + (alpha_t * phi_2) * d1 - (alpha_t * phi_3) * d2
elif h_1 is not None:
# DPM-Solver++(2M) SDE
r = h_1 / h
d = (denoised - denoised_1) / r
phi_2 = h_eta.neg().expm1() / h_eta + 1
x = x + phi_2 * d
x = x + (alpha_t * phi_2) * d
if eta:
if eta > 0 and s_noise > 0:
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * h * eta).expm1().neg().sqrt() * s_noise
denoised_1, denoised_2 = denoised, denoised_1
h_1, h_2 = h, h_1
return x
@torch.no_grad()
def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
if len(sigmas) <= 1:
@@ -863,6 +919,7 @@ def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, di
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler)
@torch.no_grad()
def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
if len(sigmas) <= 1:
@@ -872,6 +929,7 @@ def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, di
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
@torch.no_grad()
def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
if len(sigmas) <= 1:
@@ -1277,6 +1335,7 @@ def res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None
phi1_fn = lambda t: torch.expm1(t) / t
phi2_fn = lambda t: (phi1_fn(t) - 1.0) / t
old_sigma_down = None
old_denoised = None
uncond_denoised = None
def post_cfg_function(args):
@@ -1304,9 +1363,9 @@ def res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None
x = x + d * dt
else:
# Second order multistep method in https://arxiv.org/pdf/2308.02157
t, t_next, t_prev = t_fn(sigmas[i]), t_fn(sigma_down), t_fn(sigmas[i - 1])
t, t_old, t_next, t_prev = t_fn(sigmas[i]), t_fn(old_sigma_down), t_fn(sigma_down), t_fn(sigmas[i - 1])
h = t_next - t
c2 = (t_prev - t) / h
c2 = (t_prev - t_old) / h
phi1_val, phi2_val = phi1_fn(-h), phi2_fn(-h)
b1 = torch.nan_to_num(phi1_val - phi2_val / c2, nan=0.0)
@@ -1326,6 +1385,7 @@ def res_multistep(model, x, sigmas, extra_args=None, callback=None, disable=None
old_denoised = uncond_denoised
else:
old_denoised = denoised
old_sigma_down = sigma_down
return x
@torch.no_grad()
@@ -1345,28 +1405,52 @@ def sample_res_multistep_ancestral_cfg_pp(model, x, sigmas, extra_args=None, cal
return res_multistep(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, s_noise=s_noise, noise_sampler=noise_sampler, eta=eta, cfg_pp=True)
@torch.no_grad()
def sample_gradient_estimation(model, x, sigmas, extra_args=None, callback=None, disable=None, ge_gamma=2.):
def sample_gradient_estimation(model, x, sigmas, extra_args=None, callback=None, disable=None, ge_gamma=2., cfg_pp=False):
"""Gradient-estimation sampler. Paper: https://openreview.net/pdf?id=o2ND9v0CeK"""
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
old_d = None
uncond_denoised = None
def post_cfg_function(args):
nonlocal uncond_denoised
uncond_denoised = args["uncond_denoised"]
return args["denoised"]
if cfg_pp:
model_options = extra_args.get("model_options", {}).copy()
extra_args["model_options"] = comfy.model_patcher.set_model_options_post_cfg_function(model_options, post_cfg_function, disable_cfg1_optimization=True)
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
d = to_d(x, sigmas[i], denoised)
if cfg_pp:
d = to_d(x, sigmas[i], uncond_denoised)
else:
d = to_d(x, sigmas[i], denoised)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
dt = sigmas[i + 1] - sigmas[i]
if i == 0:
# Euler method
x = x + d * dt
if cfg_pp:
x = denoised + d * sigmas[i + 1]
else:
x = x + d * dt
else:
# Gradient estimation
d_bar = ge_gamma * d + (1 - ge_gamma) * old_d
x = x + d_bar * dt
if cfg_pp:
d_bar = (ge_gamma - 1) * (d - old_d)
x = denoised + d * sigmas[i + 1] + d_bar * dt
else:
d_bar = ge_gamma * d + (1 - ge_gamma) * old_d
x = x + d_bar * dt
old_d = d
return x
@torch.no_grad()
def sample_gradient_estimation_cfg_pp(model, x, sigmas, extra_args=None, callback=None, disable=None, ge_gamma=2.):
return sample_gradient_estimation(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, ge_gamma=ge_gamma, cfg_pp=True)
@torch.no_grad()
def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., noise_sampler=None, noise_scaler=None, max_stage=3):
"""
@@ -1422,3 +1506,122 @@ def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * (sigmas[i + 1] ** 2 - sigmas[i] ** 2 * r ** 2).sqrt().nan_to_num(nan=0.0)
old_denoised = denoised
return x
@torch.no_grad()
def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5):
"""SEEDS-2 - Stochastic Explicit Exponential Derivative-free Solvers (VP Data Prediction) stage 2.
arXiv: https://arxiv.org/abs/2305.14267
"""
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
inject_noise = eta > 0 and s_noise > 0
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
sigma_fn = partial(half_log_snr_to_sigma, model_sampling=model_sampling)
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
x = denoised
else:
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
h_eta = h * (eta + 1)
lambda_s_1 = lambda_s + r * h
fac = 1 / (2 * r)
sigma_s_1 = sigma_fn(lambda_s_1)
# alpha_t = sigma_t * exp(log(alpha_t / sigma_t)) = sigma_t * exp(lambda_t)
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
alpha_t = sigmas[i + 1] * lambda_t.exp()
coeff_1, coeff_2 = (-r * h_eta).expm1(), (-h_eta).expm1()
if inject_noise:
# 0 < r < 1
noise_coeff_1 = (-2 * r * h * eta).expm1().neg().sqrt()
noise_coeff_2 = (-r * h * eta).exp() * (-2 * (1 - r) * h * eta).expm1().neg().sqrt()
noise_1, noise_2 = noise_sampler(sigmas[i], sigma_s_1), noise_sampler(sigma_s_1, sigmas[i + 1])
# Step 1
x_2 = sigma_s_1 / sigmas[i] * (-r * h * eta).exp() * x - alpha_s_1 * coeff_1 * denoised
if inject_noise:
x_2 = x_2 + sigma_s_1 * (noise_coeff_1 * noise_1) * s_noise
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 2
denoised_d = (1 - fac) * denoised + fac * denoised_2
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * coeff_2 * denoised_d
if inject_noise:
x = x + sigmas[i + 1] * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
return x
@torch.no_grad()
def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r_1=1./3, r_2=2./3):
"""SEEDS-3 - Stochastic Explicit Exponential Derivative-free Solvers (VP Data Prediction) stage 3.
arXiv: https://arxiv.org/abs/2305.14267
"""
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
s_in = x.new_ones([x.shape[0]])
inject_noise = eta > 0 and s_noise > 0
model_sampling = model.inner_model.model_patcher.get_model_object('model_sampling')
sigma_fn = partial(half_log_snr_to_sigma, model_sampling=model_sampling)
lambda_fn = partial(sigma_to_half_log_snr, model_sampling=model_sampling)
sigmas = offset_first_sigma_for_snr(sigmas, model_sampling)
for i in trange(len(sigmas) - 1, disable=disable):
denoised = model(x, sigmas[i] * s_in, **extra_args)
if callback is not None:
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
if sigmas[i + 1] == 0:
x = denoised
else:
lambda_s, lambda_t = lambda_fn(sigmas[i]), lambda_fn(sigmas[i + 1])
h = lambda_t - lambda_s
h_eta = h * (eta + 1)
lambda_s_1 = lambda_s + r_1 * h
lambda_s_2 = lambda_s + r_2 * h
sigma_s_1, sigma_s_2 = sigma_fn(lambda_s_1), sigma_fn(lambda_s_2)
# alpha_t = sigma_t * exp(log(alpha_t / sigma_t)) = sigma_t * exp(lambda_t)
alpha_s_1 = sigma_s_1 * lambda_s_1.exp()
alpha_s_2 = sigma_s_2 * lambda_s_2.exp()
alpha_t = sigmas[i + 1] * lambda_t.exp()
coeff_1, coeff_2, coeff_3 = (-r_1 * h_eta).expm1(), (-r_2 * h_eta).expm1(), (-h_eta).expm1()
if inject_noise:
# 0 < r_1 < r_2 < 1
noise_coeff_1 = (-2 * r_1 * h * eta).expm1().neg().sqrt()
noise_coeff_2 = (-r_1 * h * eta).exp() * (-2 * (r_2 - r_1) * h * eta).expm1().neg().sqrt()
noise_coeff_3 = (-r_2 * h * eta).exp() * (-2 * (1 - r_2) * h * eta).expm1().neg().sqrt()
noise_1, noise_2, noise_3 = noise_sampler(sigmas[i], sigma_s_1), noise_sampler(sigma_s_1, sigma_s_2), noise_sampler(sigma_s_2, sigmas[i + 1])
# Step 1
x_2 = sigma_s_1 / sigmas[i] * (-r_1 * h * eta).exp() * x - alpha_s_1 * coeff_1 * denoised
if inject_noise:
x_2 = x_2 + sigma_s_1 * (noise_coeff_1 * noise_1) * s_noise
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 2
x_3 = sigma_s_2 / sigmas[i] * (-r_2 * h * eta).exp() * x - alpha_s_2 * coeff_2 * denoised + (r_2 / r_1) * alpha_s_2 * (coeff_2 / (r_2 * h_eta) + 1) * (denoised_2 - denoised)
if inject_noise:
x_3 = x_3 + sigma_s_2 * (noise_coeff_2 * noise_1 + noise_coeff_1 * noise_2) * s_noise
denoised_3 = model(x_3, sigma_s_2 * s_in, **extra_args)
# Step 3
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * coeff_3 * denoised + (1. / r_2) * alpha_t * (coeff_3 / h_eta + 1) * (denoised_3 - denoised)
if inject_noise:
x = x + sigmas[i + 1] * (noise_coeff_3 * noise_1 + noise_coeff_2 * noise_2 + noise_coeff_1 * noise_3) * s_noise
return x

View File

@@ -466,3 +466,7 @@ class Hunyuan3Dv2mini(LatentFormat):
latent_channels = 64
latent_dimensions = 1
scale_factor = 1.0188137142395404
class ACEAudio(LatentFormat):
latent_channels = 8
latent_dimensions = 2

761
comfy/ldm/ace/attention.py Normal file
View File

@@ -0,0 +1,761 @@
# Original from: https://github.com/ace-step/ACE-Step/blob/main/models/attention.py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Tuple, Union, Optional
import torch
import torch.nn.functional as F
from torch import nn
import comfy.model_management
from comfy.ldm.modules.attention import optimized_attention
class Attention(nn.Module):
def __init__(
self,
query_dim: int,
cross_attention_dim: Optional[int] = None,
heads: int = 8,
kv_heads: Optional[int] = None,
dim_head: int = 64,
dropout: float = 0.0,
bias: bool = False,
qk_norm: Optional[str] = None,
added_kv_proj_dim: Optional[int] = None,
added_proj_bias: Optional[bool] = True,
out_bias: bool = True,
scale_qk: bool = True,
only_cross_attention: bool = False,
eps: float = 1e-5,
rescale_output_factor: float = 1.0,
residual_connection: bool = False,
processor=None,
out_dim: int = None,
out_context_dim: int = None,
context_pre_only=None,
pre_only=False,
elementwise_affine: bool = True,
is_causal: bool = False,
dtype=None, device=None, operations=None
):
super().__init__()
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
self.inner_kv_dim = self.inner_dim if kv_heads is None else dim_head * kv_heads
self.query_dim = query_dim
self.use_bias = bias
self.is_cross_attention = cross_attention_dim is not None
self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
self.rescale_output_factor = rescale_output_factor
self.residual_connection = residual_connection
self.dropout = dropout
self.fused_projections = False
self.out_dim = out_dim if out_dim is not None else query_dim
self.out_context_dim = out_context_dim if out_context_dim is not None else query_dim
self.context_pre_only = context_pre_only
self.pre_only = pre_only
self.is_causal = is_causal
self.scale_qk = scale_qk
self.scale = dim_head**-0.5 if self.scale_qk else 1.0
self.heads = out_dim // dim_head if out_dim is not None else heads
# for slice_size > 0 the attention score computation
# is split across the batch axis to save memory
# You can set slice_size with `set_attention_slice`
self.sliceable_head_dim = heads
self.added_kv_proj_dim = added_kv_proj_dim
self.only_cross_attention = only_cross_attention
if self.added_kv_proj_dim is None and self.only_cross_attention:
raise ValueError(
"`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`."
)
self.group_norm = None
self.spatial_norm = None
self.norm_q = None
self.norm_k = None
self.norm_cross = None
self.to_q = operations.Linear(query_dim, self.inner_dim, bias=bias, dtype=dtype, device=device)
if not self.only_cross_attention:
# only relevant for the `AddedKVProcessor` classes
self.to_k = operations.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
self.to_v = operations.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
else:
self.to_k = None
self.to_v = None
self.added_proj_bias = added_proj_bias
if self.added_kv_proj_dim is not None:
self.add_k_proj = operations.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias, dtype=dtype, device=device)
self.add_v_proj = operations.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias, dtype=dtype, device=device)
if self.context_pre_only is not None:
self.add_q_proj = operations.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias, dtype=dtype, device=device)
else:
self.add_q_proj = None
self.add_k_proj = None
self.add_v_proj = None
if not self.pre_only:
self.to_out = nn.ModuleList([])
self.to_out.append(operations.Linear(self.inner_dim, self.out_dim, bias=out_bias, dtype=dtype, device=device))
self.to_out.append(nn.Dropout(dropout))
else:
self.to_out = None
if self.context_pre_only is not None and not self.context_pre_only:
self.to_add_out = operations.Linear(self.inner_dim, self.out_context_dim, bias=out_bias, dtype=dtype, device=device)
else:
self.to_add_out = None
self.norm_added_q = None
self.norm_added_k = None
self.processor = processor
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
**cross_attention_kwargs,
) -> torch.Tensor:
return self.processor(
self,
hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
class CustomLiteLAProcessor2_0:
"""Attention processor used typically in processing the SD3-like self-attention projections. add rms norm for query and key and apply RoPE"""
def __init__(self):
self.kernel_func = nn.ReLU(inplace=False)
self.eps = 1e-15
self.pad_val = 1.0
def apply_rotary_emb(
self,
x: torch.Tensor,
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
tensors contain rotary embeddings and are returned as real tensors.
Args:
x (`torch.Tensor`):
Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
"""
cos, sin = freqs_cis # [S, D]
cos = cos[None, None]
sin = sin[None, None]
cos, sin = cos.to(x.device), sin.to(x.device)
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
return out
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
*args,
**kwargs,
) -> torch.FloatTensor:
hidden_states_len = hidden_states.shape[1]
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
if encoder_hidden_states is not None:
context_input_ndim = encoder_hidden_states.ndim
if context_input_ndim == 4:
batch_size, channel, height, width = encoder_hidden_states.shape
encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size = hidden_states.shape[0]
# `sample` projections.
dtype = hidden_states.dtype
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
# `context` projections.
has_encoder_hidden_state_proj = hasattr(attn, "add_q_proj") and hasattr(attn, "add_k_proj") and hasattr(attn, "add_v_proj")
if encoder_hidden_states is not None and has_encoder_hidden_state_proj:
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
# attention
if not attn.is_cross_attention:
query = torch.cat([query, encoder_hidden_states_query_proj], dim=1)
key = torch.cat([key, encoder_hidden_states_key_proj], dim=1)
value = torch.cat([value, encoder_hidden_states_value_proj], dim=1)
else:
query = hidden_states
key = encoder_hidden_states
value = encoder_hidden_states
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.transpose(-1, -2).reshape(batch_size, attn.heads, head_dim, -1)
key = key.transpose(-1, -2).reshape(batch_size, attn.heads, head_dim, -1).transpose(-1, -2)
value = value.transpose(-1, -2).reshape(batch_size, attn.heads, head_dim, -1)
# RoPE需要 [B, H, S, D] 输入
# 此时 query是 [B, H, D, S], 需要转成 [B, H, S, D] 才能应用RoPE
query = query.permute(0, 1, 3, 2) # [B, H, S, D] (从 [B, H, D, S])
# Apply query and key normalization if needed
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# Apply RoPE if needed
if rotary_freqs_cis is not None:
query = self.apply_rotary_emb(query, rotary_freqs_cis)
if not attn.is_cross_attention:
key = self.apply_rotary_emb(key, rotary_freqs_cis)
elif rotary_freqs_cis_cross is not None and has_encoder_hidden_state_proj:
key = self.apply_rotary_emb(key, rotary_freqs_cis_cross)
# 此时 query是 [B, H, S, D],需要还原成 [B, H, D, S]
query = query.permute(0, 1, 3, 2) # [B, H, D, S]
if attention_mask is not None:
# attention_mask: [B, S] -> [B, 1, S, 1]
attention_mask = attention_mask[:, None, :, None].to(key.dtype) # [B, 1, S, 1]
query = query * attention_mask.permute(0, 1, 3, 2) # [B, H, S, D] * [B, 1, S, 1]
if not attn.is_cross_attention:
key = key * attention_mask # key: [B, h, S, D] 与 mask [B, 1, S, 1] 相乘
value = value * attention_mask.permute(0, 1, 3, 2) # 如果 value 是 [B, h, D, S]那么需调整mask以匹配S维度
if attn.is_cross_attention and encoder_attention_mask is not None and has_encoder_hidden_state_proj:
encoder_attention_mask = encoder_attention_mask[:, None, :, None].to(key.dtype) # [B, 1, S_enc, 1]
# 此时 key: [B, h, S_enc, D], value: [B, h, D, S_enc]
key = key * encoder_attention_mask # [B, h, S_enc, D] * [B, 1, S_enc, 1]
value = value * encoder_attention_mask.permute(0, 1, 3, 2) # [B, h, D, S_enc] * [B, 1, 1, S_enc]
query = self.kernel_func(query)
key = self.kernel_func(key)
query, key, value = query.float(), key.float(), value.float()
value = F.pad(value, (0, 0, 0, 1), mode="constant", value=self.pad_val)
vk = torch.matmul(value, key)
hidden_states = torch.matmul(vk, query)
if hidden_states.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.float()
hidden_states = hidden_states[:, :, :-1] / (hidden_states[:, :, -1:] + self.eps)
hidden_states = hidden_states.view(batch_size, attn.heads * head_dim, -1).permute(0, 2, 1)
hidden_states = hidden_states.to(dtype)
if encoder_hidden_states is not None:
encoder_hidden_states = encoder_hidden_states.to(dtype)
# Split the attention outputs.
if encoder_hidden_states is not None and not attn.is_cross_attention and has_encoder_hidden_state_proj:
hidden_states, encoder_hidden_states = (
hidden_states[:, : hidden_states_len],
hidden_states[:, hidden_states_len:],
)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if encoder_hidden_states is not None and not attn.context_pre_only and not attn.is_cross_attention and hasattr(attn, "to_add_out"):
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if encoder_hidden_states is not None and context_input_ndim == 4:
encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if torch.get_autocast_gpu_dtype() == torch.float16:
hidden_states = hidden_states.clip(-65504, 65504)
if encoder_hidden_states is not None:
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
return hidden_states, encoder_hidden_states
class CustomerAttnProcessor2_0:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def apply_rotary_emb(
self,
x: torch.Tensor,
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
tensors contain rotary embeddings and are returned as real tensors.
Args:
x (`torch.Tensor`):
Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
"""
cos, sin = freqs_cis # [S, D]
cos = cos[None, None]
sin = sin[None, None]
cos, sin = cos.to(x.device), sin.to(x.device)
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
return out
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
*args,
**kwargs,
) -> torch.Tensor:
residual = hidden_states
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
has_encoder_hidden_state_proj = hasattr(attn, "add_q_proj") and hasattr(attn, "add_k_proj") and hasattr(attn, "add_v_proj")
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# Apply RoPE if needed
if rotary_freqs_cis is not None:
query = self.apply_rotary_emb(query, rotary_freqs_cis)
if not attn.is_cross_attention:
key = self.apply_rotary_emb(key, rotary_freqs_cis)
elif rotary_freqs_cis_cross is not None and has_encoder_hidden_state_proj:
key = self.apply_rotary_emb(key, rotary_freqs_cis_cross)
if attn.is_cross_attention and encoder_attention_mask is not None and has_encoder_hidden_state_proj:
# attention_mask: N x S1
# encoder_attention_mask: N x S2
# cross attention 整合attention_mask和encoder_attention_mask
combined_mask = attention_mask[:, :, None] * encoder_attention_mask[:, None, :]
attention_mask = torch.where(combined_mask == 1, 0.0, -torch.inf)
attention_mask = attention_mask[:, None, :, :].expand(-1, attn.heads, -1, -1).to(query.dtype)
elif not attn.is_cross_attention and attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
# the output of sdp = (batch, num_heads, seq_len, head_dim)
hidden_states = optimized_attention(
query, key, value, heads=query.shape[1], mask=attention_mask, skip_reshape=True,
).to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def val2list(x: list or tuple or any, repeat_time=1) -> list: # type: ignore
"""Repeat `val` for `repeat_time` times and return the list or val if list/tuple."""
if isinstance(x, (list, tuple)):
return list(x)
return [x for _ in range(repeat_time)]
def val2tuple(x: list or tuple or any, min_len: int = 1, idx_repeat: int = -1) -> tuple: # type: ignore
"""Return tuple with min_len by repeating element at idx_repeat."""
# convert to list first
x = val2list(x)
# repeat elements if necessary
if len(x) > 0:
x[idx_repeat:idx_repeat] = [x[idx_repeat] for _ in range(min_len - len(x))]
return tuple(x)
def t2i_modulate(x, shift, scale):
return x * (1 + scale) + shift
def get_same_padding(kernel_size: Union[int, Tuple[int, ...]]) -> Union[int, Tuple[int, ...]]:
if isinstance(kernel_size, tuple):
return tuple([get_same_padding(ks) for ks in kernel_size])
else:
assert kernel_size % 2 > 0, f"kernel size {kernel_size} should be odd number"
return kernel_size // 2
class ConvLayer(nn.Module):
def __init__(
self,
in_dim: int,
out_dim: int,
kernel_size=3,
stride=1,
dilation=1,
groups=1,
padding: Union[int, None] = None,
use_bias=False,
norm=None,
act=None,
dtype=None, device=None, operations=None
):
super().__init__()
if padding is None:
padding = get_same_padding(kernel_size)
padding *= dilation
self.in_dim = in_dim
self.out_dim = out_dim
self.kernel_size = kernel_size
self.stride = stride
self.dilation = dilation
self.groups = groups
self.padding = padding
self.use_bias = use_bias
self.conv = operations.Conv1d(
in_dim,
out_dim,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=use_bias,
device=device,
dtype=dtype
)
if norm is not None:
self.norm = operations.RMSNorm(out_dim, elementwise_affine=False, dtype=dtype, device=device)
else:
self.norm = None
if act is not None:
self.act = nn.SiLU(inplace=True)
else:
self.act = None
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.conv(x)
if self.norm:
x = self.norm(x)
if self.act:
x = self.act(x)
return x
class GLUMBConv(nn.Module):
def __init__(
self,
in_features: int,
hidden_features: int,
out_feature=None,
kernel_size=3,
stride=1,
padding: Union[int, None] = None,
use_bias=False,
norm=(None, None, None),
act=("silu", "silu", None),
dilation=1,
dtype=None, device=None, operations=None
):
out_feature = out_feature or in_features
super().__init__()
use_bias = val2tuple(use_bias, 3)
norm = val2tuple(norm, 3)
act = val2tuple(act, 3)
self.glu_act = nn.SiLU(inplace=False)
self.inverted_conv = ConvLayer(
in_features,
hidden_features * 2,
1,
use_bias=use_bias[0],
norm=norm[0],
act=act[0],
dtype=dtype,
device=device,
operations=operations,
)
self.depth_conv = ConvLayer(
hidden_features * 2,
hidden_features * 2,
kernel_size,
stride=stride,
groups=hidden_features * 2,
padding=padding,
use_bias=use_bias[1],
norm=norm[1],
act=None,
dilation=dilation,
dtype=dtype,
device=device,
operations=operations,
)
self.point_conv = ConvLayer(
hidden_features,
out_feature,
1,
use_bias=use_bias[2],
norm=norm[2],
act=act[2],
dtype=dtype,
device=device,
operations=operations,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x.transpose(1, 2)
x = self.inverted_conv(x)
x = self.depth_conv(x)
x, gate = torch.chunk(x, 2, dim=1)
gate = self.glu_act(gate)
x = x * gate
x = self.point_conv(x)
x = x.transpose(1, 2)
return x
class LinearTransformerBlock(nn.Module):
"""
A Sana block with global shared adaptive layer norm (adaLN-single) conditioning.
"""
def __init__(
self,
dim,
num_attention_heads,
attention_head_dim,
use_adaln_single=True,
cross_attention_dim=None,
added_kv_proj_dim=None,
context_pre_only=False,
mlp_ratio=4.0,
add_cross_attention=False,
add_cross_attention_dim=None,
qk_norm=None,
dtype=None, device=None, operations=None
):
super().__init__()
self.norm1 = operations.RMSNorm(dim, elementwise_affine=False, eps=1e-6)
self.attn = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim,
added_kv_proj_dim=added_kv_proj_dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
bias=True,
qk_norm=qk_norm,
processor=CustomLiteLAProcessor2_0(),
dtype=dtype,
device=device,
operations=operations,
)
self.add_cross_attention = add_cross_attention
self.context_pre_only = context_pre_only
if add_cross_attention and add_cross_attention_dim is not None:
self.cross_attn = Attention(
query_dim=dim,
cross_attention_dim=add_cross_attention_dim,
added_kv_proj_dim=add_cross_attention_dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
context_pre_only=context_pre_only,
bias=True,
qk_norm=qk_norm,
processor=CustomerAttnProcessor2_0(),
dtype=dtype,
device=device,
operations=operations,
)
self.norm2 = operations.RMSNorm(dim, 1e-06, elementwise_affine=False)
self.ff = GLUMBConv(
in_features=dim,
hidden_features=int(dim * mlp_ratio),
use_bias=(True, True, False),
norm=(None, None, None),
act=("silu", "silu", None),
dtype=dtype,
device=device,
operations=operations,
)
self.use_adaln_single = use_adaln_single
if use_adaln_single:
self.scale_shift_table = nn.Parameter(torch.empty(6, dim, dtype=dtype, device=device))
def forward(
self,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: torch.FloatTensor = None,
encoder_attention_mask: torch.FloatTensor = None,
rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
temb: torch.FloatTensor = None,
):
N = hidden_states.shape[0]
# step 1: AdaLN single
if self.use_adaln_single:
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
comfy.model_management.cast_to(self.scale_shift_table[None], dtype=temb.dtype, device=temb.device) + temb.reshape(N, 6, -1)
).chunk(6, dim=1)
norm_hidden_states = self.norm1(hidden_states)
if self.use_adaln_single:
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
# step 2: attention
if not self.add_cross_attention:
attn_output, encoder_hidden_states = self.attn(
hidden_states=norm_hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=rotary_freqs_cis_cross,
)
else:
attn_output, _ = self.attn(
hidden_states=norm_hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=None,
encoder_attention_mask=None,
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=None,
)
if self.use_adaln_single:
attn_output = gate_msa * attn_output
hidden_states = attn_output + hidden_states
if self.add_cross_attention:
attn_output = self.cross_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=rotary_freqs_cis_cross,
)
hidden_states = attn_output + hidden_states
# step 3: add norm
norm_hidden_states = self.norm2(hidden_states)
if self.use_adaln_single:
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
# step 4: feed forward
ff_output = self.ff(norm_hidden_states)
if self.use_adaln_single:
ff_output = gate_mlp * ff_output
hidden_states = hidden_states + ff_output
return hidden_states

File diff suppressed because it is too large Load Diff

385
comfy/ldm/ace/model.py Normal file
View File

@@ -0,0 +1,385 @@
# Original from: https://github.com/ace-step/ACE-Step/blob/main/models/ace_step_transformer.py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, List, Union
import torch
from torch import nn
import comfy.model_management
from comfy.ldm.lightricks.model import TimestepEmbedding, Timesteps
from .attention import LinearTransformerBlock, t2i_modulate
from .lyric_encoder import ConformerEncoder as LyricEncoder
def cross_norm(hidden_states, controlnet_input):
# input N x T x c
mean_hidden_states, std_hidden_states = hidden_states.mean(dim=(1,2), keepdim=True), hidden_states.std(dim=(1,2), keepdim=True)
mean_controlnet_input, std_controlnet_input = controlnet_input.mean(dim=(1,2), keepdim=True), controlnet_input.std(dim=(1,2), keepdim=True)
controlnet_input = (controlnet_input - mean_controlnet_input) * (std_hidden_states / (std_controlnet_input + 1e-12)) + mean_hidden_states
return controlnet_input
# Copied from transformers.models.mixtral.modeling_mixtral.MixtralRotaryEmbedding with Mixtral->Qwen2
class Qwen2RotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, dtype=None, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=device).float() / self.dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
# Build here to make `torch.jit.trace` work.
self._set_cos_sin_cache(
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.float32
)
def _set_cos_sin_cache(self, seq_len, device, dtype):
self.max_seq_len_cached = seq_len
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
freqs = torch.outer(t, self.inv_freq)
# Different from paper, but it uses a different permutation in order to obtain the same calculation
emb = torch.cat((freqs, freqs), dim=-1)
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
def forward(self, x, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
if seq_len > self.max_seq_len_cached:
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
return (
self.cos_cached[:seq_len].to(dtype=x.dtype),
self.sin_cached[:seq_len].to(dtype=x.dtype),
)
class T2IFinalLayer(nn.Module):
"""
The final layer of Sana.
"""
def __init__(self, hidden_size, patch_size=[16, 1], out_channels=256, dtype=None, device=None, operations=None):
super().__init__()
self.norm_final = operations.RMSNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.linear = operations.Linear(hidden_size, patch_size[0] * patch_size[1] * out_channels, bias=True, dtype=dtype, device=device)
self.scale_shift_table = nn.Parameter(torch.empty(2, hidden_size, dtype=dtype, device=device))
self.out_channels = out_channels
self.patch_size = patch_size
def unpatchfy(
self,
hidden_states: torch.Tensor,
width: int,
):
# 4 unpatchify
new_height, new_width = 1, hidden_states.size(1)
hidden_states = hidden_states.reshape(
shape=(hidden_states.shape[0], new_height, new_width, self.patch_size[0], self.patch_size[1], self.out_channels)
).contiguous()
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
output = hidden_states.reshape(
shape=(hidden_states.shape[0], self.out_channels, new_height * self.patch_size[0], new_width * self.patch_size[1])
).contiguous()
if width > new_width:
output = torch.nn.functional.pad(output, (0, width - new_width, 0, 0), 'constant', 0)
elif width < new_width:
output = output[:, :, :, :width]
return output
def forward(self, x, t, output_length):
shift, scale = (comfy.model_management.cast_to(self.scale_shift_table[None], device=t.device, dtype=t.dtype) + t[:, None]).chunk(2, dim=1)
x = t2i_modulate(self.norm_final(x), shift, scale)
x = self.linear(x)
# unpatchify
output = self.unpatchfy(x, output_length)
return output
class PatchEmbed(nn.Module):
"""2D Image to Patch Embedding"""
def __init__(
self,
height=16,
width=4096,
patch_size=(16, 1),
in_channels=8,
embed_dim=1152,
bias=True,
dtype=None, device=None, operations=None
):
super().__init__()
patch_size_h, patch_size_w = patch_size
self.early_conv_layers = nn.Sequential(
operations.Conv2d(in_channels, in_channels*256, kernel_size=patch_size, stride=patch_size, padding=0, bias=bias, dtype=dtype, device=device),
operations.GroupNorm(num_groups=32, num_channels=in_channels*256, eps=1e-6, affine=True, dtype=dtype, device=device),
operations.Conv2d(in_channels*256, embed_dim, kernel_size=1, stride=1, padding=0, bias=bias, dtype=dtype, device=device)
)
self.patch_size = patch_size
self.height, self.width = height // patch_size_h, width // patch_size_w
self.base_size = self.width
def forward(self, latent):
# early convolutions, N x C x H x W -> N x 256 * sqrt(patch_size) x H/patch_size x W/patch_size
latent = self.early_conv_layers(latent)
latent = latent.flatten(2).transpose(1, 2) # BCHW -> BNC
return latent
class ACEStepTransformer2DModel(nn.Module):
# _supports_gradient_checkpointing = True
def __init__(
self,
in_channels: Optional[int] = 8,
num_layers: int = 28,
inner_dim: int = 1536,
attention_head_dim: int = 64,
num_attention_heads: int = 24,
mlp_ratio: float = 4.0,
out_channels: int = 8,
max_position: int = 32768,
rope_theta: float = 1000000.0,
speaker_embedding_dim: int = 512,
text_embedding_dim: int = 768,
ssl_encoder_depths: List[int] = [9, 9],
ssl_names: List[str] = ["mert", "m-hubert"],
ssl_latent_dims: List[int] = [1024, 768],
lyric_encoder_vocab_size: int = 6681,
lyric_hidden_size: int = 1024,
patch_size: List[int] = [16, 1],
max_height: int = 16,
max_width: int = 4096,
audio_model=None,
dtype=None, device=None, operations=None
):
super().__init__()
self.dtype = dtype
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
inner_dim = num_attention_heads * attention_head_dim
self.inner_dim = inner_dim
self.out_channels = out_channels
self.max_position = max_position
self.patch_size = patch_size
self.rope_theta = rope_theta
self.rotary_emb = Qwen2RotaryEmbedding(
dim=self.attention_head_dim,
max_position_embeddings=self.max_position,
base=self.rope_theta,
dtype=dtype,
device=device,
)
# 2. Define input layers
self.in_channels = in_channels
self.num_layers = num_layers
# 3. Define transformers blocks
self.transformer_blocks = nn.ModuleList(
[
LinearTransformerBlock(
dim=self.inner_dim,
num_attention_heads=self.num_attention_heads,
attention_head_dim=attention_head_dim,
mlp_ratio=mlp_ratio,
add_cross_attention=True,
add_cross_attention_dim=self.inner_dim,
dtype=dtype,
device=device,
operations=operations,
)
for i in range(self.num_layers)
]
)
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=self.inner_dim, dtype=dtype, device=device, operations=operations)
self.t_block = nn.Sequential(nn.SiLU(), operations.Linear(self.inner_dim, 6 * self.inner_dim, bias=True, dtype=dtype, device=device))
# speaker
self.speaker_embedder = operations.Linear(speaker_embedding_dim, self.inner_dim, dtype=dtype, device=device)
# genre
self.genre_embedder = operations.Linear(text_embedding_dim, self.inner_dim, dtype=dtype, device=device)
# lyric
self.lyric_embs = operations.Embedding(lyric_encoder_vocab_size, lyric_hidden_size, dtype=dtype, device=device)
self.lyric_encoder = LyricEncoder(input_size=lyric_hidden_size, static_chunk_size=0, dtype=dtype, device=device, operations=operations)
self.lyric_proj = operations.Linear(lyric_hidden_size, self.inner_dim, dtype=dtype, device=device)
projector_dim = 2 * self.inner_dim
self.projectors = nn.ModuleList([
nn.Sequential(
operations.Linear(self.inner_dim, projector_dim, dtype=dtype, device=device),
nn.SiLU(),
operations.Linear(projector_dim, projector_dim, dtype=dtype, device=device),
nn.SiLU(),
operations.Linear(projector_dim, ssl_dim, dtype=dtype, device=device),
) for ssl_dim in ssl_latent_dims
])
self.proj_in = PatchEmbed(
height=max_height,
width=max_width,
patch_size=patch_size,
embed_dim=self.inner_dim,
bias=True,
dtype=dtype,
device=device,
operations=operations,
)
self.final_layer = T2IFinalLayer(self.inner_dim, patch_size=patch_size, out_channels=out_channels, dtype=dtype, device=device, operations=operations)
def forward_lyric_encoder(
self,
lyric_token_idx: Optional[torch.LongTensor] = None,
lyric_mask: Optional[torch.LongTensor] = None,
out_dtype=None,
):
# N x T x D
lyric_embs = self.lyric_embs(lyric_token_idx, out_dtype=out_dtype)
prompt_prenet_out, _mask = self.lyric_encoder(lyric_embs, lyric_mask, decoding_chunk_size=1, num_decoding_left_chunks=-1)
prompt_prenet_out = self.lyric_proj(prompt_prenet_out)
return prompt_prenet_out
def encode(
self,
encoder_text_hidden_states: Optional[torch.Tensor] = None,
text_attention_mask: Optional[torch.LongTensor] = None,
speaker_embeds: Optional[torch.FloatTensor] = None,
lyric_token_idx: Optional[torch.LongTensor] = None,
lyric_mask: Optional[torch.LongTensor] = None,
lyrics_strength=1.0,
):
bs = encoder_text_hidden_states.shape[0]
device = encoder_text_hidden_states.device
# speaker embedding
encoder_spk_hidden_states = self.speaker_embedder(speaker_embeds).unsqueeze(1)
# genre embedding
encoder_text_hidden_states = self.genre_embedder(encoder_text_hidden_states)
# lyric
encoder_lyric_hidden_states = self.forward_lyric_encoder(
lyric_token_idx=lyric_token_idx,
lyric_mask=lyric_mask,
out_dtype=encoder_text_hidden_states.dtype,
)
encoder_lyric_hidden_states *= lyrics_strength
encoder_hidden_states = torch.cat([encoder_spk_hidden_states, encoder_text_hidden_states, encoder_lyric_hidden_states], dim=1)
encoder_hidden_mask = None
if text_attention_mask is not None:
speaker_mask = torch.ones(bs, 1, device=device)
encoder_hidden_mask = torch.cat([speaker_mask, text_attention_mask, lyric_mask], dim=1)
return encoder_hidden_states, encoder_hidden_mask
def decode(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
encoder_hidden_states: torch.Tensor,
encoder_hidden_mask: torch.Tensor,
timestep: Optional[torch.Tensor],
output_length: int = 0,
block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None,
controlnet_scale: Union[float, torch.Tensor] = 1.0,
):
embedded_timestep = self.timestep_embedder(self.time_proj(timestep).to(dtype=hidden_states.dtype))
temb = self.t_block(embedded_timestep)
hidden_states = self.proj_in(hidden_states)
# controlnet logic
if block_controlnet_hidden_states is not None:
control_condi = cross_norm(hidden_states, block_controlnet_hidden_states)
hidden_states = hidden_states + control_condi * controlnet_scale
# inner_hidden_states = []
rotary_freqs_cis = self.rotary_emb(hidden_states, seq_len=hidden_states.shape[1])
encoder_rotary_freqs_cis = self.rotary_emb(encoder_hidden_states, seq_len=encoder_hidden_states.shape[1])
for index_block, block in enumerate(self.transformer_blocks):
hidden_states = block(
hidden_states=hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_hidden_mask,
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=encoder_rotary_freqs_cis,
temb=temb,
)
output = self.final_layer(hidden_states, embedded_timestep, output_length)
return output
def forward(
self,
x,
timestep,
attention_mask=None,
context: Optional[torch.Tensor] = None,
text_attention_mask: Optional[torch.LongTensor] = None,
speaker_embeds: Optional[torch.FloatTensor] = None,
lyric_token_idx: Optional[torch.LongTensor] = None,
lyric_mask: Optional[torch.LongTensor] = None,
block_controlnet_hidden_states: Optional[Union[List[torch.Tensor], torch.Tensor]] = None,
controlnet_scale: Union[float, torch.Tensor] = 1.0,
lyrics_strength=1.0,
**kwargs
):
hidden_states = x
encoder_text_hidden_states = context
encoder_hidden_states, encoder_hidden_mask = self.encode(
encoder_text_hidden_states=encoder_text_hidden_states,
text_attention_mask=text_attention_mask,
speaker_embeds=speaker_embeds,
lyric_token_idx=lyric_token_idx,
lyric_mask=lyric_mask,
lyrics_strength=lyrics_strength,
)
output_length = hidden_states.shape[-1]
output = self.decode(
hidden_states=hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_hidden_mask=encoder_hidden_mask,
timestep=timestep,
output_length=output_length,
block_controlnet_hidden_states=block_controlnet_hidden_states,
controlnet_scale=controlnet_scale,
)
return output

View File

@@ -0,0 +1,644 @@
# Rewritten from diffusers
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Tuple, Union
import comfy.model_management
import comfy.ops
ops = comfy.ops.disable_weight_init
class RMSNorm(ops.RMSNorm):
def __init__(self, dim, eps=1e-5, elementwise_affine=True, bias=False):
super().__init__(dim, eps=eps, elementwise_affine=elementwise_affine)
if elementwise_affine:
self.bias = nn.Parameter(torch.empty(dim)) if bias else None
def forward(self, x):
x = super().forward(x)
if self.elementwise_affine:
if self.bias is not None:
x = x + comfy.model_management.cast_to(self.bias, dtype=x.dtype, device=x.device)
return x
def get_normalization(norm_type, num_features, num_groups=32, eps=1e-5):
if norm_type == "batch_norm":
return nn.BatchNorm2d(num_features)
elif norm_type == "group_norm":
return ops.GroupNorm(num_groups, num_features)
elif norm_type == "layer_norm":
return ops.LayerNorm(num_features)
elif norm_type == "rms_norm":
return RMSNorm(num_features, eps=eps, elementwise_affine=True, bias=True)
else:
raise ValueError(f"Unknown normalization type: {norm_type}")
def get_activation(activation_type):
if activation_type == "relu":
return nn.ReLU()
elif activation_type == "relu6":
return nn.ReLU6()
elif activation_type == "silu":
return nn.SiLU()
elif activation_type == "leaky_relu":
return nn.LeakyReLU(0.2)
else:
raise ValueError(f"Unknown activation type: {activation_type}")
class ResBlock(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
norm_type: str = "batch_norm",
act_fn: str = "relu6",
) -> None:
super().__init__()
self.norm_type = norm_type
self.nonlinearity = get_activation(act_fn) if act_fn is not None else nn.Identity()
self.conv1 = ops.Conv2d(in_channels, in_channels, 3, 1, 1)
self.conv2 = ops.Conv2d(in_channels, out_channels, 3, 1, 1, bias=False)
self.norm = get_normalization(norm_type, out_channels)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
residual = hidden_states
hidden_states = self.conv1(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.conv2(hidden_states)
if self.norm_type == "rms_norm":
# move channel to the last dimension so we apply RMSnorm across channel dimension
hidden_states = self.norm(hidden_states.movedim(1, -1)).movedim(-1, 1)
else:
hidden_states = self.norm(hidden_states)
return hidden_states + residual
class SanaMultiscaleAttentionProjection(nn.Module):
def __init__(
self,
in_channels: int,
num_attention_heads: int,
kernel_size: int,
) -> None:
super().__init__()
channels = 3 * in_channels
self.proj_in = ops.Conv2d(
channels,
channels,
kernel_size,
padding=kernel_size // 2,
groups=channels,
bias=False,
)
self.proj_out = ops.Conv2d(channels, channels, 1, 1, 0, groups=3 * num_attention_heads, bias=False)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.proj_in(hidden_states)
hidden_states = self.proj_out(hidden_states)
return hidden_states
class SanaMultiscaleLinearAttention(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
num_attention_heads: int = None,
attention_head_dim: int = 8,
mult: float = 1.0,
norm_type: str = "batch_norm",
kernel_sizes: tuple = (5,),
eps: float = 1e-15,
residual_connection: bool = False,
):
super().__init__()
self.eps = eps
self.attention_head_dim = attention_head_dim
self.norm_type = norm_type
self.residual_connection = residual_connection
num_attention_heads = (
int(in_channels // attention_head_dim * mult)
if num_attention_heads is None
else num_attention_heads
)
inner_dim = num_attention_heads * attention_head_dim
self.to_q = ops.Linear(in_channels, inner_dim, bias=False)
self.to_k = ops.Linear(in_channels, inner_dim, bias=False)
self.to_v = ops.Linear(in_channels, inner_dim, bias=False)
self.to_qkv_multiscale = nn.ModuleList()
for kernel_size in kernel_sizes:
self.to_qkv_multiscale.append(
SanaMultiscaleAttentionProjection(inner_dim, num_attention_heads, kernel_size)
)
self.nonlinearity = nn.ReLU()
self.to_out = ops.Linear(inner_dim * (1 + len(kernel_sizes)), out_channels, bias=False)
self.norm_out = get_normalization(norm_type, out_channels)
def apply_linear_attention(self, query, key, value):
value = F.pad(value, (0, 0, 0, 1), mode="constant", value=1)
scores = torch.matmul(value, key.transpose(-1, -2))
hidden_states = torch.matmul(scores, query)
hidden_states = hidden_states.to(dtype=torch.float32)
hidden_states = hidden_states[:, :, :-1] / (hidden_states[:, :, -1:] + self.eps)
return hidden_states
def apply_quadratic_attention(self, query, key, value):
scores = torch.matmul(key.transpose(-1, -2), query)
scores = scores.to(dtype=torch.float32)
scores = scores / (torch.sum(scores, dim=2, keepdim=True) + self.eps)
hidden_states = torch.matmul(value, scores.to(value.dtype))
return hidden_states
def forward(self, hidden_states):
height, width = hidden_states.shape[-2:]
if height * width > self.attention_head_dim:
use_linear_attention = True
else:
use_linear_attention = False
residual = hidden_states
batch_size, _, height, width = list(hidden_states.size())
original_dtype = hidden_states.dtype
hidden_states = hidden_states.movedim(1, -1)
query = self.to_q(hidden_states)
key = self.to_k(hidden_states)
value = self.to_v(hidden_states)
hidden_states = torch.cat([query, key, value], dim=3)
hidden_states = hidden_states.movedim(-1, 1)
multi_scale_qkv = [hidden_states]
for block in self.to_qkv_multiscale:
multi_scale_qkv.append(block(hidden_states))
hidden_states = torch.cat(multi_scale_qkv, dim=1)
if use_linear_attention:
# for linear attention upcast hidden_states to float32
hidden_states = hidden_states.to(dtype=torch.float32)
hidden_states = hidden_states.reshape(batch_size, -1, 3 * self.attention_head_dim, height * width)
query, key, value = hidden_states.chunk(3, dim=2)
query = self.nonlinearity(query)
key = self.nonlinearity(key)
if use_linear_attention:
hidden_states = self.apply_linear_attention(query, key, value)
hidden_states = hidden_states.to(dtype=original_dtype)
else:
hidden_states = self.apply_quadratic_attention(query, key, value)
hidden_states = torch.reshape(hidden_states, (batch_size, -1, height, width))
hidden_states = self.to_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
if self.norm_type == "rms_norm":
hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
else:
hidden_states = self.norm_out(hidden_states)
if self.residual_connection:
hidden_states = hidden_states + residual
return hidden_states
class EfficientViTBlock(nn.Module):
def __init__(
self,
in_channels: int,
mult: float = 1.0,
attention_head_dim: int = 32,
qkv_multiscales: tuple = (5,),
norm_type: str = "batch_norm",
) -> None:
super().__init__()
self.attn = SanaMultiscaleLinearAttention(
in_channels=in_channels,
out_channels=in_channels,
mult=mult,
attention_head_dim=attention_head_dim,
norm_type=norm_type,
kernel_sizes=qkv_multiscales,
residual_connection=True,
)
self.conv_out = GLUMBConv(
in_channels=in_channels,
out_channels=in_channels,
norm_type="rms_norm",
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.attn(x)
x = self.conv_out(x)
return x
class GLUMBConv(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
expand_ratio: float = 4,
norm_type: str = None,
residual_connection: bool = True,
) -> None:
super().__init__()
hidden_channels = int(expand_ratio * in_channels)
self.norm_type = norm_type
self.residual_connection = residual_connection
self.nonlinearity = nn.SiLU()
self.conv_inverted = ops.Conv2d(in_channels, hidden_channels * 2, 1, 1, 0)
self.conv_depth = ops.Conv2d(hidden_channels * 2, hidden_channels * 2, 3, 1, 1, groups=hidden_channels * 2)
self.conv_point = ops.Conv2d(hidden_channels, out_channels, 1, 1, 0, bias=False)
self.norm = None
if norm_type == "rms_norm":
self.norm = RMSNorm(out_channels, eps=1e-5, elementwise_affine=True, bias=True)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
if self.residual_connection:
residual = hidden_states
hidden_states = self.conv_inverted(hidden_states)
hidden_states = self.nonlinearity(hidden_states)
hidden_states = self.conv_depth(hidden_states)
hidden_states, gate = torch.chunk(hidden_states, 2, dim=1)
hidden_states = hidden_states * self.nonlinearity(gate)
hidden_states = self.conv_point(hidden_states)
if self.norm_type == "rms_norm":
# move channel to the last dimension so we apply RMSnorm across channel dimension
hidden_states = self.norm(hidden_states.movedim(1, -1)).movedim(-1, 1)
if self.residual_connection:
hidden_states = hidden_states + residual
return hidden_states
def get_block(
block_type: str,
in_channels: int,
out_channels: int,
attention_head_dim: int,
norm_type: str,
act_fn: str,
qkv_mutliscales: tuple = (),
):
if block_type == "ResBlock":
block = ResBlock(in_channels, out_channels, norm_type, act_fn)
elif block_type == "EfficientViTBlock":
block = EfficientViTBlock(
in_channels,
attention_head_dim=attention_head_dim,
norm_type=norm_type,
qkv_multiscales=qkv_mutliscales
)
else:
raise ValueError(f"Block with {block_type=} is not supported.")
return block
class DCDownBlock2d(nn.Module):
def __init__(self, in_channels: int, out_channels: int, downsample: bool = False, shortcut: bool = True) -> None:
super().__init__()
self.downsample = downsample
self.factor = 2
self.stride = 1 if downsample else 2
self.group_size = in_channels * self.factor**2 // out_channels
self.shortcut = shortcut
out_ratio = self.factor**2
if downsample:
assert out_channels % out_ratio == 0
out_channels = out_channels // out_ratio
self.conv = ops.Conv2d(
in_channels,
out_channels,
kernel_size=3,
stride=self.stride,
padding=1,
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
x = self.conv(hidden_states)
if self.downsample:
x = F.pixel_unshuffle(x, self.factor)
if self.shortcut:
y = F.pixel_unshuffle(hidden_states, self.factor)
y = y.unflatten(1, (-1, self.group_size))
y = y.mean(dim=2)
hidden_states = x + y
else:
hidden_states = x
return hidden_states
class DCUpBlock2d(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
interpolate: bool = False,
shortcut: bool = True,
interpolation_mode: str = "nearest",
) -> None:
super().__init__()
self.interpolate = interpolate
self.interpolation_mode = interpolation_mode
self.shortcut = shortcut
self.factor = 2
self.repeats = out_channels * self.factor**2 // in_channels
out_ratio = self.factor**2
if not interpolate:
out_channels = out_channels * out_ratio
self.conv = ops.Conv2d(in_channels, out_channels, 3, 1, 1)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
if self.interpolate:
x = F.interpolate(hidden_states, scale_factor=self.factor, mode=self.interpolation_mode)
x = self.conv(x)
else:
x = self.conv(hidden_states)
x = F.pixel_shuffle(x, self.factor)
if self.shortcut:
y = hidden_states.repeat_interleave(self.repeats, dim=1, output_size=hidden_states.shape[1] * self.repeats)
y = F.pixel_shuffle(y, self.factor)
hidden_states = x + y
else:
hidden_states = x
return hidden_states
class Encoder(nn.Module):
def __init__(
self,
in_channels: int,
latent_channels: int,
attention_head_dim: int = 32,
block_type: str or tuple = "ResBlock",
block_out_channels: tuple = (128, 256, 512, 512, 1024, 1024),
layers_per_block: tuple = (2, 2, 2, 2, 2, 2),
qkv_multiscales: tuple = ((), (), (), (5,), (5,), (5,)),
downsample_block_type: str = "pixel_unshuffle",
out_shortcut: bool = True,
):
super().__init__()
num_blocks = len(block_out_channels)
if isinstance(block_type, str):
block_type = (block_type,) * num_blocks
if layers_per_block[0] > 0:
self.conv_in = ops.Conv2d(
in_channels,
block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1],
kernel_size=3,
stride=1,
padding=1,
)
else:
self.conv_in = DCDownBlock2d(
in_channels=in_channels,
out_channels=block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1],
downsample=downsample_block_type == "pixel_unshuffle",
shortcut=False,
)
down_blocks = []
for i, (out_channel, num_layers) in enumerate(zip(block_out_channels, layers_per_block)):
down_block_list = []
for _ in range(num_layers):
block = get_block(
block_type[i],
out_channel,
out_channel,
attention_head_dim=attention_head_dim,
norm_type="rms_norm",
act_fn="silu",
qkv_mutliscales=qkv_multiscales[i],
)
down_block_list.append(block)
if i < num_blocks - 1 and num_layers > 0:
downsample_block = DCDownBlock2d(
in_channels=out_channel,
out_channels=block_out_channels[i + 1],
downsample=downsample_block_type == "pixel_unshuffle",
shortcut=True,
)
down_block_list.append(downsample_block)
down_blocks.append(nn.Sequential(*down_block_list))
self.down_blocks = nn.ModuleList(down_blocks)
self.conv_out = ops.Conv2d(block_out_channels[-1], latent_channels, 3, 1, 1)
self.out_shortcut = out_shortcut
if out_shortcut:
self.out_shortcut_average_group_size = block_out_channels[-1] // latent_channels
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.conv_in(hidden_states)
for down_block in self.down_blocks:
hidden_states = down_block(hidden_states)
if self.out_shortcut:
x = hidden_states.unflatten(1, (-1, self.out_shortcut_average_group_size))
x = x.mean(dim=2)
hidden_states = self.conv_out(hidden_states) + x
else:
hidden_states = self.conv_out(hidden_states)
return hidden_states
class Decoder(nn.Module):
def __init__(
self,
in_channels: int,
latent_channels: int,
attention_head_dim: int = 32,
block_type: str or tuple = "ResBlock",
block_out_channels: tuple = (128, 256, 512, 512, 1024, 1024),
layers_per_block: tuple = (2, 2, 2, 2, 2, 2),
qkv_multiscales: tuple = ((), (), (), (5,), (5,), (5,)),
norm_type: str or tuple = "rms_norm",
act_fn: str or tuple = "silu",
upsample_block_type: str = "pixel_shuffle",
in_shortcut: bool = True,
):
super().__init__()
num_blocks = len(block_out_channels)
if isinstance(block_type, str):
block_type = (block_type,) * num_blocks
if isinstance(norm_type, str):
norm_type = (norm_type,) * num_blocks
if isinstance(act_fn, str):
act_fn = (act_fn,) * num_blocks
self.conv_in = ops.Conv2d(latent_channels, block_out_channels[-1], 3, 1, 1)
self.in_shortcut = in_shortcut
if in_shortcut:
self.in_shortcut_repeats = block_out_channels[-1] // latent_channels
up_blocks = []
for i, (out_channel, num_layers) in reversed(list(enumerate(zip(block_out_channels, layers_per_block)))):
up_block_list = []
if i < num_blocks - 1 and num_layers > 0:
upsample_block = DCUpBlock2d(
block_out_channels[i + 1],
out_channel,
interpolate=upsample_block_type == "interpolate",
shortcut=True,
)
up_block_list.append(upsample_block)
for _ in range(num_layers):
block = get_block(
block_type[i],
out_channel,
out_channel,
attention_head_dim=attention_head_dim,
norm_type=norm_type[i],
act_fn=act_fn[i],
qkv_mutliscales=qkv_multiscales[i],
)
up_block_list.append(block)
up_blocks.insert(0, nn.Sequential(*up_block_list))
self.up_blocks = nn.ModuleList(up_blocks)
channels = block_out_channels[0] if layers_per_block[0] > 0 else block_out_channels[1]
self.norm_out = RMSNorm(channels, 1e-5, elementwise_affine=True, bias=True)
self.conv_act = nn.ReLU()
self.conv_out = None
if layers_per_block[0] > 0:
self.conv_out = ops.Conv2d(channels, in_channels, 3, 1, 1)
else:
self.conv_out = DCUpBlock2d(
channels, in_channels, interpolate=upsample_block_type == "interpolate", shortcut=False
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
if self.in_shortcut:
x = hidden_states.repeat_interleave(
self.in_shortcut_repeats, dim=1, output_size=hidden_states.shape[1] * self.in_shortcut_repeats
)
hidden_states = self.conv_in(hidden_states) + x
else:
hidden_states = self.conv_in(hidden_states)
for up_block in reversed(self.up_blocks):
hidden_states = up_block(hidden_states)
hidden_states = self.norm_out(hidden_states.movedim(1, -1)).movedim(-1, 1)
hidden_states = self.conv_act(hidden_states)
hidden_states = self.conv_out(hidden_states)
return hidden_states
class AutoencoderDC(nn.Module):
def __init__(
self,
in_channels: int = 2,
latent_channels: int = 8,
attention_head_dim: int = 32,
encoder_block_types: Union[str, Tuple[str]] = ["ResBlock", "ResBlock", "ResBlock", "EfficientViTBlock"],
decoder_block_types: Union[str, Tuple[str]] = ["ResBlock", "ResBlock", "ResBlock", "EfficientViTBlock"],
encoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 1024),
decoder_block_out_channels: Tuple[int, ...] = (128, 256, 512, 1024),
encoder_layers_per_block: Tuple[int] = (2, 2, 3, 3),
decoder_layers_per_block: Tuple[int] = (3, 3, 3, 3),
encoder_qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (5,), (5,)),
decoder_qkv_multiscales: Tuple[Tuple[int, ...], ...] = ((), (), (5,), (5,)),
upsample_block_type: str = "interpolate",
downsample_block_type: str = "Conv",
decoder_norm_types: Union[str, Tuple[str]] = "rms_norm",
decoder_act_fns: Union[str, Tuple[str]] = "silu",
scaling_factor: float = 0.41407,
) -> None:
super().__init__()
self.encoder = Encoder(
in_channels=in_channels,
latent_channels=latent_channels,
attention_head_dim=attention_head_dim,
block_type=encoder_block_types,
block_out_channels=encoder_block_out_channels,
layers_per_block=encoder_layers_per_block,
qkv_multiscales=encoder_qkv_multiscales,
downsample_block_type=downsample_block_type,
)
self.decoder = Decoder(
in_channels=in_channels,
latent_channels=latent_channels,
attention_head_dim=attention_head_dim,
block_type=decoder_block_types,
block_out_channels=decoder_block_out_channels,
layers_per_block=decoder_layers_per_block,
qkv_multiscales=decoder_qkv_multiscales,
norm_type=decoder_norm_types,
act_fn=decoder_act_fns,
upsample_block_type=upsample_block_type,
)
self.scaling_factor = scaling_factor
self.spatial_compression_ratio = 2 ** (len(encoder_block_out_channels) - 1)
def encode(self, x: torch.Tensor) -> torch.Tensor:
"""Internal encoding function."""
encoded = self.encoder(x)
return encoded * self.scaling_factor
def decode(self, z: torch.Tensor) -> torch.Tensor:
# Scale the latents back
z = z / self.scaling_factor
decoded = self.decoder(z)
return decoded
def forward(self, x: torch.Tensor) -> torch.Tensor:
z = self.encode(x)
return self.decode(z)

View File

@@ -0,0 +1,109 @@
# Original from: https://github.com/ace-step/ACE-Step/blob/main/music_dcae/music_dcae_pipeline.py
import torch
from .autoencoder_dc import AutoencoderDC
import logging
try:
import torchaudio
except:
logging.warning("torchaudio missing, ACE model will be broken")
import torchvision.transforms as transforms
from .music_vocoder import ADaMoSHiFiGANV1
class MusicDCAE(torch.nn.Module):
def __init__(self, source_sample_rate=None, dcae_config={}, vocoder_config={}):
super(MusicDCAE, self).__init__()
self.dcae = AutoencoderDC(**dcae_config)
self.vocoder = ADaMoSHiFiGANV1(**vocoder_config)
if source_sample_rate is None:
self.source_sample_rate = 48000
else:
self.source_sample_rate = source_sample_rate
# self.resampler = torchaudio.transforms.Resample(source_sample_rate, 44100)
self.transform = transforms.Compose([
transforms.Normalize(0.5, 0.5),
])
self.min_mel_value = -11.0
self.max_mel_value = 3.0
self.audio_chunk_size = int(round((1024 * 512 / 44100 * 48000)))
self.mel_chunk_size = 1024
self.time_dimention_multiple = 8
self.latent_chunk_size = self.mel_chunk_size // self.time_dimention_multiple
self.scale_factor = 0.1786
self.shift_factor = -1.9091
def load_audio(self, audio_path):
audio, sr = torchaudio.load(audio_path)
return audio, sr
def forward_mel(self, audios):
mels = []
for i in range(len(audios)):
image = self.vocoder.mel_transform(audios[i])
mels.append(image)
mels = torch.stack(mels)
return mels
@torch.no_grad()
def encode(self, audios, audio_lengths=None, sr=None):
if audio_lengths is None:
audio_lengths = torch.tensor([audios.shape[2]] * audios.shape[0])
audio_lengths = audio_lengths.to(audios.device)
if sr is None:
sr = self.source_sample_rate
if sr != 44100:
audios = torchaudio.functional.resample(audios, sr, 44100)
max_audio_len = audios.shape[-1]
if max_audio_len % (8 * 512) != 0:
audios = torch.nn.functional.pad(audios, (0, 8 * 512 - max_audio_len % (8 * 512)))
mels = self.forward_mel(audios)
mels = (mels - self.min_mel_value) / (self.max_mel_value - self.min_mel_value)
mels = self.transform(mels)
latents = []
for mel in mels:
latent = self.dcae.encoder(mel.unsqueeze(0))
latents.append(latent)
latents = torch.cat(latents, dim=0)
# latent_lengths = (audio_lengths / sr * 44100 / 512 / self.time_dimention_multiple).long()
latents = (latents - self.shift_factor) * self.scale_factor
return latents
# return latents, latent_lengths
@torch.no_grad()
def decode(self, latents, audio_lengths=None, sr=None):
latents = latents / self.scale_factor + self.shift_factor
pred_wavs = []
for latent in latents:
mels = self.dcae.decoder(latent.unsqueeze(0))
mels = mels * 0.5 + 0.5
mels = mels * (self.max_mel_value - self.min_mel_value) + self.min_mel_value
wav = self.vocoder.decode(mels[0]).squeeze(1)
if sr is not None:
# resampler = torchaudio.transforms.Resample(44100, sr).to(latents.device).to(latents.dtype)
wav = torchaudio.functional.resample(wav, 44100, sr)
# wav = resampler(wav)
else:
sr = 44100
pred_wavs.append(wav)
if audio_lengths is not None:
pred_wavs = [wav[:, :length].cpu() for wav, length in zip(pred_wavs, audio_lengths)]
return torch.stack(pred_wavs)
# return sr, pred_wavs
def forward(self, audios, audio_lengths=None, sr=None):
latents, latent_lengths = self.encode(audios=audios, audio_lengths=audio_lengths, sr=sr)
sr, pred_wavs = self.decode(latents=latents, audio_lengths=audio_lengths, sr=sr)
return sr, pred_wavs, latents, latent_lengths

View File

@@ -0,0 +1,113 @@
# Original from: https://github.com/ace-step/ACE-Step/blob/main/music_dcae/music_log_mel.py
import torch
import torch.nn as nn
from torch import Tensor
import logging
try:
from torchaudio.transforms import MelScale
except:
logging.warning("torchaudio missing, ACE model will be broken")
import comfy.model_management
class LinearSpectrogram(nn.Module):
def __init__(
self,
n_fft=2048,
win_length=2048,
hop_length=512,
center=False,
mode="pow2_sqrt",
):
super().__init__()
self.n_fft = n_fft
self.win_length = win_length
self.hop_length = hop_length
self.center = center
self.mode = mode
self.register_buffer("window", torch.hann_window(win_length))
def forward(self, y: Tensor) -> Tensor:
if y.ndim == 3:
y = y.squeeze(1)
y = torch.nn.functional.pad(
y.unsqueeze(1),
(
(self.win_length - self.hop_length) // 2,
(self.win_length - self.hop_length + 1) // 2,
),
mode="reflect",
).squeeze(1)
dtype = y.dtype
spec = torch.stft(
y.float(),
self.n_fft,
hop_length=self.hop_length,
win_length=self.win_length,
window=comfy.model_management.cast_to(self.window, dtype=torch.float32, device=y.device),
center=self.center,
pad_mode="reflect",
normalized=False,
onesided=True,
return_complex=True,
)
spec = torch.view_as_real(spec)
if self.mode == "pow2_sqrt":
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
spec = spec.to(dtype)
return spec
class LogMelSpectrogram(nn.Module):
def __init__(
self,
sample_rate=44100,
n_fft=2048,
win_length=2048,
hop_length=512,
n_mels=128,
center=False,
f_min=0.0,
f_max=None,
):
super().__init__()
self.sample_rate = sample_rate
self.n_fft = n_fft
self.win_length = win_length
self.hop_length = hop_length
self.center = center
self.n_mels = n_mels
self.f_min = f_min
self.f_max = f_max or sample_rate // 2
self.spectrogram = LinearSpectrogram(n_fft, win_length, hop_length, center)
self.mel_scale = MelScale(
self.n_mels,
self.sample_rate,
self.f_min,
self.f_max,
self.n_fft // 2 + 1,
"slaney",
"slaney",
)
def compress(self, x: Tensor) -> Tensor:
return torch.log(torch.clamp(x, min=1e-5))
def decompress(self, x: Tensor) -> Tensor:
return torch.exp(x)
def forward(self, x: Tensor, return_linear: bool = False) -> Tensor:
linear = self.spectrogram(x)
x = self.mel_scale(linear)
x = self.compress(x)
# print(x.shape)
if return_linear:
return x, self.compress(linear)
return x

View File

@@ -0,0 +1,538 @@
# Original from: https://github.com/ace-step/ACE-Step/blob/main/music_dcae/music_vocoder.py
import torch
from torch import nn
from functools import partial
from math import prod
from typing import Callable, Tuple, List
import numpy as np
import torch.nn.functional as F
from torch.nn.utils.parametrize import remove_parametrizations as remove_weight_norm
from .music_log_mel import LogMelSpectrogram
import comfy.model_management
import comfy.ops
ops = comfy.ops.disable_weight_init
def drop_path(
x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True
):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
""" # noqa: E501
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (
x.ndim - 1
) # work with diff dim tensors, not just 2D ConvNets
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
if keep_prob > 0.0 and scale_by_keep:
random_tensor.div_(keep_prob)
return x * random_tensor
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" # noqa: E501
def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
self.scale_by_keep = scale_by_keep
def forward(self, x):
return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)
def extra_repr(self):
return f"drop_prob={round(self.drop_prob,3):0.3f}"
class LayerNorm(nn.Module):
r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
""" # noqa: E501
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
self.normalized_shape = (normalized_shape,)
def forward(self, x):
if self.data_format == "channels_last":
return F.layer_norm(
x, self.normalized_shape, comfy.model_management.cast_to(self.weight, dtype=x.dtype, device=x.device), comfy.model_management.cast_to(self.bias, dtype=x.dtype, device=x.device), self.eps
)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = comfy.model_management.cast_to(self.weight[:, None], dtype=x.dtype, device=x.device) * x + comfy.model_management.cast_to(self.bias[:, None], dtype=x.dtype, device=x.device)
return x
class ConvNeXtBlock(nn.Module):
r"""ConvNeXt Block. There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
We use (2) as we find it slightly faster in PyTorch
Args:
dim (int): Number of input channels.
drop_path (float): Stochastic depth rate. Default: 0.0
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.0.
kernel_size (int): Kernel size for depthwise conv. Default: 7.
dilation (int): Dilation for depthwise conv. Default: 1.
""" # noqa: E501
def __init__(
self,
dim: int,
drop_path: float = 0.0,
layer_scale_init_value: float = 1e-6,
mlp_ratio: float = 4.0,
kernel_size: int = 7,
dilation: int = 1,
):
super().__init__()
self.dwconv = ops.Conv1d(
dim,
dim,
kernel_size=kernel_size,
padding=int(dilation * (kernel_size - 1) / 2),
groups=dim,
) # depthwise conv
self.norm = LayerNorm(dim, eps=1e-6)
self.pwconv1 = ops.Linear(
dim, int(mlp_ratio * dim)
) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.pwconv2 = ops.Linear(int(mlp_ratio * dim), dim)
self.gamma = (
nn.Parameter(torch.empty((dim)), requires_grad=False)
if layer_scale_init_value > 0
else None
)
self.drop_path = DropPath(
drop_path) if drop_path > 0.0 else nn.Identity()
def forward(self, x, apply_residual: bool = True):
input = x
x = self.dwconv(x)
x = x.permute(0, 2, 1) # (N, C, L) -> (N, L, C)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x)
if self.gamma is not None:
x = comfy.model_management.cast_to(self.gamma, dtype=x.dtype, device=x.device) * x
x = x.permute(0, 2, 1) # (N, L, C) -> (N, C, L)
x = self.drop_path(x)
if apply_residual:
x = input + x
return x
class ParallelConvNeXtBlock(nn.Module):
def __init__(self, kernel_sizes: List[int], *args, **kwargs):
super().__init__()
self.blocks = nn.ModuleList(
[
ConvNeXtBlock(kernel_size=kernel_size, *args, **kwargs)
for kernel_size in kernel_sizes
]
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return torch.stack(
[block(x, apply_residual=False) for block in self.blocks] + [x],
dim=1,
).sum(dim=1)
class ConvNeXtEncoder(nn.Module):
def __init__(
self,
input_channels=3,
depths=[3, 3, 9, 3],
dims=[96, 192, 384, 768],
drop_path_rate=0.0,
layer_scale_init_value=1e-6,
kernel_sizes: Tuple[int] = (7,),
):
super().__init__()
assert len(depths) == len(dims)
self.channel_layers = nn.ModuleList()
stem = nn.Sequential(
ops.Conv1d(
input_channels,
dims[0],
kernel_size=7,
padding=3,
padding_mode="replicate",
),
LayerNorm(dims[0], eps=1e-6, data_format="channels_first"),
)
self.channel_layers.append(stem)
for i in range(len(depths) - 1):
mid_layer = nn.Sequential(
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
ops.Conv1d(dims[i], dims[i + 1], kernel_size=1),
)
self.channel_layers.append(mid_layer)
block_fn = (
partial(ConvNeXtBlock, kernel_size=kernel_sizes[0])
if len(kernel_sizes) == 1
else partial(ParallelConvNeXtBlock, kernel_sizes=kernel_sizes)
)
self.stages = nn.ModuleList()
drop_path_rates = [
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
]
cur = 0
for i in range(len(depths)):
stage = nn.Sequential(
*[
block_fn(
dim=dims[i],
drop_path=drop_path_rates[cur + j],
layer_scale_init_value=layer_scale_init_value,
)
for j in range(depths[i])
]
)
self.stages.append(stage)
cur += depths[i]
self.norm = LayerNorm(dims[-1], eps=1e-6, data_format="channels_first")
def forward(
self,
x: torch.Tensor,
) -> torch.Tensor:
for channel_layer, stage in zip(self.channel_layers, self.stages):
x = channel_layer(x)
x = stage(x)
return self.norm(x)
def get_padding(kernel_size, dilation=1):
return (kernel_size * dilation - dilation) // 2
class ResBlock1(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
super().__init__()
self.convs1 = nn.ModuleList(
[
torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]),
)
),
torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]),
)
),
torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2]),
)
),
]
)
self.convs2 = nn.ModuleList(
[
torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
)
),
]
)
def forward(self, x):
for c1, c2 in zip(self.convs1, self.convs2):
xt = F.silu(x)
xt = c1(xt)
xt = F.silu(xt)
xt = c2(xt)
x = xt + x
return x
def remove_weight_norm(self):
for conv in self.convs1:
remove_weight_norm(conv)
for conv in self.convs2:
remove_weight_norm(conv)
class HiFiGANGenerator(nn.Module):
def __init__(
self,
*,
hop_length: int = 512,
upsample_rates: Tuple[int] = (8, 8, 2, 2, 2),
upsample_kernel_sizes: Tuple[int] = (16, 16, 8, 2, 2),
resblock_kernel_sizes: Tuple[int] = (3, 7, 11),
resblock_dilation_sizes: Tuple[Tuple[int]] = (
(1, 3, 5), (1, 3, 5), (1, 3, 5)),
num_mels: int = 128,
upsample_initial_channel: int = 512,
use_template: bool = True,
pre_conv_kernel_size: int = 7,
post_conv_kernel_size: int = 7,
post_activation: Callable = partial(nn.SiLU, inplace=True),
):
super().__init__()
assert (
prod(upsample_rates) == hop_length
), f"hop_length must be {prod(upsample_rates)}"
self.conv_pre = torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d(
num_mels,
upsample_initial_channel,
pre_conv_kernel_size,
1,
padding=get_padding(pre_conv_kernel_size),
)
)
self.num_upsamples = len(upsample_rates)
self.num_kernels = len(resblock_kernel_sizes)
self.noise_convs = nn.ModuleList()
self.use_template = use_template
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
c_cur = upsample_initial_channel // (2 ** (i + 1))
self.ups.append(
torch.nn.utils.parametrizations.weight_norm(
ops.ConvTranspose1d(
upsample_initial_channel // (2**i),
upsample_initial_channel // (2 ** (i + 1)),
k,
u,
padding=(k - u) // 2,
)
)
)
if not use_template:
continue
if i + 1 < len(upsample_rates):
stride_f0 = np.prod(upsample_rates[i + 1:])
self.noise_convs.append(
ops.Conv1d(
1,
c_cur,
kernel_size=stride_f0 * 2,
stride=stride_f0,
padding=stride_f0 // 2,
)
)
else:
self.noise_convs.append(ops.Conv1d(1, c_cur, kernel_size=1))
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = upsample_initial_channel // (2 ** (i + 1))
for k, d in zip(resblock_kernel_sizes, resblock_dilation_sizes):
self.resblocks.append(ResBlock1(ch, k, d))
self.activation_post = post_activation()
self.conv_post = torch.nn.utils.parametrizations.weight_norm(
ops.Conv1d(
ch,
1,
post_conv_kernel_size,
1,
padding=get_padding(post_conv_kernel_size),
)
)
def forward(self, x, template=None):
x = self.conv_pre(x)
for i in range(self.num_upsamples):
x = F.silu(x, inplace=True)
x = self.ups[i](x)
if self.use_template:
x = x + self.noise_convs[i](template)
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
x = self.activation_post(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x
def remove_weight_norm(self):
for up in self.ups:
remove_weight_norm(up)
for block in self.resblocks:
block.remove_weight_norm()
remove_weight_norm(self.conv_pre)
remove_weight_norm(self.conv_post)
class ADaMoSHiFiGANV1(nn.Module):
def __init__(
self,
input_channels: int = 128,
depths: List[int] = [3, 3, 9, 3],
dims: List[int] = [128, 256, 384, 512],
drop_path_rate: float = 0.0,
kernel_sizes: Tuple[int] = (7,),
upsample_rates: Tuple[int] = (4, 4, 2, 2, 2, 2, 2),
upsample_kernel_sizes: Tuple[int] = (8, 8, 4, 4, 4, 4, 4),
resblock_kernel_sizes: Tuple[int] = (3, 7, 11, 13),
resblock_dilation_sizes: Tuple[Tuple[int]] = (
(1, 3, 5), (1, 3, 5), (1, 3, 5), (1, 3, 5)),
num_mels: int = 512,
upsample_initial_channel: int = 1024,
use_template: bool = False,
pre_conv_kernel_size: int = 13,
post_conv_kernel_size: int = 13,
sampling_rate: int = 44100,
n_fft: int = 2048,
win_length: int = 2048,
hop_length: int = 512,
f_min: int = 40,
f_max: int = 16000,
n_mels: int = 128,
):
super().__init__()
self.backbone = ConvNeXtEncoder(
input_channels=input_channels,
depths=depths,
dims=dims,
drop_path_rate=drop_path_rate,
kernel_sizes=kernel_sizes,
)
self.head = HiFiGANGenerator(
hop_length=hop_length,
upsample_rates=upsample_rates,
upsample_kernel_sizes=upsample_kernel_sizes,
resblock_kernel_sizes=resblock_kernel_sizes,
resblock_dilation_sizes=resblock_dilation_sizes,
num_mels=num_mels,
upsample_initial_channel=upsample_initial_channel,
use_template=use_template,
pre_conv_kernel_size=pre_conv_kernel_size,
post_conv_kernel_size=post_conv_kernel_size,
)
self.sampling_rate = sampling_rate
self.mel_transform = LogMelSpectrogram(
sample_rate=sampling_rate,
n_fft=n_fft,
win_length=win_length,
hop_length=hop_length,
f_min=f_min,
f_max=f_max,
n_mels=n_mels,
)
self.eval()
@torch.no_grad()
def decode(self, mel):
y = self.backbone(mel)
y = self.head(y)
return y
@torch.no_grad()
def encode(self, x):
return self.mel_transform(x)
def forward(self, mel):
y = self.backbone(mel)
y = self.head(y)
return y

View File

@@ -75,16 +75,10 @@ class SnakeBeta(nn.Module):
return x
def WNConv1d(*args, **kwargs):
try:
return torch.nn.utils.parametrizations.weight_norm(ops.Conv1d(*args, **kwargs))
except:
return torch.nn.utils.weight_norm(ops.Conv1d(*args, **kwargs)) #support pytorch 2.1 and older
return torch.nn.utils.parametrizations.weight_norm(ops.Conv1d(*args, **kwargs))
def WNConvTranspose1d(*args, **kwargs):
try:
return torch.nn.utils.parametrizations.weight_norm(ops.ConvTranspose1d(*args, **kwargs))
except:
return torch.nn.utils.weight_norm(ops.ConvTranspose1d(*args, **kwargs)) #support pytorch 2.1 and older
return torch.nn.utils.parametrizations.weight_norm(ops.ConvTranspose1d(*args, **kwargs))
def get_activation(activation: Literal["elu", "snake", "none"], antialias=False, channels=None) -> nn.Module:
if activation == "elu":

181
comfy/ldm/chroma/layers.py Normal file
View File

@@ -0,0 +1,181 @@
import torch
from torch import Tensor, nn
from comfy.ldm.flux.math import attention
from comfy.ldm.flux.layers import (
MLPEmbedder,
RMSNorm,
QKNorm,
SelfAttention,
ModulationOut,
)
class ChromaModulationOut(ModulationOut):
@classmethod
def from_offset(cls, tensor: torch.Tensor, offset: int = 0) -> ModulationOut:
return cls(
shift=tensor[:, offset : offset + 1, :],
scale=tensor[:, offset + 1 : offset + 2, :],
gate=tensor[:, offset + 2 : offset + 3, :],
)
class Approximator(nn.Module):
def __init__(self, in_dim: int, out_dim: int, hidden_dim: int, n_layers = 5, dtype=None, device=None, operations=None):
super().__init__()
self.in_proj = operations.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device)
self.layers = nn.ModuleList([MLPEmbedder(hidden_dim, hidden_dim, dtype=dtype, device=device, operations=operations) for x in range( n_layers)])
self.norms = nn.ModuleList([RMSNorm(hidden_dim, dtype=dtype, device=device, operations=operations) for x in range( n_layers)])
self.out_proj = operations.Linear(hidden_dim, out_dim, dtype=dtype, device=device)
@property
def device(self):
# Get the device of the module (assumes all parameters are on the same device)
return next(self.parameters()).device
def forward(self, x: Tensor) -> Tensor:
x = self.in_proj(x)
for layer, norms in zip(self.layers, self.norms):
x = x + layer(norms(x))
x = self.out_proj(x)
return x
class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.img_mlp = nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.txt_mlp = nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
self.flipped_img_txt = flipped_img_txt
def forward(self, img: Tensor, txt: Tensor, pe: Tensor, vec: Tensor, attn_mask=None):
(img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec
# prepare image for attention
img_modulated = torch.addcmul(img_mod1.shift, 1 + img_mod1.scale, self.img_norm1(img))
img_qkv = self.img_attn.qkv(img_modulated)
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = torch.addcmul(txt_mod1.shift, 1 + txt_mod1.scale, self.txt_norm1(txt))
txt_qkv = self.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
# run actual attention
attn = attention(torch.cat((txt_q, img_q), dim=2),
torch.cat((txt_k, img_k), dim=2),
torch.cat((txt_v, img_v), dim=2),
pe=pe, mask=attn_mask)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img bloks
img.addcmul_(img_mod1.gate, self.img_attn.proj(img_attn))
img.addcmul_(img_mod2.gate, self.img_mlp(torch.addcmul(img_mod2.shift, 1 + img_mod2.scale, self.img_norm2(img))))
# calculate the txt bloks
txt.addcmul_(txt_mod1.gate, self.txt_attn.proj(txt_attn))
txt.addcmul_(txt_mod2.gate, self.txt_mlp(torch.addcmul(txt_mod2.shift, 1 + txt_mod2.scale, self.txt_norm2(txt))))
if txt.dtype == torch.float16:
txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504)
return img, txt
class SingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
"""
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float = 4.0,
qk_scale: float = None,
dtype=None,
device=None,
operations=None
):
super().__init__()
self.hidden_dim = hidden_size
self.num_heads = num_heads
head_dim = hidden_size // num_heads
self.scale = qk_scale or head_dim**-0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
# qkv and mlp_in
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device)
# proj and mlp_out
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device)
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
self.hidden_size = hidden_size
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.mlp_act = nn.GELU(approximate="tanh")
def forward(self, x: Tensor, pe: Tensor, vec: Tensor, attn_mask=None) -> Tensor:
mod = vec
x_mod = torch.addcmul(mod.shift, 1 + mod.scale, self.pre_norm(x))
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k = self.norm(q, k, v)
# compute attention
attn = attention(q, k, v, pe=pe, mask=attn_mask)
# compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
x.addcmul_(mod.gate, output)
if x.dtype == torch.float16:
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
return x
class LastLayer(nn.Module):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None):
super().__init__()
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.linear = operations.Linear(hidden_size, out_channels, bias=True, dtype=dtype, device=device)
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
shift, scale = vec
shift = shift.squeeze(1)
scale = scale.squeeze(1)
x = torch.addcmul(shift[:, None, :], 1 + scale[:, None, :], self.norm_final(x))
x = self.linear(x)
return x

271
comfy/ldm/chroma/model.py Normal file
View File

@@ -0,0 +1,271 @@
#Original code can be found on: https://github.com/black-forest-labs/flux
from dataclasses import dataclass
import torch
from torch import Tensor, nn
from einops import rearrange, repeat
import comfy.ldm.common_dit
from comfy.ldm.flux.layers import (
EmbedND,
timestep_embedding,
)
from .layers import (
DoubleStreamBlock,
LastLayer,
SingleStreamBlock,
Approximator,
ChromaModulationOut,
)
@dataclass
class ChromaParams:
in_channels: int
out_channels: int
context_in_dim: int
hidden_size: int
mlp_ratio: float
num_heads: int
depth: int
depth_single_blocks: int
axes_dim: list
theta: int
patch_size: int
qkv_bias: bool
in_dim: int
out_dim: int
hidden_dim: int
n_layers: int
class Chroma(nn.Module):
"""
Transformer model for flow matching on sequences.
"""
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
super().__init__()
self.dtype = dtype
params = ChromaParams(**kwargs)
self.params = params
self.patch_size = params.patch_size
self.in_channels = params.in_channels
self.out_channels = params.out_channels
if params.hidden_size % params.num_heads != 0:
raise ValueError(
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
)
pe_dim = params.hidden_size // params.num_heads
if sum(params.axes_dim) != pe_dim:
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}")
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.in_dim = params.in_dim
self.out_dim = params.out_dim
self.hidden_dim = params.hidden_dim
self.n_layers = params.n_layers
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device)
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device)
# set as nn identity for now, will overwrite it later.
self.distilled_guidance_layer = Approximator(
in_dim=self.in_dim,
hidden_dim=self.hidden_dim,
out_dim=self.out_dim,
n_layers=self.n_layers,
dtype=dtype, device=device, operations=operations
)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
dtype=dtype, device=device, operations=operations
)
for _ in range(params.depth)
]
)
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations)
for _ in range(params.depth_single_blocks)
]
)
if final_layer:
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations)
self.skip_mmdit = []
self.skip_dit = []
self.lite = False
def get_modulations(self, tensor: torch.Tensor, block_type: str, *, idx: int = 0):
# This function slices up the modulations tensor which has the following layout:
# single : num_single_blocks * 3 elements
# double_img : num_double_blocks * 6 elements
# double_txt : num_double_blocks * 6 elements
# final : 2 elements
if block_type == "final":
return (tensor[:, -2:-1, :], tensor[:, -1:, :])
single_block_count = self.params.depth_single_blocks
double_block_count = self.params.depth
offset = 3 * idx
if block_type == "single":
return ChromaModulationOut.from_offset(tensor, offset)
# Double block modulations are 6 elements so we double 3 * idx.
offset *= 2
if block_type in {"double_img", "double_txt"}:
# Advance past the single block modulations.
offset += 3 * single_block_count
if block_type == "double_txt":
# Advance past the double block img modulations.
offset += 6 * double_block_count
return (
ChromaModulationOut.from_offset(tensor, offset),
ChromaModulationOut.from_offset(tensor, offset + 3),
)
raise ValueError("Bad block_type")
def forward_orig(
self,
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
timesteps: Tensor,
guidance: Tensor = None,
control = None,
transformer_options={},
attn_mask: Tensor = None,
) -> Tensor:
patches_replace = transformer_options.get("patches_replace", {})
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
# running on sequences img
img = self.img_in(img)
# distilled vector guidance
mod_index_length = 344
distill_timestep = timestep_embedding(timesteps.detach().clone(), 16).to(img.device, img.dtype)
# guidance = guidance *
distil_guidance = timestep_embedding(guidance.detach().clone(), 16).to(img.device, img.dtype)
# get all modulation index
modulation_index = timestep_embedding(torch.arange(mod_index_length, device=img.device), 32).to(img.device, img.dtype)
# we need to broadcast the modulation index here so each batch has all of the index
modulation_index = modulation_index.unsqueeze(0).repeat(img.shape[0], 1, 1).to(img.device, img.dtype)
# and we need to broadcast timestep and guidance along too
timestep_guidance = torch.cat([distill_timestep, distil_guidance], dim=1).unsqueeze(1).repeat(1, mod_index_length, 1).to(img.dtype).to(img.device, img.dtype)
# then and only then we could concatenate it together
input_vec = torch.cat([timestep_guidance, modulation_index], dim=-1).to(img.device, img.dtype)
mod_vectors = self.distilled_guidance_layer(input_vec)
txt = self.txt_in(txt)
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.double_blocks):
if i not in self.skip_mmdit:
double_mod = (
self.get_modulations(mod_vectors, "double_img", idx=i),
self.get_modulations(mod_vectors, "double_txt", idx=i),
)
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"], out["txt"] = block(img=args["img"],
txt=args["txt"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"))
return out
out = blocks_replace[("double_block", i)]({"img": img,
"txt": txt,
"vec": double_mod,
"pe": pe,
"attn_mask": attn_mask},
{"original_block": block_wrap})
txt = out["txt"]
img = out["img"]
else:
img, txt = block(img=img,
txt=txt,
vec=double_mod,
pe=pe,
attn_mask=attn_mask)
if control is not None: # Controlnet
control_i = control.get("input")
if i < len(control_i):
add = control_i[i]
if add is not None:
img += add
img = torch.cat((txt, img), 1)
for i, block in enumerate(self.single_blocks):
if i not in self.skip_dit:
single_mod = self.get_modulations(mod_vectors, "single", idx=i)
if ("single_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"],
vec=args["vec"],
pe=args["pe"],
attn_mask=args.get("attn_mask"))
return out
out = blocks_replace[("single_block", i)]({"img": img,
"vec": single_mod,
"pe": pe,
"attn_mask": attn_mask},
{"original_block": block_wrap})
img = out["img"]
else:
img = block(img, vec=single_mod, pe=pe, attn_mask=attn_mask)
if control is not None: # Controlnet
control_o = control.get("output")
if i < len(control_o):
add = control_o[i]
if add is not None:
img[:, txt.shape[1] :, ...] += add
img = img[:, txt.shape[1] :, ...]
final_mod = self.get_modulations(mod_vectors, "final")
img = self.final_layer(img, vec=final_mod) # (N, T, patch_size ** 2 * out_channels)
return img
def forward(self, x, timestep, context, guidance, control=None, transformer_options={}, **kwargs):
bs, c, h, w = x.shape
patch_size = 2
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
h_len = ((h + (patch_size // 2)) // patch_size)
w_len = ((w + (patch_size // 2)) // patch_size)
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None))
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h,:w]

View File

@@ -1,5 +1,6 @@
import torch
import comfy.ops
import comfy.rmsnorm
def pad_to_patch_size(img, patch_size=(2, 2), padding_mode="circular"):
if padding_mode == "circular" and (torch.jit.is_tracing() or torch.jit.is_scripting()):
@@ -11,20 +12,5 @@ def pad_to_patch_size(img, patch_size=(2, 2), padding_mode="circular"):
return torch.nn.functional.pad(img, pad, mode=padding_mode)
try:
rms_norm_torch = torch.nn.functional.rms_norm
except:
rms_norm_torch = None
def rms_norm(x, weight=None, eps=1e-6):
if rms_norm_torch is not None and not (torch.jit.is_tracing() or torch.jit.is_scripting()):
if weight is None:
return rms_norm_torch(x, (x.shape[-1],), eps=eps)
else:
return rms_norm_torch(x, weight.shape, weight=comfy.ops.cast_to(weight, dtype=x.dtype, device=x.device), eps=eps)
else:
r = x * torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + eps)
if weight is None:
return r
else:
return r * comfy.ops.cast_to(weight, dtype=x.dtype, device=x.device)
rms_norm = comfy.rmsnorm.rms_norm

View File

@@ -23,25 +23,14 @@ from einops import rearrange, repeat
from einops.layers.torch import Rearrange
from torch import nn
from comfy.ldm.modules.diffusionmodules.mmdit import RMSNorm
from comfy.ldm.modules.attention import optimized_attention
def apply_rotary_pos_emb(
t: torch.Tensor,
freqs: torch.Tensor,
) -> torch.Tensor:
t_ = t.reshape(*t.shape[:-1], 2, -1).movedim(-2, -1).unsqueeze(-2).float()
t_out = freqs[..., 0] * t_[..., 0] + freqs[..., 1] * t_[..., 1]
t_out = t_out.movedim(-1, -2).reshape(*t.shape).type_as(t)
return t_out
def get_normalization(name: str, channels: int, weight_args={}):
def get_normalization(name: str, channels: int, weight_args={}, operations=None):
if name == "I":
return nn.Identity()
elif name == "R":
return RMSNorm(channels, elementwise_affine=True, eps=1e-6, **weight_args)
return operations.RMSNorm(channels, elementwise_affine=True, eps=1e-6, **weight_args)
else:
raise ValueError(f"Normalization {name} not found")
@@ -120,15 +109,15 @@ class Attention(nn.Module):
self.to_q = nn.Sequential(
operations.Linear(query_dim, inner_dim, bias=qkv_bias, **weight_args),
get_normalization(qkv_norm[0], norm_dim),
get_normalization(qkv_norm[0], norm_dim, weight_args=weight_args, operations=operations),
)
self.to_k = nn.Sequential(
operations.Linear(context_dim, inner_dim, bias=qkv_bias, **weight_args),
get_normalization(qkv_norm[1], norm_dim),
get_normalization(qkv_norm[1], norm_dim, weight_args=weight_args, operations=operations),
)
self.to_v = nn.Sequential(
operations.Linear(context_dim, inner_dim, bias=qkv_bias, **weight_args),
get_normalization(qkv_norm[2], norm_dim),
get_normalization(qkv_norm[2], norm_dim, weight_args=weight_args, operations=operations),
)
self.to_out = nn.Sequential(

View File

@@ -27,8 +27,6 @@ from torchvision import transforms
from enum import Enum
import logging
from comfy.ldm.modules.diffusionmodules.mmdit import RMSNorm
from .blocks import (
FinalLayer,
GeneralDITTransformerBlock,
@@ -195,7 +193,7 @@ class GeneralDIT(nn.Module):
if self.affline_emb_norm:
logging.debug("Building affine embedding normalization layer")
self.affline_norm = RMSNorm(model_channels, elementwise_affine=True, eps=1e-6)
self.affline_norm = operations.RMSNorm(model_channels, elementwise_affine=True, eps=1e-6, device=device, dtype=dtype)
else:
self.affline_norm = nn.Identity()

View File

@@ -66,15 +66,16 @@ class VideoRopePosition3DEmb(VideoPositionEmb):
h_extrapolation_ratio: float = 1.0,
w_extrapolation_ratio: float = 1.0,
t_extrapolation_ratio: float = 1.0,
enable_fps_modulation: bool = True,
device=None,
**kwargs, # used for compatibility with other positional embeddings; unused in this class
):
del kwargs
super().__init__()
self.register_buffer("seq", torch.arange(max(len_h, len_w, len_t), dtype=torch.float, device=device))
self.base_fps = base_fps
self.max_h = len_h
self.max_w = len_w
self.enable_fps_modulation = enable_fps_modulation
dim = head_dim
dim_h = dim // 6 * 2
@@ -132,21 +133,19 @@ class VideoRopePosition3DEmb(VideoPositionEmb):
temporal_freqs = 1.0 / (t_theta**self.dim_temporal_range.to(device=device))
B, T, H, W, _ = B_T_H_W_C
seq = torch.arange(max(H, W, T), dtype=torch.float, device=device)
uniform_fps = (fps is None) or isinstance(fps, (int, float)) or (fps.min() == fps.max())
assert (
uniform_fps or B == 1 or T == 1
), "For video batch, batch size should be 1 for non-uniform fps. For image batch, T should be 1"
assert (
H <= self.max_h and W <= self.max_w
), f"Input dimensions (H={H}, W={W}) exceed the maximum dimensions (max_h={self.max_h}, max_w={self.max_w})"
half_emb_h = torch.outer(self.seq[:H].to(device=device), h_spatial_freqs)
half_emb_w = torch.outer(self.seq[:W].to(device=device), w_spatial_freqs)
half_emb_h = torch.outer(seq[:H].to(device=device), h_spatial_freqs)
half_emb_w = torch.outer(seq[:W].to(device=device), w_spatial_freqs)
# apply sequence scaling in temporal dimension
if fps is None: # image case
half_emb_t = torch.outer(self.seq[:T].to(device=device), temporal_freqs)
if fps is None or self.enable_fps_modulation is False: # image case
half_emb_t = torch.outer(seq[:T].to(device=device), temporal_freqs)
else:
half_emb_t = torch.outer(self.seq[:T].to(device=device) / fps * self.base_fps, temporal_freqs)
half_emb_t = torch.outer(seq[:T].to(device=device) / fps * self.base_fps, temporal_freqs)
half_emb_h = torch.stack([torch.cos(half_emb_h), -torch.sin(half_emb_h), torch.sin(half_emb_h), torch.cos(half_emb_h)], dim=-1)
half_emb_w = torch.stack([torch.cos(half_emb_w), -torch.sin(half_emb_w), torch.sin(half_emb_w), torch.cos(half_emb_w)], dim=-1)

View File

@@ -0,0 +1,864 @@
# original code from: https://github.com/nvidia-cosmos/cosmos-predict2
import torch
from torch import nn
from einops import rearrange
from einops.layers.torch import Rearrange
import logging
from typing import Callable, Optional, Tuple
import math
from .position_embedding import VideoRopePosition3DEmb, LearnablePosEmbAxis
from torchvision import transforms
from comfy.ldm.modules.attention import optimized_attention
def apply_rotary_pos_emb(
t: torch.Tensor,
freqs: torch.Tensor,
) -> torch.Tensor:
t_ = t.reshape(*t.shape[:-1], 2, -1).movedim(-2, -1).unsqueeze(-2).float()
t_out = freqs[..., 0] * t_[..., 0] + freqs[..., 1] * t_[..., 1]
t_out = t_out.movedim(-1, -2).reshape(*t.shape).type_as(t)
return t_out
# ---------------------- Feed Forward Network -----------------------
class GPT2FeedForward(nn.Module):
def __init__(self, d_model: int, d_ff: int, device=None, dtype=None, operations=None) -> None:
super().__init__()
self.activation = nn.GELU()
self.layer1 = operations.Linear(d_model, d_ff, bias=False, device=device, dtype=dtype)
self.layer2 = operations.Linear(d_ff, d_model, bias=False, device=device, dtype=dtype)
self._layer_id = None
self._dim = d_model
self._hidden_dim = d_ff
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.layer1(x)
x = self.activation(x)
x = self.layer2(x)
return x
def torch_attention_op(q_B_S_H_D: torch.Tensor, k_B_S_H_D: torch.Tensor, v_B_S_H_D: torch.Tensor) -> torch.Tensor:
"""Computes multi-head attention using PyTorch's native implementation.
This function provides a PyTorch backend alternative to Transformer Engine's attention operation.
It rearranges the input tensors to match PyTorch's expected format, computes scaled dot-product
attention, and rearranges the output back to the original format.
The input tensor names use the following dimension conventions:
- B: batch size
- S: sequence length
- H: number of attention heads
- D: head dimension
Args:
q_B_S_H_D: Query tensor with shape (batch, seq_len, n_heads, head_dim)
k_B_S_H_D: Key tensor with shape (batch, seq_len, n_heads, head_dim)
v_B_S_H_D: Value tensor with shape (batch, seq_len, n_heads, head_dim)
Returns:
Attention output tensor with shape (batch, seq_len, n_heads * head_dim)
"""
in_q_shape = q_B_S_H_D.shape
in_k_shape = k_B_S_H_D.shape
q_B_H_S_D = rearrange(q_B_S_H_D, "b ... h k -> b h ... k").view(in_q_shape[0], in_q_shape[-2], -1, in_q_shape[-1])
k_B_H_S_D = rearrange(k_B_S_H_D, "b ... h v -> b h ... v").view(in_k_shape[0], in_k_shape[-2], -1, in_k_shape[-1])
v_B_H_S_D = rearrange(v_B_S_H_D, "b ... h v -> b h ... v").view(in_k_shape[0], in_k_shape[-2], -1, in_k_shape[-1])
return optimized_attention(q_B_H_S_D, k_B_H_S_D, v_B_H_S_D, in_q_shape[-2], skip_reshape=True)
class Attention(nn.Module):
"""
A flexible attention module supporting both self-attention and cross-attention mechanisms.
This module implements a multi-head attention layer that can operate in either self-attention
or cross-attention mode. The mode is determined by whether a context dimension is provided.
The implementation uses scaled dot-product attention and supports optional bias terms and
dropout regularization.
Args:
query_dim (int): The dimensionality of the query vectors.
context_dim (int, optional): The dimensionality of the context (key/value) vectors.
If None, the module operates in self-attention mode using query_dim. Default: None
n_heads (int, optional): Number of attention heads for multi-head attention. Default: 8
head_dim (int, optional): The dimension of each attention head. Default: 64
dropout (float, optional): Dropout probability applied to the output. Default: 0.0
qkv_format (str, optional): Format specification for QKV tensors. Default: "bshd"
backend (str, optional): Backend to use for the attention operation. Default: "transformer_engine"
Examples:
>>> # Self-attention with 512 dimensions and 8 heads
>>> self_attn = Attention(query_dim=512)
>>> x = torch.randn(32, 16, 512) # (batch_size, seq_len, dim)
>>> out = self_attn(x) # (32, 16, 512)
>>> # Cross-attention
>>> cross_attn = Attention(query_dim=512, context_dim=256)
>>> query = torch.randn(32, 16, 512)
>>> context = torch.randn(32, 8, 256)
>>> out = cross_attn(query, context) # (32, 16, 512)
"""
def __init__(
self,
query_dim: int,
context_dim: Optional[int] = None,
n_heads: int = 8,
head_dim: int = 64,
dropout: float = 0.0,
device=None,
dtype=None,
operations=None,
) -> None:
super().__init__()
logging.debug(
f"Setting up {self.__class__.__name__}. Query dim is {query_dim}, context_dim is {context_dim} and using "
f"{n_heads} heads with a dimension of {head_dim}."
)
self.is_selfattn = context_dim is None # self attention
context_dim = query_dim if context_dim is None else context_dim
inner_dim = head_dim * n_heads
self.n_heads = n_heads
self.head_dim = head_dim
self.query_dim = query_dim
self.context_dim = context_dim
self.q_proj = operations.Linear(query_dim, inner_dim, bias=False, device=device, dtype=dtype)
self.q_norm = operations.RMSNorm(self.head_dim, eps=1e-6, device=device, dtype=dtype)
self.k_proj = operations.Linear(context_dim, inner_dim, bias=False, device=device, dtype=dtype)
self.k_norm = operations.RMSNorm(self.head_dim, eps=1e-6, device=device, dtype=dtype)
self.v_proj = operations.Linear(context_dim, inner_dim, bias=False, device=device, dtype=dtype)
self.v_norm = nn.Identity()
self.output_proj = operations.Linear(inner_dim, query_dim, bias=False, device=device, dtype=dtype)
self.output_dropout = nn.Dropout(dropout) if dropout > 1e-4 else nn.Identity()
self.attn_op = torch_attention_op
self._query_dim = query_dim
self._context_dim = context_dim
self._inner_dim = inner_dim
def compute_qkv(
self,
x: torch.Tensor,
context: Optional[torch.Tensor] = None,
rope_emb: Optional[torch.Tensor] = None,
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
q = self.q_proj(x)
context = x if context is None else context
k = self.k_proj(context)
v = self.v_proj(context)
q, k, v = map(
lambda t: rearrange(t, "b ... (h d) -> b ... h d", h=self.n_heads, d=self.head_dim),
(q, k, v),
)
def apply_norm_and_rotary_pos_emb(
q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, rope_emb: Optional[torch.Tensor]
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
q = self.q_norm(q)
k = self.k_norm(k)
v = self.v_norm(v)
if self.is_selfattn and rope_emb is not None: # only apply to self-attention!
q = apply_rotary_pos_emb(q, rope_emb)
k = apply_rotary_pos_emb(k, rope_emb)
return q, k, v
q, k, v = apply_norm_and_rotary_pos_emb(q, k, v, rope_emb)
return q, k, v
def compute_attention(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> torch.Tensor:
result = self.attn_op(q, k, v) # [B, S, H, D]
return self.output_dropout(self.output_proj(result))
def forward(
self,
x: torch.Tensor,
context: Optional[torch.Tensor] = None,
rope_emb: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Args:
x (Tensor): The query tensor of shape [B, Mq, K]
context (Optional[Tensor]): The key tensor of shape [B, Mk, K] or use x as context [self attention] if None
"""
q, k, v = self.compute_qkv(x, context, rope_emb=rope_emb)
return self.compute_attention(q, k, v)
class Timesteps(nn.Module):
def __init__(self, num_channels: int):
super().__init__()
self.num_channels = num_channels
def forward(self, timesteps_B_T: torch.Tensor) -> torch.Tensor:
assert timesteps_B_T.ndim == 2, f"Expected 2D input, got {timesteps_B_T.ndim}"
timesteps = timesteps_B_T.flatten().float()
half_dim = self.num_channels // 2
exponent = -math.log(10000) * torch.arange(half_dim, dtype=torch.float32, device=timesteps.device)
exponent = exponent / (half_dim - 0.0)
emb = torch.exp(exponent)
emb = timesteps[:, None].float() * emb[None, :]
sin_emb = torch.sin(emb)
cos_emb = torch.cos(emb)
emb = torch.cat([cos_emb, sin_emb], dim=-1)
return rearrange(emb, "(b t) d -> b t d", b=timesteps_B_T.shape[0], t=timesteps_B_T.shape[1])
class TimestepEmbedding(nn.Module):
def __init__(self, in_features: int, out_features: int, use_adaln_lora: bool = False, device=None, dtype=None, operations=None):
super().__init__()
logging.debug(
f"Using AdaLN LoRA Flag: {use_adaln_lora}. We enable bias if no AdaLN LoRA for backward compatibility."
)
self.in_dim = in_features
self.out_dim = out_features
self.linear_1 = operations.Linear(in_features, out_features, bias=not use_adaln_lora, device=device, dtype=dtype)
self.activation = nn.SiLU()
self.use_adaln_lora = use_adaln_lora
if use_adaln_lora:
self.linear_2 = operations.Linear(out_features, 3 * out_features, bias=False, device=device, dtype=dtype)
else:
self.linear_2 = operations.Linear(out_features, out_features, bias=False, device=device, dtype=dtype)
def forward(self, sample: torch.Tensor) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
emb = self.linear_1(sample)
emb = self.activation(emb)
emb = self.linear_2(emb)
if self.use_adaln_lora:
adaln_lora_B_T_3D = emb
emb_B_T_D = sample
else:
adaln_lora_B_T_3D = None
emb_B_T_D = emb
return emb_B_T_D, adaln_lora_B_T_3D
class PatchEmbed(nn.Module):
"""
PatchEmbed is a module for embedding patches from an input tensor by applying either 3D or 2D convolutional layers,
depending on the . This module can process inputs with temporal (video) and spatial (image) dimensions,
making it suitable for video and image processing tasks. It supports dividing the input into patches
and embedding each patch into a vector of size `out_channels`.
Parameters:
- spatial_patch_size (int): The size of each spatial patch.
- temporal_patch_size (int): The size of each temporal patch.
- in_channels (int): Number of input channels. Default: 3.
- out_channels (int): The dimension of the embedding vector for each patch. Default: 768.
- bias (bool): If True, adds a learnable bias to the output of the convolutional layers. Default: True.
"""
def __init__(
self,
spatial_patch_size: int,
temporal_patch_size: int,
in_channels: int = 3,
out_channels: int = 768,
device=None, dtype=None, operations=None
):
super().__init__()
self.spatial_patch_size = spatial_patch_size
self.temporal_patch_size = temporal_patch_size
self.proj = nn.Sequential(
Rearrange(
"b c (t r) (h m) (w n) -> b t h w (c r m n)",
r=temporal_patch_size,
m=spatial_patch_size,
n=spatial_patch_size,
),
operations.Linear(
in_channels * spatial_patch_size * spatial_patch_size * temporal_patch_size, out_channels, bias=False, device=device, dtype=dtype
),
)
self.dim = in_channels * spatial_patch_size * spatial_patch_size * temporal_patch_size
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Forward pass of the PatchEmbed module.
Parameters:
- x (torch.Tensor): The input tensor of shape (B, C, T, H, W) where
B is the batch size,
C is the number of channels,
T is the temporal dimension,
H is the height, and
W is the width of the input.
Returns:
- torch.Tensor: The embedded patches as a tensor, with shape b t h w c.
"""
assert x.dim() == 5
_, _, T, H, W = x.shape
assert (
H % self.spatial_patch_size == 0 and W % self.spatial_patch_size == 0
), f"H,W {(H, W)} should be divisible by spatial_patch_size {self.spatial_patch_size}"
assert T % self.temporal_patch_size == 0
x = self.proj(x)
return x
class FinalLayer(nn.Module):
"""
The final layer of video DiT.
"""
def __init__(
self,
hidden_size: int,
spatial_patch_size: int,
temporal_patch_size: int,
out_channels: int,
use_adaln_lora: bool = False,
adaln_lora_dim: int = 256,
device=None, dtype=None, operations=None
):
super().__init__()
self.layer_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = operations.Linear(
hidden_size, spatial_patch_size * spatial_patch_size * temporal_patch_size * out_channels, bias=False, device=device, dtype=dtype
)
self.hidden_size = hidden_size
self.n_adaln_chunks = 2
self.use_adaln_lora = use_adaln_lora
self.adaln_lora_dim = adaln_lora_dim
if use_adaln_lora:
self.adaln_modulation = nn.Sequential(
nn.SiLU(),
operations.Linear(hidden_size, adaln_lora_dim, bias=False, device=device, dtype=dtype),
operations.Linear(adaln_lora_dim, self.n_adaln_chunks * hidden_size, bias=False, device=device, dtype=dtype),
)
else:
self.adaln_modulation = nn.Sequential(
nn.SiLU(), operations.Linear(hidden_size, self.n_adaln_chunks * hidden_size, bias=False, device=device, dtype=dtype)
)
def forward(
self,
x_B_T_H_W_D: torch.Tensor,
emb_B_T_D: torch.Tensor,
adaln_lora_B_T_3D: Optional[torch.Tensor] = None,
):
if self.use_adaln_lora:
assert adaln_lora_B_T_3D is not None
shift_B_T_D, scale_B_T_D = (
self.adaln_modulation(emb_B_T_D) + adaln_lora_B_T_3D[:, :, : 2 * self.hidden_size]
).chunk(2, dim=-1)
else:
shift_B_T_D, scale_B_T_D = self.adaln_modulation(emb_B_T_D).chunk(2, dim=-1)
shift_B_T_1_1_D, scale_B_T_1_1_D = rearrange(shift_B_T_D, "b t d -> b t 1 1 d"), rearrange(
scale_B_T_D, "b t d -> b t 1 1 d"
)
def _fn(
_x_B_T_H_W_D: torch.Tensor,
_norm_layer: nn.Module,
_scale_B_T_1_1_D: torch.Tensor,
_shift_B_T_1_1_D: torch.Tensor,
) -> torch.Tensor:
return _norm_layer(_x_B_T_H_W_D) * (1 + _scale_B_T_1_1_D) + _shift_B_T_1_1_D
x_B_T_H_W_D = _fn(x_B_T_H_W_D, self.layer_norm, scale_B_T_1_1_D, shift_B_T_1_1_D)
x_B_T_H_W_O = self.linear(x_B_T_H_W_D)
return x_B_T_H_W_O
class Block(nn.Module):
"""
A transformer block that combines self-attention, cross-attention and MLP layers with AdaLN modulation.
Each component (self-attention, cross-attention, MLP) has its own layer normalization and AdaLN modulation.
Parameters:
x_dim (int): Dimension of input features
context_dim (int): Dimension of context features for cross-attention
num_heads (int): Number of attention heads
mlp_ratio (float): Multiplier for MLP hidden dimension. Default: 4.0
use_adaln_lora (bool): Whether to use AdaLN-LoRA modulation. Default: False
adaln_lora_dim (int): Hidden dimension for AdaLN-LoRA layers. Default: 256
The block applies the following sequence:
1. Self-attention with AdaLN modulation
2. Cross-attention with AdaLN modulation
3. MLP with AdaLN modulation
Each component uses skip connections and layer normalization.
"""
def __init__(
self,
x_dim: int,
context_dim: int,
num_heads: int,
mlp_ratio: float = 4.0,
use_adaln_lora: bool = False,
adaln_lora_dim: int = 256,
device=None,
dtype=None,
operations=None,
):
super().__init__()
self.x_dim = x_dim
self.layer_norm_self_attn = operations.LayerNorm(x_dim, elementwise_affine=False, eps=1e-6, device=device, dtype=dtype)
self.self_attn = Attention(x_dim, None, num_heads, x_dim // num_heads, device=device, dtype=dtype, operations=operations)
self.layer_norm_cross_attn = operations.LayerNorm(x_dim, elementwise_affine=False, eps=1e-6, device=device, dtype=dtype)
self.cross_attn = Attention(
x_dim, context_dim, num_heads, x_dim // num_heads, device=device, dtype=dtype, operations=operations
)
self.layer_norm_mlp = operations.LayerNorm(x_dim, elementwise_affine=False, eps=1e-6, device=device, dtype=dtype)
self.mlp = GPT2FeedForward(x_dim, int(x_dim * mlp_ratio), device=device, dtype=dtype, operations=operations)
self.use_adaln_lora = use_adaln_lora
if self.use_adaln_lora:
self.adaln_modulation_self_attn = nn.Sequential(
nn.SiLU(),
operations.Linear(x_dim, adaln_lora_dim, bias=False, device=device, dtype=dtype),
operations.Linear(adaln_lora_dim, 3 * x_dim, bias=False, device=device, dtype=dtype),
)
self.adaln_modulation_cross_attn = nn.Sequential(
nn.SiLU(),
operations.Linear(x_dim, adaln_lora_dim, bias=False, device=device, dtype=dtype),
operations.Linear(adaln_lora_dim, 3 * x_dim, bias=False, device=device, dtype=dtype),
)
self.adaln_modulation_mlp = nn.Sequential(
nn.SiLU(),
operations.Linear(x_dim, adaln_lora_dim, bias=False, device=device, dtype=dtype),
operations.Linear(adaln_lora_dim, 3 * x_dim, bias=False, device=device, dtype=dtype),
)
else:
self.adaln_modulation_self_attn = nn.Sequential(nn.SiLU(), operations.Linear(x_dim, 3 * x_dim, bias=False, device=device, dtype=dtype))
self.adaln_modulation_cross_attn = nn.Sequential(nn.SiLU(), operations.Linear(x_dim, 3 * x_dim, bias=False, device=device, dtype=dtype))
self.adaln_modulation_mlp = nn.Sequential(nn.SiLU(), operations.Linear(x_dim, 3 * x_dim, bias=False, device=device, dtype=dtype))
def forward(
self,
x_B_T_H_W_D: torch.Tensor,
emb_B_T_D: torch.Tensor,
crossattn_emb: torch.Tensor,
rope_emb_L_1_1_D: Optional[torch.Tensor] = None,
adaln_lora_B_T_3D: Optional[torch.Tensor] = None,
extra_per_block_pos_emb: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if extra_per_block_pos_emb is not None:
x_B_T_H_W_D = x_B_T_H_W_D + extra_per_block_pos_emb
if self.use_adaln_lora:
shift_self_attn_B_T_D, scale_self_attn_B_T_D, gate_self_attn_B_T_D = (
self.adaln_modulation_self_attn(emb_B_T_D) + adaln_lora_B_T_3D
).chunk(3, dim=-1)
shift_cross_attn_B_T_D, scale_cross_attn_B_T_D, gate_cross_attn_B_T_D = (
self.adaln_modulation_cross_attn(emb_B_T_D) + adaln_lora_B_T_3D
).chunk(3, dim=-1)
shift_mlp_B_T_D, scale_mlp_B_T_D, gate_mlp_B_T_D = (
self.adaln_modulation_mlp(emb_B_T_D) + adaln_lora_B_T_3D
).chunk(3, dim=-1)
else:
shift_self_attn_B_T_D, scale_self_attn_B_T_D, gate_self_attn_B_T_D = self.adaln_modulation_self_attn(
emb_B_T_D
).chunk(3, dim=-1)
shift_cross_attn_B_T_D, scale_cross_attn_B_T_D, gate_cross_attn_B_T_D = self.adaln_modulation_cross_attn(
emb_B_T_D
).chunk(3, dim=-1)
shift_mlp_B_T_D, scale_mlp_B_T_D, gate_mlp_B_T_D = self.adaln_modulation_mlp(emb_B_T_D).chunk(3, dim=-1)
# Reshape tensors from (B, T, D) to (B, T, 1, 1, D) for broadcasting
shift_self_attn_B_T_1_1_D = rearrange(shift_self_attn_B_T_D, "b t d -> b t 1 1 d")
scale_self_attn_B_T_1_1_D = rearrange(scale_self_attn_B_T_D, "b t d -> b t 1 1 d")
gate_self_attn_B_T_1_1_D = rearrange(gate_self_attn_B_T_D, "b t d -> b t 1 1 d")
shift_cross_attn_B_T_1_1_D = rearrange(shift_cross_attn_B_T_D, "b t d -> b t 1 1 d")
scale_cross_attn_B_T_1_1_D = rearrange(scale_cross_attn_B_T_D, "b t d -> b t 1 1 d")
gate_cross_attn_B_T_1_1_D = rearrange(gate_cross_attn_B_T_D, "b t d -> b t 1 1 d")
shift_mlp_B_T_1_1_D = rearrange(shift_mlp_B_T_D, "b t d -> b t 1 1 d")
scale_mlp_B_T_1_1_D = rearrange(scale_mlp_B_T_D, "b t d -> b t 1 1 d")
gate_mlp_B_T_1_1_D = rearrange(gate_mlp_B_T_D, "b t d -> b t 1 1 d")
B, T, H, W, D = x_B_T_H_W_D.shape
def _fn(_x_B_T_H_W_D, _norm_layer, _scale_B_T_1_1_D, _shift_B_T_1_1_D):
return _norm_layer(_x_B_T_H_W_D) * (1 + _scale_B_T_1_1_D) + _shift_B_T_1_1_D
normalized_x_B_T_H_W_D = _fn(
x_B_T_H_W_D,
self.layer_norm_self_attn,
scale_self_attn_B_T_1_1_D,
shift_self_attn_B_T_1_1_D,
)
result_B_T_H_W_D = rearrange(
self.self_attn(
# normalized_x_B_T_HW_D,
rearrange(normalized_x_B_T_H_W_D, "b t h w d -> b (t h w) d"),
None,
rope_emb=rope_emb_L_1_1_D,
),
"b (t h w) d -> b t h w d",
t=T,
h=H,
w=W,
)
x_B_T_H_W_D = x_B_T_H_W_D + gate_self_attn_B_T_1_1_D * result_B_T_H_W_D
def _x_fn(
_x_B_T_H_W_D: torch.Tensor,
layer_norm_cross_attn: Callable,
_scale_cross_attn_B_T_1_1_D: torch.Tensor,
_shift_cross_attn_B_T_1_1_D: torch.Tensor,
) -> torch.Tensor:
_normalized_x_B_T_H_W_D = _fn(
_x_B_T_H_W_D, layer_norm_cross_attn, _scale_cross_attn_B_T_1_1_D, _shift_cross_attn_B_T_1_1_D
)
_result_B_T_H_W_D = rearrange(
self.cross_attn(
rearrange(_normalized_x_B_T_H_W_D, "b t h w d -> b (t h w) d"),
crossattn_emb,
rope_emb=rope_emb_L_1_1_D,
),
"b (t h w) d -> b t h w d",
t=T,
h=H,
w=W,
)
return _result_B_T_H_W_D
result_B_T_H_W_D = _x_fn(
x_B_T_H_W_D,
self.layer_norm_cross_attn,
scale_cross_attn_B_T_1_1_D,
shift_cross_attn_B_T_1_1_D,
)
x_B_T_H_W_D = result_B_T_H_W_D * gate_cross_attn_B_T_1_1_D + x_B_T_H_W_D
normalized_x_B_T_H_W_D = _fn(
x_B_T_H_W_D,
self.layer_norm_mlp,
scale_mlp_B_T_1_1_D,
shift_mlp_B_T_1_1_D,
)
result_B_T_H_W_D = self.mlp(normalized_x_B_T_H_W_D)
x_B_T_H_W_D = x_B_T_H_W_D + gate_mlp_B_T_1_1_D * result_B_T_H_W_D
return x_B_T_H_W_D
class MiniTrainDIT(nn.Module):
"""
A clean impl of DIT that can load and reproduce the training results of the original DIT model in~(cosmos 1)
A general implementation of adaln-modulated VIT-like~(DiT) transformer for video processing.
Args:
max_img_h (int): Maximum height of the input images.
max_img_w (int): Maximum width of the input images.
max_frames (int): Maximum number of frames in the video sequence.
in_channels (int): Number of input channels (e.g., RGB channels for color images).
out_channels (int): Number of output channels.
patch_spatial (tuple): Spatial resolution of patches for input processing.
patch_temporal (int): Temporal resolution of patches for input processing.
concat_padding_mask (bool): If True, includes a mask channel in the input to handle padding.
model_channels (int): Base number of channels used throughout the model.
num_blocks (int): Number of transformer blocks.
num_heads (int): Number of heads in the multi-head attention layers.
mlp_ratio (float): Expansion ratio for MLP blocks.
crossattn_emb_channels (int): Number of embedding channels for cross-attention.
pos_emb_cls (str): Type of positional embeddings.
pos_emb_learnable (bool): Whether positional embeddings are learnable.
pos_emb_interpolation (str): Method for interpolating positional embeddings.
min_fps (int): Minimum frames per second.
max_fps (int): Maximum frames per second.
use_adaln_lora (bool): Whether to use AdaLN-LoRA.
adaln_lora_dim (int): Dimension for AdaLN-LoRA.
rope_h_extrapolation_ratio (float): Height extrapolation ratio for RoPE.
rope_w_extrapolation_ratio (float): Width extrapolation ratio for RoPE.
rope_t_extrapolation_ratio (float): Temporal extrapolation ratio for RoPE.
extra_per_block_abs_pos_emb (bool): Whether to use extra per-block absolute positional embeddings.
extra_h_extrapolation_ratio (float): Height extrapolation ratio for extra embeddings.
extra_w_extrapolation_ratio (float): Width extrapolation ratio for extra embeddings.
extra_t_extrapolation_ratio (float): Temporal extrapolation ratio for extra embeddings.
"""
def __init__(
self,
max_img_h: int,
max_img_w: int,
max_frames: int,
in_channels: int,
out_channels: int,
patch_spatial: int, # tuple,
patch_temporal: int,
concat_padding_mask: bool = True,
# attention settings
model_channels: int = 768,
num_blocks: int = 10,
num_heads: int = 16,
mlp_ratio: float = 4.0,
# cross attention settings
crossattn_emb_channels: int = 1024,
# positional embedding settings
pos_emb_cls: str = "sincos",
pos_emb_learnable: bool = False,
pos_emb_interpolation: str = "crop",
min_fps: int = 1,
max_fps: int = 30,
use_adaln_lora: bool = False,
adaln_lora_dim: int = 256,
rope_h_extrapolation_ratio: float = 1.0,
rope_w_extrapolation_ratio: float = 1.0,
rope_t_extrapolation_ratio: float = 1.0,
extra_per_block_abs_pos_emb: bool = False,
extra_h_extrapolation_ratio: float = 1.0,
extra_w_extrapolation_ratio: float = 1.0,
extra_t_extrapolation_ratio: float = 1.0,
rope_enable_fps_modulation: bool = True,
image_model=None,
device=None,
dtype=None,
operations=None,
) -> None:
super().__init__()
self.dtype = dtype
self.max_img_h = max_img_h
self.max_img_w = max_img_w
self.max_frames = max_frames
self.in_channels = in_channels
self.out_channels = out_channels
self.patch_spatial = patch_spatial
self.patch_temporal = patch_temporal
self.num_heads = num_heads
self.num_blocks = num_blocks
self.model_channels = model_channels
self.concat_padding_mask = concat_padding_mask
# positional embedding settings
self.pos_emb_cls = pos_emb_cls
self.pos_emb_learnable = pos_emb_learnable
self.pos_emb_interpolation = pos_emb_interpolation
self.min_fps = min_fps
self.max_fps = max_fps
self.rope_h_extrapolation_ratio = rope_h_extrapolation_ratio
self.rope_w_extrapolation_ratio = rope_w_extrapolation_ratio
self.rope_t_extrapolation_ratio = rope_t_extrapolation_ratio
self.extra_per_block_abs_pos_emb = extra_per_block_abs_pos_emb
self.extra_h_extrapolation_ratio = extra_h_extrapolation_ratio
self.extra_w_extrapolation_ratio = extra_w_extrapolation_ratio
self.extra_t_extrapolation_ratio = extra_t_extrapolation_ratio
self.rope_enable_fps_modulation = rope_enable_fps_modulation
self.build_pos_embed(device=device, dtype=dtype)
self.use_adaln_lora = use_adaln_lora
self.adaln_lora_dim = adaln_lora_dim
self.t_embedder = nn.Sequential(
Timesteps(model_channels),
TimestepEmbedding(model_channels, model_channels, use_adaln_lora=use_adaln_lora, device=device, dtype=dtype, operations=operations,),
)
in_channels = in_channels + 1 if concat_padding_mask else in_channels
self.x_embedder = PatchEmbed(
spatial_patch_size=patch_spatial,
temporal_patch_size=patch_temporal,
in_channels=in_channels,
out_channels=model_channels,
device=device, dtype=dtype, operations=operations,
)
self.blocks = nn.ModuleList(
[
Block(
x_dim=model_channels,
context_dim=crossattn_emb_channels,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
use_adaln_lora=use_adaln_lora,
adaln_lora_dim=adaln_lora_dim,
device=device, dtype=dtype, operations=operations,
)
for _ in range(num_blocks)
]
)
self.final_layer = FinalLayer(
hidden_size=self.model_channels,
spatial_patch_size=self.patch_spatial,
temporal_patch_size=self.patch_temporal,
out_channels=self.out_channels,
use_adaln_lora=self.use_adaln_lora,
adaln_lora_dim=self.adaln_lora_dim,
device=device, dtype=dtype, operations=operations,
)
self.t_embedding_norm = operations.RMSNorm(model_channels, eps=1e-6, device=device, dtype=dtype)
def build_pos_embed(self, device=None, dtype=None) -> None:
if self.pos_emb_cls == "rope3d":
cls_type = VideoRopePosition3DEmb
else:
raise ValueError(f"Unknown pos_emb_cls {self.pos_emb_cls}")
logging.debug(f"Building positional embedding with {self.pos_emb_cls} class, impl {cls_type}")
kwargs = dict(
model_channels=self.model_channels,
len_h=self.max_img_h // self.patch_spatial,
len_w=self.max_img_w // self.patch_spatial,
len_t=self.max_frames // self.patch_temporal,
max_fps=self.max_fps,
min_fps=self.min_fps,
is_learnable=self.pos_emb_learnable,
interpolation=self.pos_emb_interpolation,
head_dim=self.model_channels // self.num_heads,
h_extrapolation_ratio=self.rope_h_extrapolation_ratio,
w_extrapolation_ratio=self.rope_w_extrapolation_ratio,
t_extrapolation_ratio=self.rope_t_extrapolation_ratio,
enable_fps_modulation=self.rope_enable_fps_modulation,
device=device,
)
self.pos_embedder = cls_type(
**kwargs, # type: ignore
)
if self.extra_per_block_abs_pos_emb:
kwargs["h_extrapolation_ratio"] = self.extra_h_extrapolation_ratio
kwargs["w_extrapolation_ratio"] = self.extra_w_extrapolation_ratio
kwargs["t_extrapolation_ratio"] = self.extra_t_extrapolation_ratio
kwargs["device"] = device
kwargs["dtype"] = dtype
self.extra_pos_embedder = LearnablePosEmbAxis(
**kwargs, # type: ignore
)
def prepare_embedded_sequence(
self,
x_B_C_T_H_W: torch.Tensor,
fps: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]]:
"""
Prepares an embedded sequence tensor by applying positional embeddings and handling padding masks.
Args:
x_B_C_T_H_W (torch.Tensor): video
fps (Optional[torch.Tensor]): Frames per second tensor to be used for positional embedding when required.
If None, a default value (`self.base_fps`) will be used.
padding_mask (Optional[torch.Tensor]): current it is not used
Returns:
Tuple[torch.Tensor, Optional[torch.Tensor]]:
- A tensor of shape (B, T, H, W, D) with the embedded sequence.
- An optional positional embedding tensor, returned only if the positional embedding class
(`self.pos_emb_cls`) includes 'rope'. Otherwise, None.
Notes:
- If `self.concat_padding_mask` is True, a padding mask channel is concatenated to the input tensor.
- The method of applying positional embeddings depends on the value of `self.pos_emb_cls`.
- If 'rope' is in `self.pos_emb_cls` (case insensitive), the positional embeddings are generated using
the `self.pos_embedder` with the shape [T, H, W].
- If "fps_aware" is in `self.pos_emb_cls`, the positional embeddings are generated using the
`self.pos_embedder` with the fps tensor.
- Otherwise, the positional embeddings are generated without considering fps.
"""
if self.concat_padding_mask:
if padding_mask is None:
padding_mask = torch.zeros(x_B_C_T_H_W.shape[0], 1, x_B_C_T_H_W.shape[3], x_B_C_T_H_W.shape[4], dtype=x_B_C_T_H_W.dtype, device=x_B_C_T_H_W.device)
else:
padding_mask = transforms.functional.resize(
padding_mask, list(x_B_C_T_H_W.shape[-2:]), interpolation=transforms.InterpolationMode.NEAREST
)
x_B_C_T_H_W = torch.cat(
[x_B_C_T_H_W, padding_mask.unsqueeze(1).repeat(1, 1, x_B_C_T_H_W.shape[2], 1, 1)], dim=1
)
x_B_T_H_W_D = self.x_embedder(x_B_C_T_H_W)
if self.extra_per_block_abs_pos_emb:
extra_pos_emb = self.extra_pos_embedder(x_B_T_H_W_D, fps=fps, device=x_B_C_T_H_W.device, dtype=x_B_C_T_H_W.dtype)
else:
extra_pos_emb = None
if "rope" in self.pos_emb_cls.lower():
return x_B_T_H_W_D, self.pos_embedder(x_B_T_H_W_D, fps=fps, device=x_B_C_T_H_W.device), extra_pos_emb
x_B_T_H_W_D = x_B_T_H_W_D + self.pos_embedder(x_B_T_H_W_D, device=x_B_C_T_H_W.device) # [B, T, H, W, D]
return x_B_T_H_W_D, None, extra_pos_emb
def unpatchify(self, x_B_T_H_W_M: torch.Tensor) -> torch.Tensor:
x_B_C_Tt_Hp_Wp = rearrange(
x_B_T_H_W_M,
"B T H W (p1 p2 t C) -> B C (T t) (H p1) (W p2)",
p1=self.patch_spatial,
p2=self.patch_spatial,
t=self.patch_temporal,
)
return x_B_C_Tt_Hp_Wp
def forward(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
context: torch.Tensor,
fps: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
**kwargs,
):
x_B_C_T_H_W = x
timesteps_B_T = timesteps
crossattn_emb = context
"""
Args:
x: (B, C, T, H, W) tensor of spatial-temp inputs
timesteps: (B, ) tensor of timesteps
crossattn_emb: (B, N, D) tensor of cross-attention embeddings
"""
x_B_T_H_W_D, rope_emb_L_1_1_D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = self.prepare_embedded_sequence(
x_B_C_T_H_W,
fps=fps,
padding_mask=padding_mask,
)
if timesteps_B_T.ndim == 1:
timesteps_B_T = timesteps_B_T.unsqueeze(1)
t_embedding_B_T_D, adaln_lora_B_T_3D = self.t_embedder[1](self.t_embedder[0](timesteps_B_T).to(x_B_T_H_W_D.dtype))
t_embedding_B_T_D = self.t_embedding_norm(t_embedding_B_T_D)
# for logging purpose
affline_scale_log_info = {}
affline_scale_log_info["t_embedding_B_T_D"] = t_embedding_B_T_D.detach()
self.affline_scale_log_info = affline_scale_log_info
self.affline_emb = t_embedding_B_T_D
self.crossattn_emb = crossattn_emb
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
assert (
x_B_T_H_W_D.shape == extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape
), f"{x_B_T_H_W_D.shape} != {extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D.shape}"
block_kwargs = {
"rope_emb_L_1_1_D": rope_emb_L_1_1_D.unsqueeze(1).unsqueeze(0),
"adaln_lora_B_T_3D": adaln_lora_B_T_3D,
"extra_per_block_pos_emb": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
}
for block in self.blocks:
x_B_T_H_W_D = block(
x_B_T_H_W_D,
t_embedding_B_T_D,
crossattn_emb,
**block_kwargs,
)
x_B_T_H_W_O = self.final_layer(x_B_T_H_W_D, t_embedding_B_T_D, adaln_lora_B_T_3D=adaln_lora_B_T_3D)
x_B_C_Tt_Hp_Wp = self.unpatchify(x_B_T_H_W_O)
return x_B_C_Tt_Hp_Wp

View File

@@ -121,6 +121,11 @@ class ControlNetFlux(Flux):
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
if y is None:
y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype)
else:
y = y[:, :self.params.vec_in_dim]
# running on sequences img
img = self.img_in(img)
@@ -174,7 +179,7 @@ class ControlNetFlux(Flux):
out["output"] = out_output[:self.main_model_single]
return out
def forward(self, x, timesteps, context, y, guidance=None, hint=None, **kwargs):
def forward(self, x, timesteps, context, y=None, guidance=None, hint=None, **kwargs):
patch_size = 2
if self.latent_input:
hint = comfy.ldm.common_dit.pad_to_patch_size(hint, (patch_size, patch_size))

View File

@@ -118,7 +118,7 @@ class Modulation(nn.Module):
def apply_mod(tensor, m_mult, m_add=None, modulation_dims=None):
if modulation_dims is None:
if m_add is not None:
return tensor * m_mult + m_add
return torch.addcmul(m_add, tensor, m_mult)
else:
return tensor * m_mult
else:

View File

@@ -101,6 +101,10 @@ class Flux(nn.Module):
transformer_options={},
attn_mask: Tensor = None,
) -> Tensor:
if y is None:
y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype)
patches_replace = transformer_options.get("patches_replace", {})
if img.ndim != 3 or txt.ndim != 3:
raise ValueError("Input img and txt tensors must have 3 dimensions.")
@@ -155,6 +159,9 @@ class Flux(nn.Module):
if add is not None:
img += add
if img.dtype == torch.float16:
img = torch.nan_to_num(img, nan=0.0, posinf=65504, neginf=-65504)
img = torch.cat((txt, img), 1)
for i, block in enumerate(self.single_blocks):
@@ -188,20 +195,50 @@ class Flux(nn.Module):
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
return img
def forward(self, x, timestep, context, y, guidance=None, control=None, transformer_options={}, **kwargs):
def process_img(self, x, index=0, h_offset=0, w_offset=0):
bs, c, h, w = x.shape
patch_size = self.patch_size
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
h_len = ((h + (patch_size // 2)) // patch_size)
w_len = ((w + (patch_size // 2)) // patch_size)
h_offset = ((h_offset + (patch_size // 2)) // patch_size)
w_offset = ((w_offset + (patch_size // 2)) // patch_size)
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
img_ids[:, :, 0] = img_ids[:, :, 1] + index
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
return img, repeat(img_ids, "h w c -> b (h w) c", b=bs)
def forward(self, x, timestep, context, y=None, guidance=None, ref_latents=None, control=None, transformer_options={}, **kwargs):
bs, c, h_orig, w_orig = x.shape
patch_size = self.patch_size
h_len = ((h_orig + (patch_size // 2)) // patch_size)
w_len = ((w_orig + (patch_size // 2)) // patch_size)
img, img_ids = self.process_img(x)
img_tokens = img.shape[1]
if ref_latents is not None:
h = 0
w = 0
for ref in ref_latents:
h_offset = 0
w_offset = 0
if ref.shape[-2] + h > ref.shape[-1] + w:
w_offset = w
else:
h_offset = h
kontext, kontext_ids = self.process_img(ref, index=1, h_offset=h_offset, w_offset=w_offset)
img = torch.cat([img, kontext], dim=1)
img_ids = torch.cat([img_ids, kontext_ids], dim=1)
h = max(h, ref.shape[-2] + h_offset)
w = max(w, ref.shape[-1] + w_offset)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None))
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h,:w]
out = out[:, :img_tokens]
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h_orig,:w_orig]

View File

@@ -13,7 +13,6 @@ from comfy.ldm.modules.attention import optimized_attention
from .layers import (
FeedForward,
PatchEmbed,
RMSNorm,
TimestepEmbedder,
)
@@ -90,10 +89,10 @@ class AsymmetricAttention(nn.Module):
# Query and key normalization for stability.
assert qk_norm
self.q_norm_x = RMSNorm(self.head_dim, device=device, dtype=dtype)
self.k_norm_x = RMSNorm(self.head_dim, device=device, dtype=dtype)
self.q_norm_y = RMSNorm(self.head_dim, device=device, dtype=dtype)
self.k_norm_y = RMSNorm(self.head_dim, device=device, dtype=dtype)
self.q_norm_x = operations.RMSNorm(self.head_dim, eps=1e-5, device=device, dtype=dtype)
self.k_norm_x = operations.RMSNorm(self.head_dim, eps=1e-5, device=device, dtype=dtype)
self.q_norm_y = operations.RMSNorm(self.head_dim, eps=1e-5, device=device, dtype=dtype)
self.k_norm_y = operations.RMSNorm(self.head_dim, eps=1e-5, device=device, dtype=dtype)
# Output layers. y features go back down from dim_x -> dim_y.
self.proj_x = operations.Linear(dim_x, dim_x, bias=out_bias, device=device, dtype=dtype)

View File

@@ -151,14 +151,3 @@ class PatchEmbed(nn.Module):
x = self.norm(x)
return x
class RMSNorm(torch.nn.Module):
def __init__(self, hidden_size, eps=1e-5, device=None, dtype=None):
super().__init__()
self.eps = eps
self.weight = torch.nn.Parameter(torch.empty(hidden_size, device=device, dtype=dtype))
self.register_parameter("bias", None)
def forward(self, x):
return comfy.ldm.common_dit.rms_norm(x, self.weight, self.eps)

802
comfy/ldm/hidream/model.py Normal file
View File

@@ -0,0 +1,802 @@
from typing import Optional, Tuple, List
import torch
import torch.nn as nn
import einops
from einops import repeat
from comfy.ldm.lightricks.model import TimestepEmbedding, Timesteps
import torch.nn.functional as F
from comfy.ldm.flux.math import apply_rope, rope
from comfy.ldm.flux.layers import LastLayer
from comfy.ldm.modules.attention import optimized_attention
import comfy.model_management
import comfy.ldm.common_dit
# Copied from https://github.com/black-forest-labs/flux/blob/main/src/flux/modules/layers.py
class EmbedND(nn.Module):
def __init__(self, theta: int, axes_dim: List[int]):
super().__init__()
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids: torch.Tensor) -> torch.Tensor:
n_axes = ids.shape[-1]
emb = torch.cat(
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
dim=-3,
)
return emb.unsqueeze(2)
class PatchEmbed(nn.Module):
def __init__(
self,
patch_size=2,
in_channels=4,
out_channels=1024,
dtype=None, device=None, operations=None
):
super().__init__()
self.patch_size = patch_size
self.out_channels = out_channels
self.proj = operations.Linear(in_channels * patch_size * patch_size, out_channels, bias=True, dtype=dtype, device=device)
def forward(self, latent):
latent = self.proj(latent)
return latent
class PooledEmbed(nn.Module):
def __init__(self, text_emb_dim, hidden_size, dtype=None, device=None, operations=None):
super().__init__()
self.pooled_embedder = TimestepEmbedding(in_channels=text_emb_dim, time_embed_dim=hidden_size, dtype=dtype, device=device, operations=operations)
def forward(self, pooled_embed):
return self.pooled_embedder(pooled_embed)
class TimestepEmbed(nn.Module):
def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None, operations=None):
super().__init__()
self.time_proj = Timesteps(num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(in_channels=frequency_embedding_size, time_embed_dim=hidden_size, dtype=dtype, device=device, operations=operations)
def forward(self, timesteps, wdtype):
t_emb = self.time_proj(timesteps).to(dtype=wdtype)
t_emb = self.timestep_embedder(t_emb)
return t_emb
def attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor):
return optimized_attention(query.view(query.shape[0], -1, query.shape[-1] * query.shape[-2]), key.view(key.shape[0], -1, key.shape[-1] * key.shape[-2]), value.view(value.shape[0], -1, value.shape[-1] * value.shape[-2]), query.shape[2])
class HiDreamAttnProcessor_flashattn:
"""Attention processor used typically in processing the SD3-like self-attention projections."""
def __call__(
self,
attn,
image_tokens: torch.FloatTensor,
image_tokens_masks: Optional[torch.FloatTensor] = None,
text_tokens: Optional[torch.FloatTensor] = None,
rope: torch.FloatTensor = None,
*args,
**kwargs,
) -> torch.FloatTensor:
dtype = image_tokens.dtype
batch_size = image_tokens.shape[0]
query_i = attn.q_rms_norm(attn.to_q(image_tokens)).to(dtype=dtype)
key_i = attn.k_rms_norm(attn.to_k(image_tokens)).to(dtype=dtype)
value_i = attn.to_v(image_tokens)
inner_dim = key_i.shape[-1]
head_dim = inner_dim // attn.heads
query_i = query_i.view(batch_size, -1, attn.heads, head_dim)
key_i = key_i.view(batch_size, -1, attn.heads, head_dim)
value_i = value_i.view(batch_size, -1, attn.heads, head_dim)
if image_tokens_masks is not None:
key_i = key_i * image_tokens_masks.view(batch_size, -1, 1, 1)
if not attn.single:
query_t = attn.q_rms_norm_t(attn.to_q_t(text_tokens)).to(dtype=dtype)
key_t = attn.k_rms_norm_t(attn.to_k_t(text_tokens)).to(dtype=dtype)
value_t = attn.to_v_t(text_tokens)
query_t = query_t.view(batch_size, -1, attn.heads, head_dim)
key_t = key_t.view(batch_size, -1, attn.heads, head_dim)
value_t = value_t.view(batch_size, -1, attn.heads, head_dim)
num_image_tokens = query_i.shape[1]
num_text_tokens = query_t.shape[1]
query = torch.cat([query_i, query_t], dim=1)
key = torch.cat([key_i, key_t], dim=1)
value = torch.cat([value_i, value_t], dim=1)
else:
query = query_i
key = key_i
value = value_i
if query.shape[-1] == rope.shape[-3] * 2:
query, key = apply_rope(query, key, rope)
else:
query_1, query_2 = query.chunk(2, dim=-1)
key_1, key_2 = key.chunk(2, dim=-1)
query_1, key_1 = apply_rope(query_1, key_1, rope)
query = torch.cat([query_1, query_2], dim=-1)
key = torch.cat([key_1, key_2], dim=-1)
hidden_states = attention(query, key, value)
if not attn.single:
hidden_states_i, hidden_states_t = torch.split(hidden_states, [num_image_tokens, num_text_tokens], dim=1)
hidden_states_i = attn.to_out(hidden_states_i)
hidden_states_t = attn.to_out_t(hidden_states_t)
return hidden_states_i, hidden_states_t
else:
hidden_states = attn.to_out(hidden_states)
return hidden_states
class HiDreamAttention(nn.Module):
def __init__(
self,
query_dim: int,
heads: int = 8,
dim_head: int = 64,
upcast_attention: bool = False,
upcast_softmax: bool = False,
scale_qk: bool = True,
eps: float = 1e-5,
processor = None,
out_dim: int = None,
single: bool = False,
dtype=None, device=None, operations=None
):
# super(Attention, self).__init__()
super().__init__()
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
self.query_dim = query_dim
self.upcast_attention = upcast_attention
self.upcast_softmax = upcast_softmax
self.out_dim = out_dim if out_dim is not None else query_dim
self.scale_qk = scale_qk
self.scale = dim_head**-0.5 if self.scale_qk else 1.0
self.heads = out_dim // dim_head if out_dim is not None else heads
self.sliceable_head_dim = heads
self.single = single
linear_cls = operations.Linear
self.linear_cls = linear_cls
self.to_q = linear_cls(query_dim, self.inner_dim, dtype=dtype, device=device)
self.to_k = linear_cls(self.inner_dim, self.inner_dim, dtype=dtype, device=device)
self.to_v = linear_cls(self.inner_dim, self.inner_dim, dtype=dtype, device=device)
self.to_out = linear_cls(self.inner_dim, self.out_dim, dtype=dtype, device=device)
self.q_rms_norm = operations.RMSNorm(self.inner_dim, eps, dtype=dtype, device=device)
self.k_rms_norm = operations.RMSNorm(self.inner_dim, eps, dtype=dtype, device=device)
if not single:
self.to_q_t = linear_cls(query_dim, self.inner_dim, dtype=dtype, device=device)
self.to_k_t = linear_cls(self.inner_dim, self.inner_dim, dtype=dtype, device=device)
self.to_v_t = linear_cls(self.inner_dim, self.inner_dim, dtype=dtype, device=device)
self.to_out_t = linear_cls(self.inner_dim, self.out_dim, dtype=dtype, device=device)
self.q_rms_norm_t = operations.RMSNorm(self.inner_dim, eps, dtype=dtype, device=device)
self.k_rms_norm_t = operations.RMSNorm(self.inner_dim, eps, dtype=dtype, device=device)
self.processor = processor
def forward(
self,
norm_image_tokens: torch.FloatTensor,
image_tokens_masks: torch.FloatTensor = None,
norm_text_tokens: torch.FloatTensor = None,
rope: torch.FloatTensor = None,
) -> torch.Tensor:
return self.processor(
self,
image_tokens = norm_image_tokens,
image_tokens_masks = image_tokens_masks,
text_tokens = norm_text_tokens,
rope = rope,
)
class FeedForwardSwiGLU(nn.Module):
def __init__(
self,
dim: int,
hidden_dim: int,
multiple_of: int = 256,
ffn_dim_multiplier: Optional[float] = None,
dtype=None, device=None, operations=None
):
super().__init__()
hidden_dim = int(2 * hidden_dim / 3)
# custom dim factor multiplier
if ffn_dim_multiplier is not None:
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
hidden_dim = multiple_of * (
(hidden_dim + multiple_of - 1) // multiple_of
)
self.w1 = operations.Linear(dim, hidden_dim, bias=False, dtype=dtype, device=device)
self.w2 = operations.Linear(hidden_dim, dim, bias=False, dtype=dtype, device=device)
self.w3 = operations.Linear(dim, hidden_dim, bias=False, dtype=dtype, device=device)
def forward(self, x):
return self.w2(torch.nn.functional.silu(self.w1(x)) * self.w3(x))
# Modified from https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
class MoEGate(nn.Module):
def __init__(self, embed_dim, num_routed_experts=4, num_activated_experts=2, aux_loss_alpha=0.01, dtype=None, device=None, operations=None):
super().__init__()
self.top_k = num_activated_experts
self.n_routed_experts = num_routed_experts
self.scoring_func = 'softmax'
self.alpha = aux_loss_alpha
self.seq_aux = False
# topk selection algorithm
self.norm_topk_prob = False
self.gating_dim = embed_dim
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim), dtype=dtype, device=device))
self.reset_parameters()
def reset_parameters(self) -> None:
pass
# import torch.nn.init as init
# init.kaiming_uniform_(self.weight, a=math.sqrt(5))
def forward(self, hidden_states):
bsz, seq_len, h = hidden_states.shape
### compute gating score
hidden_states = hidden_states.view(-1, h)
logits = F.linear(hidden_states, comfy.model_management.cast_to(self.weight, dtype=hidden_states.dtype, device=hidden_states.device), None)
if self.scoring_func == 'softmax':
scores = logits.softmax(dim=-1)
else:
raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}')
### select top-k experts
topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)
### norm gate to sum 1
if self.top_k > 1 and self.norm_topk_prob:
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
topk_weight = topk_weight / denominator
aux_loss = None
return topk_idx, topk_weight, aux_loss
# Modified from https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
class MOEFeedForwardSwiGLU(nn.Module):
def __init__(
self,
dim: int,
hidden_dim: int,
num_routed_experts: int,
num_activated_experts: int,
dtype=None, device=None, operations=None
):
super().__init__()
self.shared_experts = FeedForwardSwiGLU(dim, hidden_dim // 2, dtype=dtype, device=device, operations=operations)
self.experts = nn.ModuleList([FeedForwardSwiGLU(dim, hidden_dim, dtype=dtype, device=device, operations=operations) for i in range(num_routed_experts)])
self.gate = MoEGate(
embed_dim = dim,
num_routed_experts = num_routed_experts,
num_activated_experts = num_activated_experts,
dtype=dtype, device=device, operations=operations
)
self.num_activated_experts = num_activated_experts
def forward(self, x):
wtype = x.dtype
identity = x
orig_shape = x.shape
topk_idx, topk_weight, aux_loss = self.gate(x)
x = x.view(-1, x.shape[-1])
flat_topk_idx = topk_idx.view(-1)
if True: # self.training: # TODO: check which branch performs faster
x = x.repeat_interleave(self.num_activated_experts, dim=0)
y = torch.empty_like(x, dtype=wtype)
for i, expert in enumerate(self.experts):
y[flat_topk_idx == i] = expert(x[flat_topk_idx == i]).to(dtype=wtype)
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
y = y.view(*orig_shape).to(dtype=wtype)
#y = AddAuxiliaryLoss.apply(y, aux_loss)
else:
y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)
y = y + self.shared_experts(identity)
return y
@torch.no_grad()
def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
expert_cache = torch.zeros_like(x)
idxs = flat_expert_indices.argsort()
tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
token_idxs = idxs // self.num_activated_experts
for i, end_idx in enumerate(tokens_per_expert):
start_idx = 0 if i == 0 else tokens_per_expert[i-1]
if start_idx == end_idx:
continue
expert = self.experts[i]
exp_token_idx = token_idxs[start_idx:end_idx]
expert_tokens = x[exp_token_idx]
expert_out = expert(expert_tokens)
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
# for fp16 and other dtype
expert_cache = expert_cache.to(expert_out.dtype)
expert_cache.scatter_reduce_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out, reduce='sum')
return expert_cache
class TextProjection(nn.Module):
def __init__(self, in_features, hidden_size, dtype=None, device=None, operations=None):
super().__init__()
self.linear = operations.Linear(in_features=in_features, out_features=hidden_size, bias=False, dtype=dtype, device=device)
def forward(self, caption):
hidden_states = self.linear(caption)
return hidden_states
class BlockType:
TransformerBlock = 1
SingleTransformerBlock = 2
class HiDreamImageSingleTransformerBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
num_routed_experts: int = 4,
num_activated_experts: int = 2,
dtype=None, device=None, operations=None
):
super().__init__()
self.num_attention_heads = num_attention_heads
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
operations.Linear(dim, 6 * dim, bias=True, dtype=dtype, device=device)
)
# 1. Attention
self.norm1_i = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False, dtype=dtype, device=device)
self.attn1 = HiDreamAttention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
processor = HiDreamAttnProcessor_flashattn(),
single = True,
dtype=dtype, device=device, operations=operations
)
# 3. Feed-forward
self.norm3_i = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False, dtype=dtype, device=device)
if num_routed_experts > 0:
self.ff_i = MOEFeedForwardSwiGLU(
dim = dim,
hidden_dim = 4 * dim,
num_routed_experts = num_routed_experts,
num_activated_experts = num_activated_experts,
dtype=dtype, device=device, operations=operations
)
else:
self.ff_i = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim, dtype=dtype, device=device, operations=operations)
def forward(
self,
image_tokens: torch.FloatTensor,
image_tokens_masks: Optional[torch.FloatTensor] = None,
text_tokens: Optional[torch.FloatTensor] = None,
adaln_input: Optional[torch.FloatTensor] = None,
rope: torch.FloatTensor = None,
) -> torch.FloatTensor:
wtype = image_tokens.dtype
shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i = \
self.adaLN_modulation(adaln_input)[:,None].chunk(6, dim=-1)
# 1. MM-Attention
norm_image_tokens = self.norm1_i(image_tokens).to(dtype=wtype)
norm_image_tokens = norm_image_tokens * (1 + scale_msa_i) + shift_msa_i
attn_output_i = self.attn1(
norm_image_tokens,
image_tokens_masks,
rope = rope,
)
image_tokens = gate_msa_i * attn_output_i + image_tokens
# 2. Feed-forward
norm_image_tokens = self.norm3_i(image_tokens).to(dtype=wtype)
norm_image_tokens = norm_image_tokens * (1 + scale_mlp_i) + shift_mlp_i
ff_output_i = gate_mlp_i * self.ff_i(norm_image_tokens.to(dtype=wtype))
image_tokens = ff_output_i + image_tokens
return image_tokens
class HiDreamImageTransformerBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
num_routed_experts: int = 4,
num_activated_experts: int = 2,
dtype=None, device=None, operations=None
):
super().__init__()
self.num_attention_heads = num_attention_heads
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
operations.Linear(dim, 12 * dim, bias=True, dtype=dtype, device=device)
)
# nn.init.zeros_(self.adaLN_modulation[1].weight)
# nn.init.zeros_(self.adaLN_modulation[1].bias)
# 1. Attention
self.norm1_i = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False, dtype=dtype, device=device)
self.norm1_t = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False, dtype=dtype, device=device)
self.attn1 = HiDreamAttention(
query_dim=dim,
heads=num_attention_heads,
dim_head=attention_head_dim,
processor = HiDreamAttnProcessor_flashattn(),
single = False,
dtype=dtype, device=device, operations=operations
)
# 3. Feed-forward
self.norm3_i = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False, dtype=dtype, device=device)
if num_routed_experts > 0:
self.ff_i = MOEFeedForwardSwiGLU(
dim = dim,
hidden_dim = 4 * dim,
num_routed_experts = num_routed_experts,
num_activated_experts = num_activated_experts,
dtype=dtype, device=device, operations=operations
)
else:
self.ff_i = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim, dtype=dtype, device=device, operations=operations)
self.norm3_t = operations.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
self.ff_t = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim, dtype=dtype, device=device, operations=operations)
def forward(
self,
image_tokens: torch.FloatTensor,
image_tokens_masks: Optional[torch.FloatTensor] = None,
text_tokens: Optional[torch.FloatTensor] = None,
adaln_input: Optional[torch.FloatTensor] = None,
rope: torch.FloatTensor = None,
) -> torch.FloatTensor:
wtype = image_tokens.dtype
shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i, \
shift_msa_t, scale_msa_t, gate_msa_t, shift_mlp_t, scale_mlp_t, gate_mlp_t = \
self.adaLN_modulation(adaln_input)[:,None].chunk(12, dim=-1)
# 1. MM-Attention
norm_image_tokens = self.norm1_i(image_tokens).to(dtype=wtype)
norm_image_tokens = norm_image_tokens * (1 + scale_msa_i) + shift_msa_i
norm_text_tokens = self.norm1_t(text_tokens).to(dtype=wtype)
norm_text_tokens = norm_text_tokens * (1 + scale_msa_t) + shift_msa_t
attn_output_i, attn_output_t = self.attn1(
norm_image_tokens,
image_tokens_masks,
norm_text_tokens,
rope = rope,
)
image_tokens = gate_msa_i * attn_output_i + image_tokens
text_tokens = gate_msa_t * attn_output_t + text_tokens
# 2. Feed-forward
norm_image_tokens = self.norm3_i(image_tokens).to(dtype=wtype)
norm_image_tokens = norm_image_tokens * (1 + scale_mlp_i) + shift_mlp_i
norm_text_tokens = self.norm3_t(text_tokens).to(dtype=wtype)
norm_text_tokens = norm_text_tokens * (1 + scale_mlp_t) + shift_mlp_t
ff_output_i = gate_mlp_i * self.ff_i(norm_image_tokens)
ff_output_t = gate_mlp_t * self.ff_t(norm_text_tokens)
image_tokens = ff_output_i + image_tokens
text_tokens = ff_output_t + text_tokens
return image_tokens, text_tokens
class HiDreamImageBlock(nn.Module):
def __init__(
self,
dim: int,
num_attention_heads: int,
attention_head_dim: int,
num_routed_experts: int = 4,
num_activated_experts: int = 2,
block_type: BlockType = BlockType.TransformerBlock,
dtype=None, device=None, operations=None
):
super().__init__()
block_classes = {
BlockType.TransformerBlock: HiDreamImageTransformerBlock,
BlockType.SingleTransformerBlock: HiDreamImageSingleTransformerBlock,
}
self.block = block_classes[block_type](
dim,
num_attention_heads,
attention_head_dim,
num_routed_experts,
num_activated_experts,
dtype=dtype, device=device, operations=operations
)
def forward(
self,
image_tokens: torch.FloatTensor,
image_tokens_masks: Optional[torch.FloatTensor] = None,
text_tokens: Optional[torch.FloatTensor] = None,
adaln_input: torch.FloatTensor = None,
rope: torch.FloatTensor = None,
) -> torch.FloatTensor:
return self.block(
image_tokens,
image_tokens_masks,
text_tokens,
adaln_input,
rope,
)
class HiDreamImageTransformer2DModel(nn.Module):
def __init__(
self,
patch_size: Optional[int] = None,
in_channels: int = 64,
out_channels: Optional[int] = None,
num_layers: int = 16,
num_single_layers: int = 32,
attention_head_dim: int = 128,
num_attention_heads: int = 20,
caption_channels: List[int] = None,
text_emb_dim: int = 2048,
num_routed_experts: int = 4,
num_activated_experts: int = 2,
axes_dims_rope: Tuple[int, int] = (32, 32),
max_resolution: Tuple[int, int] = (128, 128),
llama_layers: List[int] = None,
image_model=None,
dtype=None, device=None, operations=None
):
self.patch_size = patch_size
self.num_attention_heads = num_attention_heads
self.attention_head_dim = attention_head_dim
self.num_layers = num_layers
self.num_single_layers = num_single_layers
self.gradient_checkpointing = False
super().__init__()
self.dtype = dtype
self.out_channels = out_channels or in_channels
self.inner_dim = self.num_attention_heads * self.attention_head_dim
self.llama_layers = llama_layers
self.t_embedder = TimestepEmbed(self.inner_dim, dtype=dtype, device=device, operations=operations)
self.p_embedder = PooledEmbed(text_emb_dim, self.inner_dim, dtype=dtype, device=device, operations=operations)
self.x_embedder = PatchEmbed(
patch_size = patch_size,
in_channels = in_channels,
out_channels = self.inner_dim,
dtype=dtype, device=device, operations=operations
)
self.pe_embedder = EmbedND(theta=10000, axes_dim=axes_dims_rope)
self.double_stream_blocks = nn.ModuleList(
[
HiDreamImageBlock(
dim = self.inner_dim,
num_attention_heads = self.num_attention_heads,
attention_head_dim = self.attention_head_dim,
num_routed_experts = num_routed_experts,
num_activated_experts = num_activated_experts,
block_type = BlockType.TransformerBlock,
dtype=dtype, device=device, operations=operations
)
for i in range(self.num_layers)
]
)
self.single_stream_blocks = nn.ModuleList(
[
HiDreamImageBlock(
dim = self.inner_dim,
num_attention_heads = self.num_attention_heads,
attention_head_dim = self.attention_head_dim,
num_routed_experts = num_routed_experts,
num_activated_experts = num_activated_experts,
block_type = BlockType.SingleTransformerBlock,
dtype=dtype, device=device, operations=operations
)
for i in range(self.num_single_layers)
]
)
self.final_layer = LastLayer(self.inner_dim, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations)
caption_channels = [caption_channels[1], ] * (num_layers + num_single_layers) + [caption_channels[0], ]
caption_projection = []
for caption_channel in caption_channels:
caption_projection.append(TextProjection(in_features=caption_channel, hidden_size=self.inner_dim, dtype=dtype, device=device, operations=operations))
self.caption_projection = nn.ModuleList(caption_projection)
self.max_seq = max_resolution[0] * max_resolution[1] // (patch_size * patch_size)
def expand_timesteps(self, timesteps, batch_size, device):
if not torch.is_tensor(timesteps):
is_mps = device.type == "mps"
if isinstance(timesteps, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(batch_size)
return timesteps
def unpatchify(self, x: torch.Tensor, img_sizes: List[Tuple[int, int]]) -> List[torch.Tensor]:
x_arr = []
for i, img_size in enumerate(img_sizes):
pH, pW = img_size
x_arr.append(
einops.rearrange(x[i, :pH*pW].reshape(1, pH, pW, -1), 'B H W (p1 p2 C) -> B C (H p1) (W p2)',
p1=self.patch_size, p2=self.patch_size)
)
x = torch.cat(x_arr, dim=0)
return x
def patchify(self, x, max_seq, img_sizes=None):
pz2 = self.patch_size * self.patch_size
if isinstance(x, torch.Tensor):
B = x.shape[0]
device = x.device
dtype = x.dtype
else:
B = len(x)
device = x[0].device
dtype = x[0].dtype
x_masks = torch.zeros((B, max_seq), dtype=dtype, device=device)
if img_sizes is not None:
for i, img_size in enumerate(img_sizes):
x_masks[i, 0:img_size[0] * img_size[1]] = 1
x = einops.rearrange(x, 'B C S p -> B S (p C)', p=pz2)
elif isinstance(x, torch.Tensor):
pH, pW = x.shape[-2] // self.patch_size, x.shape[-1] // self.patch_size
x = einops.rearrange(x, 'B C (H p1) (W p2) -> B (H W) (p1 p2 C)', p1=self.patch_size, p2=self.patch_size)
img_sizes = [[pH, pW]] * B
x_masks = None
else:
raise NotImplementedError
return x, x_masks, img_sizes
def forward(
self,
x: torch.Tensor,
t: torch.Tensor,
y: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
encoder_hidden_states_llama3=None,
image_cond=None,
control = None,
transformer_options = {},
) -> torch.Tensor:
bs, c, h, w = x.shape
if image_cond is not None:
x = torch.cat([x, image_cond], dim=-1)
hidden_states = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
timesteps = t
pooled_embeds = y
T5_encoder_hidden_states = context
img_sizes = None
# spatial forward
batch_size = hidden_states.shape[0]
hidden_states_type = hidden_states.dtype
# 0. time
timesteps = self.expand_timesteps(timesteps, batch_size, hidden_states.device)
timesteps = self.t_embedder(timesteps, hidden_states_type)
p_embedder = self.p_embedder(pooled_embeds)
adaln_input = timesteps + p_embedder
hidden_states, image_tokens_masks, img_sizes = self.patchify(hidden_states, self.max_seq, img_sizes)
if image_tokens_masks is None:
pH, pW = img_sizes[0]
img_ids = torch.zeros(pH, pW, 3, device=hidden_states.device)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(pH, device=hidden_states.device)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(pW, device=hidden_states.device)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=batch_size)
hidden_states = self.x_embedder(hidden_states)
# T5_encoder_hidden_states = encoder_hidden_states[0]
encoder_hidden_states = encoder_hidden_states_llama3.movedim(1, 0)
encoder_hidden_states = [encoder_hidden_states[k] for k in self.llama_layers]
if self.caption_projection is not None:
new_encoder_hidden_states = []
for i, enc_hidden_state in enumerate(encoder_hidden_states):
enc_hidden_state = self.caption_projection[i](enc_hidden_state)
enc_hidden_state = enc_hidden_state.view(batch_size, -1, hidden_states.shape[-1])
new_encoder_hidden_states.append(enc_hidden_state)
encoder_hidden_states = new_encoder_hidden_states
T5_encoder_hidden_states = self.caption_projection[-1](T5_encoder_hidden_states)
T5_encoder_hidden_states = T5_encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
encoder_hidden_states.append(T5_encoder_hidden_states)
txt_ids = torch.zeros(
batch_size,
encoder_hidden_states[-1].shape[1] + encoder_hidden_states[-2].shape[1] + encoder_hidden_states[0].shape[1],
3,
device=img_ids.device, dtype=img_ids.dtype
)
ids = torch.cat((img_ids, txt_ids), dim=1)
rope = self.pe_embedder(ids)
# 2. Blocks
block_id = 0
initial_encoder_hidden_states = torch.cat([encoder_hidden_states[-1], encoder_hidden_states[-2]], dim=1)
initial_encoder_hidden_states_seq_len = initial_encoder_hidden_states.shape[1]
for bid, block in enumerate(self.double_stream_blocks):
cur_llama31_encoder_hidden_states = encoder_hidden_states[block_id]
cur_encoder_hidden_states = torch.cat([initial_encoder_hidden_states, cur_llama31_encoder_hidden_states], dim=1)
hidden_states, initial_encoder_hidden_states = block(
image_tokens = hidden_states,
image_tokens_masks = image_tokens_masks,
text_tokens = cur_encoder_hidden_states,
adaln_input = adaln_input,
rope = rope,
)
initial_encoder_hidden_states = initial_encoder_hidden_states[:, :initial_encoder_hidden_states_seq_len]
block_id += 1
image_tokens_seq_len = hidden_states.shape[1]
hidden_states = torch.cat([hidden_states, initial_encoder_hidden_states], dim=1)
hidden_states_seq_len = hidden_states.shape[1]
if image_tokens_masks is not None:
encoder_attention_mask_ones = torch.ones(
(batch_size, initial_encoder_hidden_states.shape[1] + cur_llama31_encoder_hidden_states.shape[1]),
device=image_tokens_masks.device, dtype=image_tokens_masks.dtype
)
image_tokens_masks = torch.cat([image_tokens_masks, encoder_attention_mask_ones], dim=1)
for bid, block in enumerate(self.single_stream_blocks):
cur_llama31_encoder_hidden_states = encoder_hidden_states[block_id]
hidden_states = torch.cat([hidden_states, cur_llama31_encoder_hidden_states], dim=1)
hidden_states = block(
image_tokens=hidden_states,
image_tokens_masks=image_tokens_masks,
text_tokens=None,
adaln_input=adaln_input,
rope=rope,
)
hidden_states = hidden_states[:, :hidden_states_seq_len]
block_id += 1
hidden_states = hidden_states[:, :image_tokens_seq_len, ...]
output = self.final_layer(hidden_states, adaln_input)
output = self.unpatchify(output, img_sizes)
return -output[:, :, :h, :w]

View File

@@ -228,6 +228,7 @@ class HunyuanVideo(nn.Module):
y: Tensor,
guidance: Tensor = None,
guiding_frame_index=None,
ref_latent=None,
control=None,
transformer_options={},
) -> Tensor:
@@ -238,6 +239,14 @@ class HunyuanVideo(nn.Module):
img = self.img_in(img)
vec = self.time_in(timestep_embedding(timesteps, 256, time_factor=1.0).to(img.dtype))
if ref_latent is not None:
ref_latent_ids = self.img_ids(ref_latent)
ref_latent = self.img_in(ref_latent)
img = torch.cat([ref_latent, img], dim=-2)
ref_latent_ids[..., 0] = -1
ref_latent_ids[..., 2] += (initial_shape[-1] // self.patch_size[-1])
img_ids = torch.cat([ref_latent_ids, img_ids], dim=-2)
if guiding_frame_index is not None:
token_replace_vec = self.time_in(timestep_embedding(guiding_frame_index, 256, time_factor=1.0))
vec_ = self.vector_in(y[:, :self.params.vec_in_dim])
@@ -313,6 +322,8 @@ class HunyuanVideo(nn.Module):
img[:, : img_len] += add
img = img[:, : img_len]
if ref_latent is not None:
img = img[:, ref_latent.shape[1]:]
img = self.final_layer(img, vec, modulation_dims=modulation_dims) # (N, T, patch_size ** 2 * out_channels)
@@ -324,7 +335,7 @@ class HunyuanVideo(nn.Module):
img = img.reshape(initial_shape[0], self.out_channels, initial_shape[2], initial_shape[3], initial_shape[4])
return img
def forward(self, x, timestep, context, y, guidance=None, attention_mask=None, guiding_frame_index=None, control=None, transformer_options={}, **kwargs):
def img_ids(self, x):
bs, c, t, h, w = x.shape
patch_size = self.patch_size
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
@@ -334,7 +345,11 @@ class HunyuanVideo(nn.Module):
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).reshape(-1, 1, 1)
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).reshape(1, -1, 1)
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).reshape(1, 1, -1)
img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
return repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
def forward(self, x, timestep, context, y, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, control=None, transformer_options={}, **kwargs):
bs, c, t, h, w = x.shape
img_ids = self.img_ids(x)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, guidance, guiding_frame_index, control, transformer_options)
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, guidance, guiding_frame_index, ref_latent, control=control, transformer_options=transformer_options)
return out

View File

@@ -3,7 +3,7 @@ import torch
import torch.nn as nn
import comfy.ops
from comfy.ldm.modules.diffusionmodules.mmdit import Mlp, TimestepEmbedder, PatchEmbed, RMSNorm
from comfy.ldm.modules.diffusionmodules.mmdit import Mlp, TimestepEmbedder, PatchEmbed
from comfy.ldm.modules.diffusionmodules.util import timestep_embedding
from torch.utils import checkpoint
@@ -51,7 +51,7 @@ class HunYuanDiTBlock(nn.Module):
if norm_type == "layer":
norm_layer = operations.LayerNorm
elif norm_type == "rms":
norm_layer = RMSNorm
norm_layer = operations.RMSNorm
else:
raise ValueError(f"Unknown norm_type: {norm_type}")

View File

@@ -1,7 +1,6 @@
import torch
from torch import nn
import comfy.ldm.modules.attention
from comfy.ldm.genmo.joint_model.layers import RMSNorm
import comfy.ldm.common_dit
from einops import rearrange
import math
@@ -262,8 +261,8 @@ class CrossAttention(nn.Module):
self.heads = heads
self.dim_head = dim_head
self.q_norm = RMSNorm(inner_dim, dtype=dtype, device=device)
self.k_norm = RMSNorm(inner_dim, dtype=dtype, device=device)
self.q_norm = operations.RMSNorm(inner_dim, eps=1e-5, dtype=dtype, device=device)
self.k_norm = operations.RMSNorm(inner_dim, eps=1e-5, dtype=dtype, device=device)
self.to_q = operations.Linear(query_dim, inner_dim, bias=True, dtype=dtype, device=device)
self.to_k = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device)

View File

@@ -8,7 +8,7 @@ import torch.nn as nn
import torch.nn.functional as F
import comfy.ldm.common_dit
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder, RMSNorm
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder
from comfy.ldm.modules.attention import optimized_attention_masked
from comfy.ldm.flux.layers import EmbedND
@@ -64,8 +64,8 @@ class JointAttention(nn.Module):
)
if qk_norm:
self.q_norm = RMSNorm(self.head_dim, elementwise_affine=True, **operation_settings)
self.k_norm = RMSNorm(self.head_dim, elementwise_affine=True, **operation_settings)
self.q_norm = operation_settings.get("operations").RMSNorm(self.head_dim, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.k_norm = operation_settings.get("operations").RMSNorm(self.head_dim, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
else:
self.q_norm = self.k_norm = nn.Identity()
@@ -242,11 +242,11 @@ class JointTransformerBlock(nn.Module):
operation_settings=operation_settings,
)
self.layer_id = layer_id
self.attention_norm1 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
self.ffn_norm1 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
self.attention_norm1 = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.ffn_norm1 = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.attention_norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
self.ffn_norm2 = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
self.attention_norm2 = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.ffn_norm2 = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.modulation = modulation
if modulation:
@@ -431,7 +431,7 @@ class NextDiT(nn.Module):
self.t_embedder = TimestepEmbedder(min(dim, 1024), **operation_settings)
self.cap_embedder = nn.Sequential(
RMSNorm(cap_feat_dim, eps=norm_eps, elementwise_affine=True, **operation_settings),
operation_settings.get("operations").RMSNorm(cap_feat_dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")),
operation_settings.get("operations").Linear(
cap_feat_dim,
dim,
@@ -457,7 +457,7 @@ class NextDiT(nn.Module):
for layer_id in range(n_layers)
]
)
self.norm_final = RMSNorm(dim, eps=norm_eps, elementwise_affine=True, **operation_settings)
self.norm_final = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.final_layer = FinalLayer(dim, patch_size, self.out_channels, operation_settings=operation_settings)
assert (dim // n_heads) == sum(axes_dims)

View File

@@ -11,7 +11,7 @@ from comfy.ldm.modules.ema import LitEma
import comfy.ops
class DiagonalGaussianRegularizer(torch.nn.Module):
def __init__(self, sample: bool = True):
def __init__(self, sample: bool = False):
super().__init__()
self.sample = sample
@@ -19,16 +19,12 @@ class DiagonalGaussianRegularizer(torch.nn.Module):
yield from ()
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]:
log = dict()
posterior = DiagonalGaussianDistribution(z)
if self.sample:
z = posterior.sample()
else:
z = posterior.mode()
kl_loss = posterior.kl()
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
log["kl_loss"] = kl_loss
return z, log
return z, None
class AbstractAutoencoder(torch.nn.Module):

View File

@@ -20,8 +20,11 @@ if model_management.xformers_enabled():
if model_management.sage_attention_enabled():
try:
from sageattention import sageattn
except ModuleNotFoundError:
logging.error(f"\n\nTo use the `--use-sage-attention` feature, the `sageattention` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install sageattention")
except ModuleNotFoundError as e:
if e.name == "sageattention":
logging.error(f"\n\nTo use the `--use-sage-attention` feature, the `sageattention` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install sageattention")
else:
raise e
exit(-1)
if model_management.flash_attention_enabled():
@@ -471,7 +474,7 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha
def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
if skip_reshape:
b, _, _, dim_head = q.shape
tensor_layout="HND"
tensor_layout = "HND"
else:
b, _, dim_head = q.shape
dim_head //= heads
@@ -479,7 +482,7 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=
lambda t: t.view(b, -1, heads, dim_head),
(q, k, v),
)
tensor_layout="NHD"
tensor_layout = "NHD"
if mask is not None:
# add a batch dimension if there isn't already one
@@ -489,7 +492,17 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=
if mask.ndim == 3:
mask = mask.unsqueeze(1)
out = sageattn(q, k, v, attn_mask=mask, is_causal=False, tensor_layout=tensor_layout)
try:
out = sageattn(q, k, v, attn_mask=mask, is_causal=False, tensor_layout=tensor_layout)
except Exception as e:
logging.error("Error running sage attention: {}, using pytorch attention instead.".format(e))
if tensor_layout == "NHD":
q, k, v = map(
lambda t: t.transpose(1, 2),
(q, k, v),
)
return attention_pytorch(q, k, v, heads, mask=mask, skip_reshape=True, skip_output_reshape=skip_output_reshape)
if tensor_layout == "HND":
if not skip_output_reshape:
out = (
@@ -740,7 +753,7 @@ class BasicTransformerBlock(nn.Module):
for p in patch:
n = p(n, extra_options)
x += n
x = n + x
if "middle_patch" in transformer_patches:
patch = transformer_patches["middle_patch"]
for p in patch:
@@ -780,12 +793,12 @@ class BasicTransformerBlock(nn.Module):
for p in patch:
n = p(n, extra_options)
x += n
x = n + x
if self.is_res:
x_skip = x
x = self.ff(self.norm3(x))
if self.is_res:
x += x_skip
x = x_skip + x
return x
@@ -837,6 +850,7 @@ class SpatialTransformer(nn.Module):
if not isinstance(context, list):
context = [context] * len(self.transformer_blocks)
b, c, h, w = x.shape
transformer_options["activations_shape"] = list(x.shape)
x_in = x
x = self.norm(x)
if not self.use_linear:
@@ -952,6 +966,7 @@ class SpatialVideoTransformer(SpatialTransformer):
transformer_options={}
) -> torch.Tensor:
_, _, h, w = x.shape
transformer_options["activations_shape"] = list(x.shape)
x_in = x
spatial_context = None
if exists(context):

View File

@@ -31,7 +31,7 @@ def dynamic_slice(
starts: List[int],
sizes: List[int],
) -> Tensor:
slicing = [slice(start, start + size) for start, size in zip(starts, sizes)]
slicing = tuple(slice(start, start + size) for start, size in zip(starts, sizes))
return x[slicing]
class AttnChunk(NamedTuple):

View File

@@ -0,0 +1,469 @@
# Original code: https://github.com/VectorSpaceLab/OmniGen2
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from comfy.ldm.lightricks.model import Timesteps
from comfy.ldm.flux.layers import EmbedND
from comfy.ldm.modules.attention import optimized_attention_masked
import comfy.model_management
import comfy.ldm.common_dit
def apply_rotary_emb(x, freqs_cis):
if x.shape[1] == 0:
return x
t_ = x.reshape(*x.shape[:-1], -1, 1, 2)
t_out = freqs_cis[..., 0] * t_[..., 0] + freqs_cis[..., 1] * t_[..., 1]
return t_out.reshape(*x.shape).to(dtype=x.dtype)
def swiglu(x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
return F.silu(x) * y
class TimestepEmbedding(nn.Module):
def __init__(self, in_channels: int, time_embed_dim: int, dtype=None, device=None, operations=None):
super().__init__()
self.linear_1 = operations.Linear(in_channels, time_embed_dim, dtype=dtype, device=device)
self.act = nn.SiLU()
self.linear_2 = operations.Linear(time_embed_dim, time_embed_dim, dtype=dtype, device=device)
def forward(self, sample: torch.Tensor) -> torch.Tensor:
sample = self.linear_1(sample)
sample = self.act(sample)
sample = self.linear_2(sample)
return sample
class LuminaRMSNormZero(nn.Module):
def __init__(self, embedding_dim: int, norm_eps: float = 1e-5, dtype=None, device=None, operations=None):
super().__init__()
self.silu = nn.SiLU()
self.linear = operations.Linear(min(embedding_dim, 1024), 4 * embedding_dim, dtype=dtype, device=device)
self.norm = operations.RMSNorm(embedding_dim, eps=norm_eps, dtype=dtype, device=device)
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
emb = self.linear(self.silu(emb))
scale_msa, gate_msa, scale_mlp, gate_mlp = emb.chunk(4, dim=1)
x = self.norm(x) * (1 + scale_msa[:, None])
return x, gate_msa, scale_mlp, gate_mlp
class LuminaLayerNormContinuous(nn.Module):
def __init__(self, embedding_dim: int, conditioning_embedding_dim: int, elementwise_affine: bool = False, eps: float = 1e-6, out_dim: Optional[int] = None, dtype=None, device=None, operations=None):
super().__init__()
self.silu = nn.SiLU()
self.linear_1 = operations.Linear(conditioning_embedding_dim, embedding_dim, dtype=dtype, device=device)
self.norm = operations.LayerNorm(embedding_dim, eps, elementwise_affine, dtype=dtype, device=device)
self.linear_2 = operations.Linear(embedding_dim, out_dim, bias=True, dtype=dtype, device=device) if out_dim is not None else None
def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor:
emb = self.linear_1(self.silu(conditioning_embedding).to(x.dtype))
x = self.norm(x) * (1 + emb)[:, None, :]
if self.linear_2 is not None:
x = self.linear_2(x)
return x
class LuminaFeedForward(nn.Module):
def __init__(self, dim: int, inner_dim: int, multiple_of: int = 256, dtype=None, device=None, operations=None):
super().__init__()
inner_dim = multiple_of * ((inner_dim + multiple_of - 1) // multiple_of)
self.linear_1 = operations.Linear(dim, inner_dim, bias=False, dtype=dtype, device=device)
self.linear_2 = operations.Linear(inner_dim, dim, bias=False, dtype=dtype, device=device)
self.linear_3 = operations.Linear(dim, inner_dim, bias=False, dtype=dtype, device=device)
def forward(self, x: torch.Tensor) -> torch.Tensor:
h1, h2 = self.linear_1(x), self.linear_3(x)
return self.linear_2(swiglu(h1, h2))
class Lumina2CombinedTimestepCaptionEmbedding(nn.Module):
def __init__(self, hidden_size: int = 4096, text_feat_dim: int = 2048, frequency_embedding_size: int = 256, norm_eps: float = 1e-5, timestep_scale: float = 1.0, dtype=None, device=None, operations=None):
super().__init__()
self.time_proj = Timesteps(num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0.0, scale=timestep_scale)
self.timestep_embedder = TimestepEmbedding(in_channels=frequency_embedding_size, time_embed_dim=min(hidden_size, 1024), dtype=dtype, device=device, operations=operations)
self.caption_embedder = nn.Sequential(
operations.RMSNorm(text_feat_dim, eps=norm_eps, dtype=dtype, device=device),
operations.Linear(text_feat_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
def forward(self, timestep: torch.Tensor, text_hidden_states: torch.Tensor, dtype: torch.dtype) -> Tuple[torch.Tensor, torch.Tensor]:
timestep_proj = self.time_proj(timestep).to(dtype=dtype)
time_embed = self.timestep_embedder(timestep_proj)
caption_embed = self.caption_embedder(text_hidden_states)
return time_embed, caption_embed
class Attention(nn.Module):
def __init__(self, query_dim: int, dim_head: int, heads: int, kv_heads: int, eps: float = 1e-5, bias: bool = False, dtype=None, device=None, operations=None):
super().__init__()
self.heads = heads
self.kv_heads = kv_heads
self.dim_head = dim_head
self.scale = dim_head ** -0.5
self.to_q = operations.Linear(query_dim, heads * dim_head, bias=bias, dtype=dtype, device=device)
self.to_k = operations.Linear(query_dim, kv_heads * dim_head, bias=bias, dtype=dtype, device=device)
self.to_v = operations.Linear(query_dim, kv_heads * dim_head, bias=bias, dtype=dtype, device=device)
self.norm_q = operations.RMSNorm(dim_head, eps=eps, dtype=dtype, device=device)
self.norm_k = operations.RMSNorm(dim_head, eps=eps, dtype=dtype, device=device)
self.to_out = nn.Sequential(
operations.Linear(heads * dim_head, query_dim, bias=bias, dtype=dtype, device=device),
nn.Dropout(0.0)
)
def forward(self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None) -> torch.Tensor:
batch_size, sequence_length, _ = hidden_states.shape
query = self.to_q(hidden_states)
key = self.to_k(encoder_hidden_states)
value = self.to_v(encoder_hidden_states)
query = query.view(batch_size, -1, self.heads, self.dim_head)
key = key.view(batch_size, -1, self.kv_heads, self.dim_head)
value = value.view(batch_size, -1, self.kv_heads, self.dim_head)
query = self.norm_q(query)
key = self.norm_k(key)
if image_rotary_emb is not None:
query = apply_rotary_emb(query, image_rotary_emb)
key = apply_rotary_emb(key, image_rotary_emb)
query = query.transpose(1, 2)
key = key.transpose(1, 2)
value = value.transpose(1, 2)
if self.kv_heads < self.heads:
key = key.repeat_interleave(self.heads // self.kv_heads, dim=1)
value = value.repeat_interleave(self.heads // self.kv_heads, dim=1)
hidden_states = optimized_attention_masked(query, key, value, self.heads, attention_mask, skip_reshape=True)
hidden_states = self.to_out[0](hidden_states)
return hidden_states
class OmniGen2TransformerBlock(nn.Module):
def __init__(self, dim: int, num_attention_heads: int, num_kv_heads: int, multiple_of: int, ffn_dim_multiplier: float, norm_eps: float, modulation: bool = True, dtype=None, device=None, operations=None):
super().__init__()
self.modulation = modulation
self.attn = Attention(
query_dim=dim,
dim_head=dim // num_attention_heads,
heads=num_attention_heads,
kv_heads=num_kv_heads,
eps=1e-5,
bias=False,
dtype=dtype, device=device, operations=operations,
)
self.feed_forward = LuminaFeedForward(
dim=dim,
inner_dim=4 * dim,
multiple_of=multiple_of,
dtype=dtype, device=device, operations=operations
)
if modulation:
self.norm1 = LuminaRMSNormZero(embedding_dim=dim, norm_eps=norm_eps, dtype=dtype, device=device, operations=operations)
else:
self.norm1 = operations.RMSNorm(dim, eps=norm_eps, dtype=dtype, device=device)
self.ffn_norm1 = operations.RMSNorm(dim, eps=norm_eps, dtype=dtype, device=device)
self.norm2 = operations.RMSNorm(dim, eps=norm_eps, dtype=dtype, device=device)
self.ffn_norm2 = operations.RMSNorm(dim, eps=norm_eps, dtype=dtype, device=device)
def forward(self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, image_rotary_emb: torch.Tensor, temb: Optional[torch.Tensor] = None) -> torch.Tensor:
if self.modulation:
norm_hidden_states, gate_msa, scale_mlp, gate_mlp = self.norm1(hidden_states, temb)
attn_output = self.attn(norm_hidden_states, norm_hidden_states, attention_mask, image_rotary_emb)
hidden_states = hidden_states + gate_msa.unsqueeze(1).tanh() * self.norm2(attn_output)
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states) * (1 + scale_mlp.unsqueeze(1)))
hidden_states = hidden_states + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(mlp_output)
else:
norm_hidden_states = self.norm1(hidden_states)
attn_output = self.attn(norm_hidden_states, norm_hidden_states, attention_mask, image_rotary_emb)
hidden_states = hidden_states + self.norm2(attn_output)
mlp_output = self.feed_forward(self.ffn_norm1(hidden_states))
hidden_states = hidden_states + self.ffn_norm2(mlp_output)
return hidden_states
class OmniGen2RotaryPosEmbed(nn.Module):
def __init__(self, theta: int, axes_dim: Tuple[int, int, int], axes_lens: Tuple[int, int, int] = (300, 512, 512), patch_size: int = 2):
super().__init__()
self.theta = theta
self.axes_dim = axes_dim
self.axes_lens = axes_lens
self.patch_size = patch_size
self.rope_embedder = EmbedND(dim=sum(axes_dim), theta=self.theta, axes_dim=axes_dim)
def forward(self, batch_size, encoder_seq_len, l_effective_cap_len, l_effective_ref_img_len, l_effective_img_len, ref_img_sizes, img_sizes, device):
p = self.patch_size
seq_lengths = [cap_len + sum(ref_img_len) + img_len for cap_len, ref_img_len, img_len in zip(l_effective_cap_len, l_effective_ref_img_len, l_effective_img_len)]
max_seq_len = max(seq_lengths)
max_ref_img_len = max([sum(ref_img_len) for ref_img_len in l_effective_ref_img_len])
max_img_len = max(l_effective_img_len)
position_ids = torch.zeros(batch_size, max_seq_len, 3, dtype=torch.int32, device=device)
for i, (cap_seq_len, seq_len) in enumerate(zip(l_effective_cap_len, seq_lengths)):
position_ids[i, :cap_seq_len] = repeat(torch.arange(cap_seq_len, dtype=torch.int32, device=device), "l -> l 3")
pe_shift = cap_seq_len
pe_shift_len = cap_seq_len
if ref_img_sizes[i] is not None:
for ref_img_size, ref_img_len in zip(ref_img_sizes[i], l_effective_ref_img_len[i]):
H, W = ref_img_size
ref_H_tokens, ref_W_tokens = H // p, W // p
row_ids = repeat(torch.arange(ref_H_tokens, dtype=torch.int32, device=device), "h -> h w", w=ref_W_tokens).flatten()
col_ids = repeat(torch.arange(ref_W_tokens, dtype=torch.int32, device=device), "w -> h w", h=ref_H_tokens).flatten()
position_ids[i, pe_shift_len:pe_shift_len + ref_img_len, 0] = pe_shift
position_ids[i, pe_shift_len:pe_shift_len + ref_img_len, 1] = row_ids
position_ids[i, pe_shift_len:pe_shift_len + ref_img_len, 2] = col_ids
pe_shift += max(ref_H_tokens, ref_W_tokens)
pe_shift_len += ref_img_len
H, W = img_sizes[i]
H_tokens, W_tokens = H // p, W // p
row_ids = repeat(torch.arange(H_tokens, dtype=torch.int32, device=device), "h -> h w", w=W_tokens).flatten()
col_ids = repeat(torch.arange(W_tokens, dtype=torch.int32, device=device), "w -> h w", h=H_tokens).flatten()
position_ids[i, pe_shift_len: seq_len, 0] = pe_shift
position_ids[i, pe_shift_len: seq_len, 1] = row_ids
position_ids[i, pe_shift_len: seq_len, 2] = col_ids
freqs_cis = self.rope_embedder(position_ids).movedim(1, 2)
cap_freqs_cis_shape = list(freqs_cis.shape)
cap_freqs_cis_shape[1] = encoder_seq_len
cap_freqs_cis = torch.zeros(*cap_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)
ref_img_freqs_cis_shape = list(freqs_cis.shape)
ref_img_freqs_cis_shape[1] = max_ref_img_len
ref_img_freqs_cis = torch.zeros(*ref_img_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)
img_freqs_cis_shape = list(freqs_cis.shape)
img_freqs_cis_shape[1] = max_img_len
img_freqs_cis = torch.zeros(*img_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)
for i, (cap_seq_len, ref_img_len, img_len, seq_len) in enumerate(zip(l_effective_cap_len, l_effective_ref_img_len, l_effective_img_len, seq_lengths)):
cap_freqs_cis[i, :cap_seq_len] = freqs_cis[i, :cap_seq_len]
ref_img_freqs_cis[i, :sum(ref_img_len)] = freqs_cis[i, cap_seq_len:cap_seq_len + sum(ref_img_len)]
img_freqs_cis[i, :img_len] = freqs_cis[i, cap_seq_len + sum(ref_img_len):cap_seq_len + sum(ref_img_len) + img_len]
return cap_freqs_cis, ref_img_freqs_cis, img_freqs_cis, freqs_cis, l_effective_cap_len, seq_lengths
class OmniGen2Transformer2DModel(nn.Module):
def __init__(
self,
patch_size: int = 2,
in_channels: int = 16,
out_channels: Optional[int] = None,
hidden_size: int = 2304,
num_layers: int = 26,
num_refiner_layers: int = 2,
num_attention_heads: int = 24,
num_kv_heads: int = 8,
multiple_of: int = 256,
ffn_dim_multiplier: Optional[float] = None,
norm_eps: float = 1e-5,
axes_dim_rope: Tuple[int, int, int] = (32, 32, 32),
axes_lens: Tuple[int, int, int] = (300, 512, 512),
text_feat_dim: int = 1024,
timestep_scale: float = 1.0,
image_model=None,
device=None,
dtype=None,
operations=None,
):
super().__init__()
self.patch_size = patch_size
self.out_channels = out_channels or in_channels
self.hidden_size = hidden_size
self.dtype = dtype
self.rope_embedder = OmniGen2RotaryPosEmbed(
theta=10000,
axes_dim=axes_dim_rope,
axes_lens=axes_lens,
patch_size=patch_size,
)
self.x_embedder = operations.Linear(patch_size * patch_size * in_channels, hidden_size, dtype=dtype, device=device)
self.ref_image_patch_embedder = operations.Linear(patch_size * patch_size * in_channels, hidden_size, dtype=dtype, device=device)
self.time_caption_embed = Lumina2CombinedTimestepCaptionEmbedding(
hidden_size=hidden_size,
text_feat_dim=text_feat_dim,
norm_eps=norm_eps,
timestep_scale=timestep_scale, dtype=dtype, device=device, operations=operations
)
self.noise_refiner = nn.ModuleList([
OmniGen2TransformerBlock(
hidden_size, num_attention_heads, num_kv_heads,
multiple_of, ffn_dim_multiplier, norm_eps, modulation=True, dtype=dtype, device=device, operations=operations
) for _ in range(num_refiner_layers)
])
self.ref_image_refiner = nn.ModuleList([
OmniGen2TransformerBlock(
hidden_size, num_attention_heads, num_kv_heads,
multiple_of, ffn_dim_multiplier, norm_eps, modulation=True, dtype=dtype, device=device, operations=operations
) for _ in range(num_refiner_layers)
])
self.context_refiner = nn.ModuleList([
OmniGen2TransformerBlock(
hidden_size, num_attention_heads, num_kv_heads,
multiple_of, ffn_dim_multiplier, norm_eps, modulation=False, dtype=dtype, device=device, operations=operations
) for _ in range(num_refiner_layers)
])
self.layers = nn.ModuleList([
OmniGen2TransformerBlock(
hidden_size, num_attention_heads, num_kv_heads,
multiple_of, ffn_dim_multiplier, norm_eps, modulation=True, dtype=dtype, device=device, operations=operations
) for _ in range(num_layers)
])
self.norm_out = LuminaLayerNormContinuous(
embedding_dim=hidden_size,
conditioning_embedding_dim=min(hidden_size, 1024),
elementwise_affine=False,
eps=1e-6,
out_dim=patch_size * patch_size * self.out_channels, dtype=dtype, device=device, operations=operations
)
self.image_index_embedding = nn.Parameter(torch.empty(5, hidden_size, device=device, dtype=dtype))
def flat_and_pad_to_seq(self, hidden_states, ref_image_hidden_states):
batch_size = len(hidden_states)
p = self.patch_size
img_sizes = [(img.size(1), img.size(2)) for img in hidden_states]
l_effective_img_len = [(H // p) * (W // p) for (H, W) in img_sizes]
if ref_image_hidden_states is not None:
ref_image_hidden_states = list(map(lambda ref: comfy.ldm.common_dit.pad_to_patch_size(ref, (p, p)), ref_image_hidden_states))
ref_img_sizes = [[(imgs.size(2), imgs.size(3)) if imgs is not None else None for imgs in ref_image_hidden_states]] * batch_size
l_effective_ref_img_len = [[(ref_img_size[0] // p) * (ref_img_size[1] // p) for ref_img_size in _ref_img_sizes] if _ref_img_sizes is not None else [0] for _ref_img_sizes in ref_img_sizes]
else:
ref_img_sizes = [None for _ in range(batch_size)]
l_effective_ref_img_len = [[0] for _ in range(batch_size)]
flat_ref_img_hidden_states = None
if ref_image_hidden_states is not None:
imgs = []
for ref_img in ref_image_hidden_states:
B, C, H, W = ref_img.size()
ref_img = rearrange(ref_img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=p, p2=p)
imgs.append(ref_img)
flat_ref_img_hidden_states = torch.cat(imgs, dim=1)
img = hidden_states
B, C, H, W = img.size()
flat_hidden_states = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=p, p2=p)
return (
flat_hidden_states, flat_ref_img_hidden_states,
None, None,
l_effective_ref_img_len, l_effective_img_len,
ref_img_sizes, img_sizes,
)
def img_patch_embed_and_refine(self, hidden_states, ref_image_hidden_states, padded_img_mask, padded_ref_img_mask, noise_rotary_emb, ref_img_rotary_emb, l_effective_ref_img_len, l_effective_img_len, temb):
batch_size = len(hidden_states)
hidden_states = self.x_embedder(hidden_states)
if ref_image_hidden_states is not None:
ref_image_hidden_states = self.ref_image_patch_embedder(ref_image_hidden_states)
image_index_embedding = comfy.model_management.cast_to(self.image_index_embedding, dtype=hidden_states.dtype, device=hidden_states.device)
for i in range(batch_size):
shift = 0
for j, ref_img_len in enumerate(l_effective_ref_img_len[i]):
ref_image_hidden_states[i, shift:shift + ref_img_len, :] = ref_image_hidden_states[i, shift:shift + ref_img_len, :] + image_index_embedding[j]
shift += ref_img_len
for layer in self.noise_refiner:
hidden_states = layer(hidden_states, padded_img_mask, noise_rotary_emb, temb)
if ref_image_hidden_states is not None:
for layer in self.ref_image_refiner:
ref_image_hidden_states = layer(ref_image_hidden_states, padded_ref_img_mask, ref_img_rotary_emb, temb)
hidden_states = torch.cat([ref_image_hidden_states, hidden_states], dim=1)
return hidden_states
def forward(self, x, timesteps, context, num_tokens, ref_latents=None, attention_mask=None, **kwargs):
B, C, H, W = x.shape
hidden_states = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_size, self.patch_size))
_, _, H_padded, W_padded = hidden_states.shape
timestep = 1.0 - timesteps
text_hidden_states = context
text_attention_mask = attention_mask
ref_image_hidden_states = ref_latents
device = hidden_states.device
temb, text_hidden_states = self.time_caption_embed(timestep, text_hidden_states, hidden_states[0].dtype)
(
hidden_states, ref_image_hidden_states,
img_mask, ref_img_mask,
l_effective_ref_img_len, l_effective_img_len,
ref_img_sizes, img_sizes,
) = self.flat_and_pad_to_seq(hidden_states, ref_image_hidden_states)
(
context_rotary_emb, ref_img_rotary_emb, noise_rotary_emb,
rotary_emb, encoder_seq_lengths, seq_lengths,
) = self.rope_embedder(
hidden_states.shape[0], text_hidden_states.shape[1], [num_tokens] * text_hidden_states.shape[0],
l_effective_ref_img_len, l_effective_img_len,
ref_img_sizes, img_sizes, device,
)
for layer in self.context_refiner:
text_hidden_states = layer(text_hidden_states, text_attention_mask, context_rotary_emb)
img_len = hidden_states.shape[1]
combined_img_hidden_states = self.img_patch_embed_and_refine(
hidden_states, ref_image_hidden_states,
img_mask, ref_img_mask,
noise_rotary_emb, ref_img_rotary_emb,
l_effective_ref_img_len, l_effective_img_len,
temb,
)
hidden_states = torch.cat([text_hidden_states, combined_img_hidden_states], dim=1)
attention_mask = None
for layer in self.layers:
hidden_states = layer(hidden_states, attention_mask, rotary_emb, temb)
hidden_states = self.norm_out(hidden_states, temb)
p = self.patch_size
output = rearrange(hidden_states[:, -img_len:], 'b (h w) (p1 p2 c) -> b c (h p1) (w p2)', h=H_padded // p, w=W_padded// p, p1=p, p2=p)[:, :, :H, :W]
return -output

View File

@@ -9,7 +9,6 @@ from einops import repeat
from comfy.ldm.modules.attention import optimized_attention
from comfy.ldm.flux.layers import EmbedND
from comfy.ldm.flux.math import apply_rope
from comfy.ldm.modules.diffusionmodules.mmdit import RMSNorm
import comfy.ldm.common_dit
import comfy.model_management
@@ -49,8 +48,8 @@ class WanSelfAttention(nn.Module):
self.k = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.v = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.o = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.norm_q = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
self.norm_k = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
self.norm_q = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
self.norm_k = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
def forward(self, x, freqs):
r"""
@@ -83,7 +82,7 @@ class WanSelfAttention(nn.Module):
class WanT2VCrossAttention(WanSelfAttention):
def forward(self, x, context):
def forward(self, x, context, **kwargs):
r"""
Args:
x(Tensor): Shape [B, L1, C]
@@ -114,16 +113,16 @@ class WanI2VCrossAttention(WanSelfAttention):
self.k_img = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.v_img = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
# self.alpha = nn.Parameter(torch.zeros((1, )))
self.norm_k_img = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
self.norm_k_img = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
def forward(self, x, context):
def forward(self, x, context, context_img_len):
r"""
Args:
x(Tensor): Shape [B, L1, C]
context(Tensor): Shape [B, L2, C]
"""
context_img = context[:, :257]
context = context[:, 257:]
context_img = context[:, :context_img_len]
context = context[:, context_img_len:]
# compute query, key, value
q = self.norm_q(self.q(x))
@@ -193,6 +192,7 @@ class WanAttentionBlock(nn.Module):
e,
freqs,
context,
context_img_len=257,
):
r"""
Args:
@@ -213,12 +213,94 @@ class WanAttentionBlock(nn.Module):
x = x + y * e[2]
# cross-attention & ffn
x = x + self.cross_attn(self.norm3(x), context)
x = x + self.cross_attn(self.norm3(x), context, context_img_len=context_img_len)
y = self.ffn(self.norm2(x) * (1 + e[4]) + e[3])
x = x + y * e[5]
return x
class VaceWanAttentionBlock(WanAttentionBlock):
def __init__(
self,
cross_attn_type,
dim,
ffn_dim,
num_heads,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=False,
eps=1e-6,
block_id=0,
operation_settings={}
):
super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps, operation_settings=operation_settings)
self.block_id = block_id
if block_id == 0:
self.before_proj = operation_settings.get("operations").Linear(self.dim, self.dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.after_proj = operation_settings.get("operations").Linear(self.dim, self.dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
def forward(self, c, x, **kwargs):
if self.block_id == 0:
c = self.before_proj(c) + x
c = super().forward(c, **kwargs)
c_skip = self.after_proj(c)
return c_skip, c
class WanCamAdapter(nn.Module):
def __init__(self, in_dim, out_dim, kernel_size, stride, num_residual_blocks=1, operation_settings={}):
super(WanCamAdapter, self).__init__()
# Pixel Unshuffle: reduce spatial dimensions by a factor of 8
self.pixel_unshuffle = nn.PixelUnshuffle(downscale_factor=8)
# Convolution: reduce spatial dimensions by a factor
# of 2 (without overlap)
self.conv = operation_settings.get("operations").Conv2d(in_dim * 64, out_dim, kernel_size=kernel_size, stride=stride, padding=0, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
# Residual blocks for feature extraction
self.residual_blocks = nn.Sequential(
*[WanCamResidualBlock(out_dim, operation_settings = operation_settings) for _ in range(num_residual_blocks)]
)
def forward(self, x):
# Reshape to merge the frame dimension into batch
bs, c, f, h, w = x.size()
x = x.permute(0, 2, 1, 3, 4).contiguous().view(bs * f, c, h, w)
# Pixel Unshuffle operation
x_unshuffled = self.pixel_unshuffle(x)
# Convolution operation
x_conv = self.conv(x_unshuffled)
# Feature extraction with residual blocks
out = self.residual_blocks(x_conv)
# Reshape to restore original bf dimension
out = out.view(bs, f, out.size(1), out.size(2), out.size(3))
# Permute dimensions to reorder (if needed), e.g., swap channels and feature frames
out = out.permute(0, 2, 1, 3, 4)
return out
class WanCamResidualBlock(nn.Module):
def __init__(self, dim, operation_settings={}):
super(WanCamResidualBlock, self).__init__()
self.conv1 = operation_settings.get("operations").Conv2d(dim, dim, kernel_size=3, padding=1, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.relu = nn.ReLU(inplace=True)
self.conv2 = operation_settings.get("operations").Conv2d(dim, dim, kernel_size=3, padding=1, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
def forward(self, x):
residual = x
out = self.relu(self.conv1(x))
out = self.conv2(out)
out += residual
return out
class Head(nn.Module):
def __init__(self, dim, out_dim, patch_size, eps=1e-6, operation_settings={}):
@@ -250,7 +332,7 @@ class Head(nn.Module):
class MLPProj(torch.nn.Module):
def __init__(self, in_dim, out_dim, operation_settings={}):
def __init__(self, in_dim, out_dim, flf_pos_embed_token_number=None, operation_settings={}):
super().__init__()
self.proj = torch.nn.Sequential(
@@ -258,7 +340,15 @@ class MLPProj(torch.nn.Module):
torch.nn.GELU(), operation_settings.get("operations").Linear(in_dim, out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")),
operation_settings.get("operations").LayerNorm(out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
if flf_pos_embed_token_number is not None:
self.emb_pos = nn.Parameter(torch.empty((1, flf_pos_embed_token_number, in_dim), device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
else:
self.emb_pos = None
def forward(self, image_embeds):
if self.emb_pos is not None:
image_embeds = image_embeds[:, :self.emb_pos.shape[1]] + comfy.model_management.cast_to(self.emb_pos[:, :image_embeds.shape[1]], dtype=image_embeds.dtype, device=image_embeds.device)
clip_extra_context_tokens = self.proj(image_embeds)
return clip_extra_context_tokens
@@ -284,6 +374,7 @@ class WanModel(torch.nn.Module):
qk_norm=True,
cross_attn_norm=True,
eps=1e-6,
flf_pos_embed_token_number=None,
image_model=None,
device=None,
dtype=None,
@@ -373,7 +464,7 @@ class WanModel(torch.nn.Module):
self.rope_embedder = EmbedND(dim=d, theta=10000.0, axes_dim=[d - 4 * (d // 6), 2 * (d // 6), 2 * (d // 6)])
if model_type == 'i2v':
self.img_emb = MLPProj(1280, dim, operation_settings=operation_settings)
self.img_emb = MLPProj(1280, dim, flf_pos_embed_token_number=flf_pos_embed_token_number, operation_settings=operation_settings)
else:
self.img_emb = None
@@ -385,6 +476,7 @@ class WanModel(torch.nn.Module):
clip_fea=None,
freqs=None,
transformer_options={},
**kwargs,
):
r"""
Forward pass through the diffusion model
@@ -420,9 +512,12 @@ class WanModel(torch.nn.Module):
# context
context = self.text_embedding(context)
if clip_fea is not None and self.img_emb is not None:
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = torch.concat([context_clip, context], dim=1)
context_img_len = None
if clip_fea is not None:
if self.img_emb is not None:
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = torch.concat([context_clip, context], dim=1)
context_img_len = clip_fea.shape[-2]
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
@@ -430,12 +525,12 @@ class WanModel(torch.nn.Module):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"])
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len)
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context)
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
# head
x = self.head(x, e)
@@ -444,13 +539,20 @@ class WanModel(torch.nn.Module):
x = self.unpatchify(x, grid_sizes)
return x
def forward(self, x, timestep, context, clip_fea=None, transformer_options={},**kwargs):
def forward(self, x, timestep, context, clip_fea=None, time_dim_concat=None, transformer_options={}, **kwargs):
bs, c, t, h, w = x.shape
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size)
patch_size = self.patch_size
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
h_len = ((h + (patch_size[1] // 2)) // patch_size[1])
w_len = ((w + (patch_size[2] // 2)) // patch_size[2])
if time_dim_concat is not None:
time_dim_concat = comfy.ldm.common_dit.pad_to_patch_size(time_dim_concat, self.patch_size)
x = torch.cat([x, time_dim_concat], dim=2)
t_len = ((x.shape[2] + (patch_size[0] // 2)) // patch_size[0])
img_ids = torch.zeros((t_len, h_len, w_len, 3), device=x.device, dtype=x.dtype)
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).reshape(-1, 1, 1)
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).reshape(1, -1, 1)
@@ -458,7 +560,7 @@ class WanModel(torch.nn.Module):
img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
freqs = self.rope_embedder(img_ids).movedim(1, 2)
return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs, transformer_options=transformer_options)[:, :, :t, :h, :w]
return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs, transformer_options=transformer_options, **kwargs)[:, :, :t, :h, :w]
def unpatchify(self, x, grid_sizes):
r"""
@@ -483,3 +585,209 @@ class WanModel(torch.nn.Module):
u = torch.einsum('bfhwpqrc->bcfphqwr', u)
u = u.reshape(b, c, *[i * j for i, j in zip(grid_sizes, self.patch_size)])
return u
class VaceWanModel(WanModel):
r"""
Wan diffusion backbone supporting both text-to-video and image-to-video.
"""
def __init__(self,
model_type='vace',
patch_size=(1, 2, 2),
text_len=512,
in_dim=16,
dim=2048,
ffn_dim=8192,
freq_dim=256,
text_dim=4096,
out_dim=16,
num_heads=16,
num_layers=32,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=True,
eps=1e-6,
flf_pos_embed_token_number=None,
image_model=None,
vace_layers=None,
vace_in_dim=None,
device=None,
dtype=None,
operations=None,
):
super().__init__(model_type='t2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, image_model=image_model, device=device, dtype=dtype, operations=operations)
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
# Vace
if vace_layers is not None:
self.vace_layers = vace_layers
self.vace_in_dim = vace_in_dim
# vace blocks
self.vace_blocks = nn.ModuleList([
VaceWanAttentionBlock('t2v_cross_attn', self.dim, self.ffn_dim, self.num_heads, self.window_size, self.qk_norm, self.cross_attn_norm, self.eps, block_id=i, operation_settings=operation_settings)
for i in range(self.vace_layers)
])
self.vace_layers_mapping = {i: n for n, i in enumerate(range(0, self.num_layers, self.num_layers // self.vace_layers))}
# vace patch embeddings
self.vace_patch_embedding = operations.Conv3d(
self.vace_in_dim, self.dim, kernel_size=self.patch_size, stride=self.patch_size, device=device, dtype=torch.float32
)
def forward_orig(
self,
x,
t,
context,
vace_context,
vace_strength,
clip_fea=None,
freqs=None,
transformer_options={},
**kwargs,
):
# embeddings
x = self.patch_embedding(x.float()).to(x.dtype)
grid_sizes = x.shape[2:]
x = x.flatten(2).transpose(1, 2)
# time embeddings
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype))
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
# context
context = self.text_embedding(context)
context_img_len = None
if clip_fea is not None:
if self.img_emb is not None:
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = torch.concat([context_clip, context], dim=1)
context_img_len = clip_fea.shape[-2]
orig_shape = list(vace_context.shape)
vace_context = vace_context.movedim(0, 1).reshape([-1] + orig_shape[2:])
c = self.vace_patch_embedding(vace_context.float()).to(vace_context.dtype)
c = c.flatten(2).transpose(1, 2)
c = list(c.split(orig_shape[0], dim=0))
# arguments
x_orig = x
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len)
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
ii = self.vace_layers_mapping.get(i, None)
if ii is not None:
for iii in range(len(c)):
c_skip, c[iii] = self.vace_blocks[ii](c[iii], x=x_orig, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
x += c_skip * vace_strength[iii]
del c_skip
# head
x = self.head(x, e)
# unpatchify
x = self.unpatchify(x, grid_sizes)
return x
class CameraWanModel(WanModel):
r"""
Wan diffusion backbone supporting both text-to-video and image-to-video.
"""
def __init__(self,
model_type='camera',
patch_size=(1, 2, 2),
text_len=512,
in_dim=16,
dim=2048,
ffn_dim=8192,
freq_dim=256,
text_dim=4096,
out_dim=16,
num_heads=16,
num_layers=32,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=True,
eps=1e-6,
flf_pos_embed_token_number=None,
image_model=None,
in_dim_control_adapter=24,
device=None,
dtype=None,
operations=None,
):
super().__init__(model_type='i2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, image_model=image_model, device=device, dtype=dtype, operations=operations)
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
self.control_adapter = WanCamAdapter(in_dim_control_adapter, dim, kernel_size=patch_size[1:], stride=patch_size[1:], operation_settings=operation_settings)
def forward_orig(
self,
x,
t,
context,
clip_fea=None,
freqs=None,
camera_conditions = None,
transformer_options={},
**kwargs,
):
# embeddings
x = self.patch_embedding(x.float()).to(x.dtype)
if self.control_adapter is not None and camera_conditions is not None:
x_camera = self.control_adapter(camera_conditions).to(x.dtype)
x = x + x_camera
grid_sizes = x.shape[2:]
x = x.flatten(2).transpose(1, 2)
# time embeddings
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype))
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
# context
context = self.text_embedding(context)
context_img_len = None
if clip_fea is not None:
if self.img_emb is not None:
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = torch.concat([context_clip, context], dim=1)
context_img_len = clip_fea.shape[-2]
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len)
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
# head
x = self.head(x, e)
# unpatchify
x = self.unpatchify(x, grid_sizes)
return x

View File

@@ -20,6 +20,7 @@ from __future__ import annotations
import comfy.utils
import comfy.model_management
import comfy.model_base
import comfy.weight_adapter as weight_adapter
import logging
import torch
@@ -49,139 +50,12 @@ def load_lora(lora, to_load, log_missing=True):
dora_scale = lora[dora_scale_name]
loaded_keys.add(dora_scale_name)
reshape_name = "{}.reshape_weight".format(x)
reshape = None
if reshape_name in lora.keys():
try:
reshape = lora[reshape_name].tolist()
loaded_keys.add(reshape_name)
except:
pass
regular_lora = "{}.lora_up.weight".format(x)
diffusers_lora = "{}_lora.up.weight".format(x)
diffusers2_lora = "{}.lora_B.weight".format(x)
diffusers3_lora = "{}.lora.up.weight".format(x)
mochi_lora = "{}.lora_B".format(x)
transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
A_name = None
if regular_lora in lora.keys():
A_name = regular_lora
B_name = "{}.lora_down.weight".format(x)
mid_name = "{}.lora_mid.weight".format(x)
elif diffusers_lora in lora.keys():
A_name = diffusers_lora
B_name = "{}_lora.down.weight".format(x)
mid_name = None
elif diffusers2_lora in lora.keys():
A_name = diffusers2_lora
B_name = "{}.lora_A.weight".format(x)
mid_name = None
elif diffusers3_lora in lora.keys():
A_name = diffusers3_lora
B_name = "{}.lora.down.weight".format(x)
mid_name = None
elif mochi_lora in lora.keys():
A_name = mochi_lora
B_name = "{}.lora_A".format(x)
mid_name = None
elif transformers_lora in lora.keys():
A_name = transformers_lora
B_name ="{}.lora_linear_layer.down.weight".format(x)
mid_name = None
if A_name is not None:
mid = None
if mid_name is not None and mid_name in lora.keys():
mid = lora[mid_name]
loaded_keys.add(mid_name)
patch_dict[to_load[x]] = ("lora", (lora[A_name], lora[B_name], alpha, mid, dora_scale, reshape))
loaded_keys.add(A_name)
loaded_keys.add(B_name)
######## loha
hada_w1_a_name = "{}.hada_w1_a".format(x)
hada_w1_b_name = "{}.hada_w1_b".format(x)
hada_w2_a_name = "{}.hada_w2_a".format(x)
hada_w2_b_name = "{}.hada_w2_b".format(x)
hada_t1_name = "{}.hada_t1".format(x)
hada_t2_name = "{}.hada_t2".format(x)
if hada_w1_a_name in lora.keys():
hada_t1 = None
hada_t2 = None
if hada_t1_name in lora.keys():
hada_t1 = lora[hada_t1_name]
hada_t2 = lora[hada_t2_name]
loaded_keys.add(hada_t1_name)
loaded_keys.add(hada_t2_name)
patch_dict[to_load[x]] = ("loha", (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2, dora_scale))
loaded_keys.add(hada_w1_a_name)
loaded_keys.add(hada_w1_b_name)
loaded_keys.add(hada_w2_a_name)
loaded_keys.add(hada_w2_b_name)
######## lokr
lokr_w1_name = "{}.lokr_w1".format(x)
lokr_w2_name = "{}.lokr_w2".format(x)
lokr_w1_a_name = "{}.lokr_w1_a".format(x)
lokr_w1_b_name = "{}.lokr_w1_b".format(x)
lokr_t2_name = "{}.lokr_t2".format(x)
lokr_w2_a_name = "{}.lokr_w2_a".format(x)
lokr_w2_b_name = "{}.lokr_w2_b".format(x)
lokr_w1 = None
if lokr_w1_name in lora.keys():
lokr_w1 = lora[lokr_w1_name]
loaded_keys.add(lokr_w1_name)
lokr_w2 = None
if lokr_w2_name in lora.keys():
lokr_w2 = lora[lokr_w2_name]
loaded_keys.add(lokr_w2_name)
lokr_w1_a = None
if lokr_w1_a_name in lora.keys():
lokr_w1_a = lora[lokr_w1_a_name]
loaded_keys.add(lokr_w1_a_name)
lokr_w1_b = None
if lokr_w1_b_name in lora.keys():
lokr_w1_b = lora[lokr_w1_b_name]
loaded_keys.add(lokr_w1_b_name)
lokr_w2_a = None
if lokr_w2_a_name in lora.keys():
lokr_w2_a = lora[lokr_w2_a_name]
loaded_keys.add(lokr_w2_a_name)
lokr_w2_b = None
if lokr_w2_b_name in lora.keys():
lokr_w2_b = lora[lokr_w2_b_name]
loaded_keys.add(lokr_w2_b_name)
lokr_t2 = None
if lokr_t2_name in lora.keys():
lokr_t2 = lora[lokr_t2_name]
loaded_keys.add(lokr_t2_name)
if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
patch_dict[to_load[x]] = ("lokr", (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2, dora_scale))
#glora
a1_name = "{}.a1.weight".format(x)
a2_name = "{}.a2.weight".format(x)
b1_name = "{}.b1.weight".format(x)
b2_name = "{}.b2.weight".format(x)
if a1_name in lora:
patch_dict[to_load[x]] = ("glora", (lora[a1_name], lora[a2_name], lora[b1_name], lora[b2_name], alpha, dora_scale))
loaded_keys.add(a1_name)
loaded_keys.add(a2_name)
loaded_keys.add(b1_name)
loaded_keys.add(b2_name)
for adapter_cls in weight_adapter.adapters:
adapter = adapter_cls.load(x, lora, alpha, dora_scale, loaded_keys)
if adapter is not None:
patch_dict[to_load[x]] = adapter
loaded_keys.update(adapter.loaded_keys)
continue
w_norm_name = "{}.w_norm".format(x)
b_norm_name = "{}.b_norm".format(x)
@@ -405,29 +279,23 @@ def model_lora_keys_unet(model, key_map={}):
key_map["transformer.{}".format(key_lora)] = k
key_map["diffusion_model.{}".format(key_lora)] = k # Old loras
if isinstance(model, comfy.model_base.HiDream):
for k in sdk:
if k.startswith("diffusion_model."):
if k.endswith(".weight"):
key_lora = k[len("diffusion_model."):-len(".weight")]
key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = k #SimpleTuner lycoris format
key_map["transformer.{}".format(key_lora)] = k #SimpleTuner regular format
if isinstance(model, comfy.model_base.ACEStep):
for k in sdk:
if k.startswith("diffusion_model.") and k.endswith(".weight"): #Official ACE step lora format
key_lora = k[len("diffusion_model."):-len(".weight")]
key_map["{}".format(key_lora)] = k
return key_map
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function):
dora_scale = comfy.model_management.cast_to_device(dora_scale, weight.device, intermediate_dtype)
lora_diff *= alpha
weight_calc = weight + function(lora_diff).type(weight.dtype)
weight_norm = (
weight_calc.transpose(0, 1)
.reshape(weight_calc.shape[1], -1)
.norm(dim=1, keepdim=True)
.reshape(weight_calc.shape[1], *[1] * (weight_calc.dim() - 1))
.transpose(0, 1)
)
weight_calc *= (dora_scale / weight_norm).type(weight.dtype)
if strength != 1.0:
weight_calc -= weight
weight += strength * (weight_calc)
else:
weight[:] = weight_calc
return weight
def pad_tensor_to_shape(tensor: torch.Tensor, new_shape: list[int]) -> torch.Tensor:
"""
Pad a tensor to a new shape with zeros.
@@ -482,6 +350,16 @@ def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32, ori
if isinstance(v, list):
v = (calculate_weight(v[1:], v[0][1](comfy.model_management.cast_to_device(v[0][0], weight.device, intermediate_dtype, copy=True), inplace=True), key, intermediate_dtype=intermediate_dtype), )
if isinstance(v, weight_adapter.WeightAdapterBase):
output = v.calculate_weight(weight, key, strength, strength_model, offset, function, intermediate_dtype, original_weights)
if output is None:
logging.warning("Calculate Weight Failed: {} {}".format(v.name, key))
else:
weight = output
if old_weight is not None:
weight = old_weight
continue
if len(v) == 1:
patch_type = "diff"
elif len(v) == 2:
@@ -508,157 +386,6 @@ def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32, ori
diff_weight = comfy.model_management.cast_to_device(target_weight, weight.device, intermediate_dtype) - \
comfy.model_management.cast_to_device(original_weights[key][0][0], weight.device, intermediate_dtype)
weight += function(strength * comfy.model_management.cast_to_device(diff_weight, weight.device, weight.dtype))
elif patch_type == "lora": #lora/locon
mat1 = comfy.model_management.cast_to_device(v[0], weight.device, intermediate_dtype)
mat2 = comfy.model_management.cast_to_device(v[1], weight.device, intermediate_dtype)
dora_scale = v[4]
reshape = v[5]
if reshape is not None:
weight = pad_tensor_to_shape(weight, reshape)
if v[2] is not None:
alpha = v[2] / mat2.shape[0]
else:
alpha = 1.0
if v[3] is not None:
#locon mid weights, hopefully the math is fine because I didn't properly test it
mat3 = comfy.model_management.cast_to_device(v[3], weight.device, intermediate_dtype)
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
try:
lora_diff = torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)).reshape(weight.shape)
if dora_scale is not None:
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
logging.error("ERROR {} {} {}".format(patch_type, key, e))
elif patch_type == "lokr":
w1 = v[0]
w2 = v[1]
w1_a = v[3]
w1_b = v[4]
w2_a = v[5]
w2_b = v[6]
t2 = v[7]
dora_scale = v[8]
dim = None
if w1 is None:
dim = w1_b.shape[0]
w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w1_b, weight.device, intermediate_dtype))
else:
w1 = comfy.model_management.cast_to_device(w1, weight.device, intermediate_dtype)
if w2 is None:
dim = w2_b.shape[0]
if t2 is None:
w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype))
else:
w2 = torch.einsum('i j k l, j r, i p -> p r k l',
comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype))
else:
w2 = comfy.model_management.cast_to_device(w2, weight.device, intermediate_dtype)
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
if v[2] is not None and dim is not None:
alpha = v[2] / dim
else:
alpha = 1.0
try:
lora_diff = torch.kron(w1, w2).reshape(weight.shape)
if dora_scale is not None:
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
logging.error("ERROR {} {} {}".format(patch_type, key, e))
elif patch_type == "loha":
w1a = v[0]
w1b = v[1]
if v[2] is not None:
alpha = v[2] / w1b.shape[0]
else:
alpha = 1.0
w2a = v[3]
w2b = v[4]
dora_scale = v[7]
if v[5] is not None: #cp decomposition
t1 = v[5]
t2 = v[6]
m1 = torch.einsum('i j k l, j r, i p -> p r k l',
comfy.model_management.cast_to_device(t1, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype))
m2 = torch.einsum('i j k l, j r, i p -> p r k l',
comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype))
else:
m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype))
m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype))
try:
lora_diff = (m1 * m2).reshape(weight.shape)
if dora_scale is not None:
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
logging.error("ERROR {} {} {}".format(patch_type, key, e))
elif patch_type == "glora":
dora_scale = v[5]
old_glora = False
if v[3].shape[1] == v[2].shape[0] == v[0].shape[0] == v[1].shape[1]:
rank = v[0].shape[0]
old_glora = True
if v[3].shape[0] == v[2].shape[1] == v[0].shape[1] == v[1].shape[0]:
if old_glora and v[1].shape[0] == weight.shape[0] and weight.shape[0] == weight.shape[1]:
pass
else:
old_glora = False
rank = v[1].shape[0]
a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, intermediate_dtype)
a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, intermediate_dtype)
b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, intermediate_dtype)
b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, intermediate_dtype)
if v[4] is not None:
alpha = v[4] / rank
else:
alpha = 1.0
try:
if old_glora:
lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1).to(dtype=intermediate_dtype), a2), a1)).reshape(weight.shape) #old lycoris glora
else:
if weight.dim() > 2:
lora_diff = torch.einsum("o i ..., i j -> o j ...", torch.einsum("o i ..., i j -> o j ...", weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
else:
lora_diff = torch.mm(torch.mm(weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
lora_diff += torch.mm(b1, b2).reshape(weight.shape)
if dora_scale is not None:
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
logging.error("ERROR {} {} {}".format(patch_type, key, e))
else:
logging.warning("patch type not recognized {} {}".format(patch_type, key))

View File

@@ -1,4 +1,5 @@
import torch
import comfy.utils
def convert_lora_bfl_control(sd): #BFL loras for Flux
@@ -11,7 +12,13 @@ def convert_lora_bfl_control(sd): #BFL loras for Flux
return sd_out
def convert_lora_wan_fun(sd): #Wan Fun loras
return comfy.utils.state_dict_prefix_replace(sd, {"lora_unet__": "lora_unet_"})
def convert_lora(sd):
if "img_in.lora_A.weight" in sd and "single_blocks.0.norm.key_norm.scale" in sd:
return convert_lora_bfl_control(sd)
if "lora_unet__blocks_0_cross_attn_k.lora_down.weight" in sd:
return convert_lora_wan_fun(sd)
return sd

View File

@@ -34,9 +34,14 @@ import comfy.ldm.flux.model
import comfy.ldm.lightricks.model
import comfy.ldm.hunyuan_video.model
import comfy.ldm.cosmos.model
import comfy.ldm.cosmos.predict2
import comfy.ldm.lumina.model
import comfy.ldm.wan.model
import comfy.ldm.hunyuan3d.model
import comfy.ldm.hidream.model
import comfy.ldm.chroma.model
import comfy.ldm.ace.model
import comfy.ldm.omnigen.omnigen2
import comfy.model_management
import comfy.patcher_extension
@@ -45,6 +50,7 @@ import comfy.ops
from enum import Enum
from . import utils
import comfy.latent_formats
import comfy.model_sampling
import math
from typing import TYPE_CHECKING
if TYPE_CHECKING:
@@ -60,38 +66,39 @@ class ModelType(Enum):
V_PREDICTION_CONTINUOUS = 7
FLUX = 8
IMG_TO_IMG = 9
from comfy.model_sampling import EPS, V_PREDICTION, EDM, ModelSamplingDiscrete, ModelSamplingContinuousEDM, StableCascadeSampling, ModelSamplingContinuousV
FLOW_COSMOS = 10
def model_sampling(model_config, model_type):
s = ModelSamplingDiscrete
s = comfy.model_sampling.ModelSamplingDiscrete
if model_type == ModelType.EPS:
c = EPS
c = comfy.model_sampling.EPS
elif model_type == ModelType.V_PREDICTION:
c = V_PREDICTION
c = comfy.model_sampling.V_PREDICTION
elif model_type == ModelType.V_PREDICTION_EDM:
c = V_PREDICTION
s = ModelSamplingContinuousEDM
c = comfy.model_sampling.V_PREDICTION
s = comfy.model_sampling.ModelSamplingContinuousEDM
elif model_type == ModelType.FLOW:
c = comfy.model_sampling.CONST
s = comfy.model_sampling.ModelSamplingDiscreteFlow
elif model_type == ModelType.STABLE_CASCADE:
c = EPS
s = StableCascadeSampling
c = comfy.model_sampling.EPS
s = comfy.model_sampling.StableCascadeSampling
elif model_type == ModelType.EDM:
c = EDM
s = ModelSamplingContinuousEDM
c = comfy.model_sampling.EDM
s = comfy.model_sampling.ModelSamplingContinuousEDM
elif model_type == ModelType.V_PREDICTION_CONTINUOUS:
c = V_PREDICTION
s = ModelSamplingContinuousV
c = comfy.model_sampling.V_PREDICTION
s = comfy.model_sampling.ModelSamplingContinuousV
elif model_type == ModelType.FLUX:
c = comfy.model_sampling.CONST
s = comfy.model_sampling.ModelSamplingFlux
elif model_type == ModelType.IMG_TO_IMG:
c = comfy.model_sampling.IMG_TO_IMG
elif model_type == ModelType.FLOW_COSMOS:
c = comfy.model_sampling.COSMOS_RFLOW
s = comfy.model_sampling.ModelSamplingCosmosRFlow
class ModelSampling(s, c):
pass
@@ -99,6 +106,13 @@ def model_sampling(model_config, model_type):
return ModelSampling(model_config)
def convert_tensor(extra, dtype):
if hasattr(extra, "dtype"):
if extra.dtype != torch.int and extra.dtype != torch.long:
extra = extra.to(dtype)
return extra
class BaseModel(torch.nn.Module):
def __init__(self, model_config, model_type=ModelType.EPS, device=None, unet_model=UNetModel):
super().__init__()
@@ -132,6 +146,7 @@ class BaseModel(torch.nn.Module):
logging.info("model_type {}".format(model_type.name))
logging.debug("adm {}".format(self.adm_channels))
self.memory_usage_factor = model_config.memory_usage_factor
self.memory_usage_factor_conds = ()
def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
@@ -161,9 +176,14 @@ class BaseModel(torch.nn.Module):
extra_conds = {}
for o in kwargs:
extra = kwargs[o]
if hasattr(extra, "dtype"):
if extra.dtype != torch.int and extra.dtype != torch.long:
extra = extra.to(dtype)
extra = convert_tensor(extra, dtype)
elif isinstance(extra, list):
ex = []
for ext in extra:
ex.append(convert_tensor(ext, dtype))
extra = ex
extra_conds[o] = extra
t = self.process_timestep(t, x=x, **extra_conds)
@@ -322,19 +342,28 @@ class BaseModel(torch.nn.Module):
def scale_latent_inpaint(self, sigma, noise, latent_image, **kwargs):
return self.model_sampling.noise_scaling(sigma.reshape([sigma.shape[0]] + [1] * (len(noise.shape) - 1)), noise, latent_image)
def memory_required(self, input_shape):
def memory_required(self, input_shape, cond_shapes={}):
input_shapes = [input_shape]
for c in self.memory_usage_factor_conds:
shape = cond_shapes.get(c, None)
if shape is not None and len(shape) > 0:
input_shapes += shape
if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention():
dtype = self.get_dtype()
if self.manual_cast_dtype is not None:
dtype = self.manual_cast_dtype
#TODO: this needs to be tweaked
area = input_shape[0] * math.prod(input_shape[2:])
area = sum(map(lambda input_shape: input_shape[0] * math.prod(input_shape[2:]), input_shapes))
return (area * comfy.model_management.dtype_size(dtype) * 0.01 * self.memory_usage_factor) * (1024 * 1024)
else:
#TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory.
area = input_shape[0] * math.prod(input_shape[2:])
area = sum(map(lambda input_shape: input_shape[0] * math.prod(input_shape[2:]), input_shapes))
return (area * 0.15 * self.memory_usage_factor) * (1024 * 1024)
def extra_conds_shapes(self, **kwargs):
return {}
def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0, seed=None):
adm_inputs = []
@@ -785,8 +814,9 @@ class PixArt(BaseModel):
return out
class Flux(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.flux.model.Flux)
def __init__(self, model_config, model_type=ModelType.FLUX, device=None, unet_model=comfy.ldm.flux.model.Flux):
super().__init__(model_config, model_type, device=device, unet_model=unet_model)
self.memory_usage_factor_conds = ("ref_latents",)
def concat_cond(self, **kwargs):
try:
@@ -847,8 +877,23 @@ class Flux(BaseModel):
guidance = kwargs.get("guidance", 3.5)
if guidance is not None:
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
ref_latents = kwargs.get("reference_latents", None)
if ref_latents is not None:
latents = []
for lat in ref_latents:
latents.append(self.process_latent_in(lat))
out['ref_latents'] = comfy.conds.CONDList(latents)
return out
def extra_conds_shapes(self, **kwargs):
out = {}
ref_latents = kwargs.get("reference_latents", None)
if ref_latents is not None:
out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()), ref_latents)) // 16])
return out
class GenmoMochi(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.genmo.joint_model.asymm_models_joint.AsymmDiTJoint)
@@ -921,6 +966,10 @@ class HunyuanVideo(BaseModel):
if guiding_frame_index is not None:
out['guiding_frame_index'] = comfy.conds.CONDRegular(torch.FloatTensor([guiding_frame_index]))
ref_latent = kwargs.get("ref_latent", None)
if ref_latent is not None:
out['ref_latent'] = comfy.conds.CONDRegular(self.process_latent_in(ref_latent))
return out
def scale_latent_inpaint(self, latent_image, **kwargs):
@@ -969,6 +1018,45 @@ class CosmosVideo(BaseModel):
latent_image = self.model_sampling.calculate_input(torch.tensor([sigma_noise_augmentation], device=latent_image.device, dtype=latent_image.dtype), latent_image)
return latent_image * ((sigma ** 2 + self.model_sampling.sigma_data ** 2) ** 0.5)
class CosmosPredict2(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW_COSMOS, image_to_video=False, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.cosmos.predict2.MiniTrainDIT)
self.image_to_video = image_to_video
if self.image_to_video:
self.concat_keys = ("mask_inverted",)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
if denoise_mask is not None:
out["denoise_mask"] = comfy.conds.CONDRegular(denoise_mask)
out['fps'] = comfy.conds.CONDConstant(kwargs.get("frame_rate", None))
return out
def process_timestep(self, timestep, x, denoise_mask=None, **kwargs):
if denoise_mask is None:
return timestep
if denoise_mask.ndim <= 4:
return timestep
condition_video_mask_B_1_T_1_1 = denoise_mask.mean(dim=[1, 3, 4], keepdim=True)
c_noise_B_1_T_1_1 = 0.0 * (1.0 - condition_video_mask_B_1_T_1_1) + timestep.reshape(timestep.shape[0], 1, 1, 1, 1) * condition_video_mask_B_1_T_1_1
out = c_noise_B_1_T_1_1.squeeze(dim=[1, 3, 4])
return out
def scale_latent_inpaint(self, sigma, noise, latent_image, **kwargs):
sigma = sigma.reshape([sigma.shape[0]] + [1] * (len(noise.shape) - 1))
sigma_noise_augmentation = 0 #TODO
if sigma_noise_augmentation != 0:
latent_image = latent_image + noise
latent_image = self.model_sampling.calculate_input(torch.tensor([sigma_noise_augmentation], device=latent_image.device, dtype=latent_image.dtype), latent_image)
sigma = (sigma / (sigma + 1))
return latent_image / (1.0 - sigma)
class Lumina2(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.lumina.model.NextDiT)
@@ -992,31 +1080,41 @@ class WAN21(BaseModel):
def concat_cond(self, **kwargs):
noise = kwargs.get("noise", None)
if self.diffusion_model.patch_embedding.weight.shape[1] == noise.shape[1]:
extra_channels = self.diffusion_model.patch_embedding.weight.shape[1] - noise.shape[1]
if extra_channels == 0:
return None
image = kwargs.get("concat_latent_image", None)
device = kwargs["device"]
if image is None:
image = torch.zeros_like(noise)
shape_image = list(noise.shape)
shape_image[1] = extra_channels
image = torch.zeros(shape_image, dtype=noise.dtype, layout=noise.layout, device=noise.device)
else:
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
for i in range(0, image.shape[1], 16):
image[:, i: i + 16] = self.process_latent_in(image[:, i: i + 16])
image = utils.resize_to_batch_size(image, noise.shape[0])
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
image = self.process_latent_in(image)
image = utils.resize_to_batch_size(image, noise.shape[0])
if not self.image_to_video:
if not self.image_to_video or extra_channels == image.shape[1]:
return image
if image.shape[1] > (extra_channels - 4):
image = image[:, :(extra_channels - 4)]
mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
if mask is None:
mask = torch.zeros_like(noise)[:, :4]
else:
mask = 1.0 - torch.mean(mask, dim=1, keepdim=True)
if mask.shape[1] != 4:
mask = torch.mean(mask, dim=1, keepdim=True)
mask = 1.0 - mask
mask = utils.common_upscale(mask.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
if mask.shape[-3] < noise.shape[-3]:
mask = torch.nn.functional.pad(mask, (0, 0, 0, 0, 0, noise.shape[-3] - mask.shape[-3]), mode='constant', value=0)
mask = mask.repeat(1, 4, 1, 1, 1)
if mask.shape[1] == 1:
mask = mask.repeat(1, 4, 1, 1, 1)
mask = utils.resize_to_batch_size(mask, noise.shape[0])
return torch.cat((mask, image), dim=1)
@@ -1030,6 +1128,58 @@ class WAN21(BaseModel):
clip_vision_output = kwargs.get("clip_vision_output", None)
if clip_vision_output is not None:
out['clip_fea'] = comfy.conds.CONDRegular(clip_vision_output.penultimate_hidden_states)
time_dim_concat = kwargs.get("time_dim_concat", None)
if time_dim_concat is not None:
out['time_dim_concat'] = comfy.conds.CONDRegular(self.process_latent_in(time_dim_concat))
return out
class WAN21_Vace(WAN21):
def __init__(self, model_config, model_type=ModelType.FLOW, image_to_video=False, device=None):
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.VaceWanModel)
self.image_to_video = image_to_video
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
noise = kwargs.get("noise", None)
noise_shape = list(noise.shape)
vace_frames = kwargs.get("vace_frames", None)
if vace_frames is None:
noise_shape[1] = 32
vace_frames = [torch.zeros(noise_shape, device=noise.device, dtype=noise.dtype)]
mask = kwargs.get("vace_mask", None)
if mask is None:
noise_shape[1] = 64
mask = [torch.ones(noise_shape, device=noise.device, dtype=noise.dtype)] * len(vace_frames)
vace_frames_out = []
for j in range(len(vace_frames)):
vf = vace_frames[j].clone()
for i in range(0, vf.shape[1], 16):
vf[:, i:i + 16] = self.process_latent_in(vf[:, i:i + 16])
vf = torch.cat([vf, mask[j]], dim=1)
vace_frames_out.append(vf)
vace_frames = torch.stack(vace_frames_out, dim=1)
out['vace_context'] = comfy.conds.CONDRegular(vace_frames)
vace_strength = kwargs.get("vace_strength", [1.0] * len(vace_frames_out))
out['vace_strength'] = comfy.conds.CONDConstant(vace_strength)
return out
class WAN21_Camera(WAN21):
def __init__(self, model_config, model_type=ModelType.FLOW, image_to_video=False, device=None):
super(WAN21, self).__init__(model_config, model_type, device=device, unet_model=comfy.ldm.wan.model.CameraWanModel)
self.image_to_video = image_to_video
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
camera_conditions = kwargs.get("camera_conditions", None)
if camera_conditions is not None:
out['camera_conditions'] = comfy.conds.CONDRegular(camera_conditions)
return out
class Hunyuan3Dv2(BaseModel):
@@ -1046,3 +1196,84 @@ class Hunyuan3Dv2(BaseModel):
if guidance is not None:
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
return out
class HiDream(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hidream.model.HiDreamImageTransformer2DModel)
def encode_adm(self, **kwargs):
return kwargs["pooled_output"]
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
conditioning_llama3 = kwargs.get("conditioning_llama3", None)
if conditioning_llama3 is not None:
out['encoder_hidden_states_llama3'] = comfy.conds.CONDRegular(conditioning_llama3)
image_cond = kwargs.get("concat_latent_image", None)
if image_cond is not None:
out['image_cond'] = comfy.conds.CONDNoiseShape(self.process_latent_in(image_cond))
return out
class Chroma(Flux):
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.chroma.model.Chroma)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
guidance = kwargs.get("guidance", 0)
if guidance is not None:
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
return out
class ACEStep(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.ace.model.ACEStepTransformer2DModel)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
noise = kwargs.get("noise", None)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
conditioning_lyrics = kwargs.get("conditioning_lyrics", None)
if cross_attn is not None:
out['lyric_token_idx'] = comfy.conds.CONDRegular(conditioning_lyrics)
out['speaker_embeds'] = comfy.conds.CONDRegular(torch.zeros(noise.shape[0], 512, device=noise.device, dtype=noise.dtype))
out['lyrics_strength'] = comfy.conds.CONDConstant(kwargs.get("lyrics_strength", 1.0))
return out
class Omnigen2(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.omnigen.omnigen2.OmniGen2Transformer2DModel)
self.memory_usage_factor_conds = ("ref_latents",)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
attention_mask = kwargs.get("attention_mask", None)
if attention_mask is not None:
if torch.numel(attention_mask) != attention_mask.sum():
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
out['num_tokens'] = comfy.conds.CONDConstant(max(1, torch.sum(attention_mask).item()))
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
ref_latents = kwargs.get("reference_latents", None)
if ref_latents is not None:
latents = []
for lat in ref_latents:
latents.append(self.process_latent_in(lat))
out['ref_latents'] = comfy.conds.CONDList(latents)
return out
def extra_conds_shapes(self, **kwargs):
out = {}
ref_latents = kwargs.get("reference_latents", None)
if ref_latents is not None:
out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()), ref_latents)) // 16])
return out

View File

@@ -164,7 +164,9 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
if in_key in state_dict_keys:
dit_config["in_channels"] = state_dict[in_key].shape[1] // (patch_size * patch_size)
dit_config["out_channels"] = 16
dit_config["vec_in_dim"] = 768
vec_in_key = '{}vector_in.in_layer.weight'.format(key_prefix)
if vec_in_key in state_dict_keys:
dit_config["vec_in_dim"] = state_dict[vec_in_key].shape[1]
dit_config["context_in_dim"] = 4096
dit_config["hidden_size"] = 3072
dit_config["mlp_ratio"] = 4.0
@@ -174,7 +176,16 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["axes_dim"] = [16, 56, 56]
dit_config["theta"] = 10000
dit_config["qkv_bias"] = True
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
if '{}distilled_guidance_layer.0.norms.0.scale'.format(key_prefix) in state_dict_keys or '{}distilled_guidance_layer.norms.0.scale'.format(key_prefix) in state_dict_keys: #Chroma
dit_config["image_model"] = "chroma"
dit_config["in_channels"] = 64
dit_config["out_channels"] = 64
dit_config["in_dim"] = 64
dit_config["out_dim"] = 3072
dit_config["hidden_dim"] = 5120
dit_config["n_layers"] = 5
else:
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
return dit_config
if '{}t5_yproj.weight'.format(key_prefix) in state_dict_keys: #Genmo mochi preview
@@ -211,10 +222,39 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
if '{}adaln_single.emb.timestep_embedder.linear_1.bias'.format(key_prefix) in state_dict_keys: #Lightricks ltxv
dit_config = {}
dit_config["image_model"] = "ltxv"
dit_config["num_layers"] = count_blocks(state_dict_keys, '{}transformer_blocks.'.format(key_prefix) + '{}.')
shape = state_dict['{}transformer_blocks.0.attn2.to_k.weight'.format(key_prefix)].shape
dit_config["attention_head_dim"] = shape[0] // 32
dit_config["cross_attention_dim"] = shape[1]
if metadata is not None and "config" in metadata:
dit_config.update(json.loads(metadata["config"]).get("transformer", {}))
return dit_config
if '{}genre_embedder.weight'.format(key_prefix) in state_dict_keys: #ACE-Step model
dit_config = {}
dit_config["audio_model"] = "ace"
dit_config["attention_head_dim"] = 128
dit_config["in_channels"] = 8
dit_config["inner_dim"] = 2560
dit_config["max_height"] = 16
dit_config["max_position"] = 32768
dit_config["max_width"] = 32768
dit_config["mlp_ratio"] = 2.5
dit_config["num_attention_heads"] = 20
dit_config["num_layers"] = 24
dit_config["out_channels"] = 8
dit_config["patch_size"] = [16, 1]
dit_config["rope_theta"] = 1000000.0
dit_config["speaker_embedding_dim"] = 512
dit_config["text_embedding_dim"] = 768
dit_config["ssl_encoder_depths"] = [8, 8]
dit_config["ssl_latent_dims"] = [1024, 768]
dit_config["ssl_names"] = ["mert", "m-hubert"]
dit_config["lyric_encoder_vocab_size"] = 6693
dit_config["lyric_hidden_size"] = 1024
return dit_config
if '{}t_block.1.weight'.format(key_prefix) in state_dict_keys: # PixArt
patch_size = 2
dit_config = {}
@@ -317,10 +357,20 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["cross_attn_norm"] = True
dit_config["eps"] = 1e-6
dit_config["in_dim"] = state_dict['{}patch_embedding.weight'.format(key_prefix)].shape[1]
if '{}img_emb.proj.0.bias'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "i2v"
if '{}vace_patch_embedding.weight'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "vace"
dit_config["vace_in_dim"] = state_dict['{}vace_patch_embedding.weight'.format(key_prefix)].shape[1]
dit_config["vace_layers"] = count_blocks(state_dict_keys, '{}vace_blocks.'.format(key_prefix) + '{}.')
elif '{}control_adapter.conv.weight'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "camera"
else:
dit_config["model_type"] = "t2v"
if '{}img_emb.proj.0.bias'.format(key_prefix) in state_dict_keys:
dit_config["model_type"] = "i2v"
else:
dit_config["model_type"] = "t2v"
flf_weight = state_dict.get('{}img_emb.emb_pos'.format(key_prefix))
if flf_weight is not None:
dit_config["flf_pos_embed_token_number"] = flf_weight.shape[1]
return dit_config
if '{}latent_in.weight'.format(key_prefix) in state_dict_keys: # Hunyuan 3D
@@ -338,6 +388,97 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
return dit_config
if '{}caption_projection.0.linear.weight'.format(key_prefix) in state_dict_keys: # HiDream
dit_config = {}
dit_config["image_model"] = "hidream"
dit_config["attention_head_dim"] = 128
dit_config["axes_dims_rope"] = [64, 32, 32]
dit_config["caption_channels"] = [4096, 4096]
dit_config["max_resolution"] = [128, 128]
dit_config["in_channels"] = 16
dit_config["llama_layers"] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31]
dit_config["num_attention_heads"] = 20
dit_config["num_routed_experts"] = 4
dit_config["num_activated_experts"] = 2
dit_config["num_layers"] = 16
dit_config["num_single_layers"] = 32
dit_config["out_channels"] = 16
dit_config["patch_size"] = 2
dit_config["text_emb_dim"] = 2048
return dit_config
if '{}blocks.0.mlp.layer1.weight'.format(key_prefix) in state_dict_keys: # Cosmos predict2
dit_config = {}
dit_config["image_model"] = "cosmos_predict2"
dit_config["max_img_h"] = 240
dit_config["max_img_w"] = 240
dit_config["max_frames"] = 128
concat_padding_mask = True
dit_config["in_channels"] = (state_dict['{}x_embedder.proj.1.weight'.format(key_prefix)].shape[1] // 4) - int(concat_padding_mask)
dit_config["out_channels"] = 16
dit_config["patch_spatial"] = 2
dit_config["patch_temporal"] = 1
dit_config["model_channels"] = state_dict['{}x_embedder.proj.1.weight'.format(key_prefix)].shape[0]
dit_config["concat_padding_mask"] = concat_padding_mask
dit_config["crossattn_emb_channels"] = 1024
dit_config["pos_emb_cls"] = "rope3d"
dit_config["pos_emb_learnable"] = True
dit_config["pos_emb_interpolation"] = "crop"
dit_config["min_fps"] = 1
dit_config["max_fps"] = 30
dit_config["use_adaln_lora"] = True
dit_config["adaln_lora_dim"] = 256
if dit_config["model_channels"] == 2048:
dit_config["num_blocks"] = 28
dit_config["num_heads"] = 16
elif dit_config["model_channels"] == 5120:
dit_config["num_blocks"] = 36
dit_config["num_heads"] = 40
if dit_config["in_channels"] == 16:
dit_config["extra_per_block_abs_pos_emb"] = False
dit_config["rope_h_extrapolation_ratio"] = 4.0
dit_config["rope_w_extrapolation_ratio"] = 4.0
dit_config["rope_t_extrapolation_ratio"] = 1.0
elif dit_config["in_channels"] == 17: # img to video
if dit_config["model_channels"] == 2048:
dit_config["extra_per_block_abs_pos_emb"] = False
dit_config["rope_h_extrapolation_ratio"] = 3.0
dit_config["rope_w_extrapolation_ratio"] = 3.0
dit_config["rope_t_extrapolation_ratio"] = 1.0
elif dit_config["model_channels"] == 5120:
dit_config["rope_h_extrapolation_ratio"] = 2.0
dit_config["rope_w_extrapolation_ratio"] = 2.0
dit_config["rope_t_extrapolation_ratio"] = 0.8333333333333334
dit_config["extra_h_extrapolation_ratio"] = 1.0
dit_config["extra_w_extrapolation_ratio"] = 1.0
dit_config["extra_t_extrapolation_ratio"] = 1.0
dit_config["rope_enable_fps_modulation"] = False
return dit_config
if '{}time_caption_embed.timestep_embedder.linear_1.bias'.format(key_prefix) in state_dict_keys: # Omnigen2
dit_config = {}
dit_config["image_model"] = "omnigen2"
dit_config["axes_dim_rope"] = [40, 40, 40]
dit_config["axes_lens"] = [1024, 1664, 1664]
dit_config["ffn_dim_multiplier"] = None
dit_config["hidden_size"] = 2520
dit_config["in_channels"] = 16
dit_config["multiple_of"] = 256
dit_config["norm_eps"] = 1e-05
dit_config["num_attention_heads"] = 21
dit_config["num_kv_heads"] = 7
dit_config["num_layers"] = 32
dit_config["num_refiner_layers"] = 2
dit_config["out_channels"] = None
dit_config["patch_size"] = 2
dit_config["text_feat_dim"] = 2048
dit_config["timestep_scale"] = 1000.0
return dit_config
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
return None
@@ -551,6 +692,9 @@ def convert_config(unet_config):
def unet_config_from_diffusers_unet(state_dict, dtype=None):
if "conv_in.weight" not in state_dict:
return None
match = {}
transformer_depth = []

View File

@@ -46,6 +46,32 @@ cpu_state = CPUState.GPU
total_vram = 0
def get_supported_float8_types():
float8_types = []
try:
float8_types.append(torch.float8_e4m3fn)
except:
pass
try:
float8_types.append(torch.float8_e4m3fnuz)
except:
pass
try:
float8_types.append(torch.float8_e5m2)
except:
pass
try:
float8_types.append(torch.float8_e5m2fnuz)
except:
pass
try:
float8_types.append(torch.float8_e8m0fnu)
except:
pass
return float8_types
FLOAT8_TYPES = get_supported_float8_types()
xpu_available = False
torch_version = ""
try:
@@ -269,14 +295,24 @@ except:
pass
SUPPORT_FP8_OPS = args.supports_fp8_compute
try:
if is_amd():
try:
rocm_version = tuple(map(int, str(torch.version.hip).split(".")[:2]))
except:
rocm_version = (6, -1)
arch = torch.cuda.get_device_properties(get_torch_device()).gcnArchName
logging.info("AMD arch: {}".format(arch))
logging.info("ROCm version: {}".format(rocm_version))
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
if torch_version_numeric[0] >= 2 and torch_version_numeric[1] >= 7: # works on 2.6 but doesn't actually seem to improve much
if any((a in arch) for a in ["gfx1100", "gfx1101"]): # TODO: more arches
if torch_version_numeric >= (2, 7): # works on 2.6 but doesn't actually seem to improve much
if any((a in arch) for a in ["gfx90a", "gfx942", "gfx1100", "gfx1101", "gfx1151"]): # TODO: more arches, TODO: gfx1201 and gfx950
ENABLE_PYTORCH_ATTENTION = True
if torch_version_numeric >= (2, 7) and rocm_version >= (6, 4):
if any((a in arch) for a in ["gfx1201", "gfx942", "gfx950"]): # TODO: more arches
SUPPORT_FP8_OPS = True
except:
pass
@@ -297,7 +333,7 @@ except:
pass
try:
if torch_version_numeric[0] == 2 and torch_version_numeric[1] >= 5:
if torch_version_numeric >= (2, 5):
torch.backends.cuda.allow_fp16_bf16_reduction_math_sdp(True)
except:
logging.warning("Warning, could not set allow_fp16_bf16_reduction_math_sdp")
@@ -669,7 +705,7 @@ def unet_inital_load_device(parameters, dtype):
return torch_dev
cpu_dev = torch.device("cpu")
if DISABLE_SMART_MEMORY:
if DISABLE_SMART_MEMORY or vram_state == VRAMState.NO_VRAM:
return cpu_dev
model_size = dtype_size(dtype) * parameters
@@ -699,13 +735,12 @@ def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, tor
return torch.float8_e4m3fn
if args.fp8_e5m2_unet:
return torch.float8_e5m2
if args.fp8_e8m0fnu_unet:
return torch.float8_e8m0fnu
fp8_dtype = None
try:
if weight_dtype in [torch.float8_e4m3fn, torch.float8_e5m2]:
fp8_dtype = weight_dtype
except:
pass
if weight_dtype in FLOAT8_TYPES:
fp8_dtype = weight_dtype
if fp8_dtype is not None:
if supports_fp8_compute(device): #if fp8 compute is supported the casting is most likely not expensive
@@ -800,6 +835,8 @@ def text_encoder_dtype(device=None):
return torch.float8_e5m2
elif args.fp16_text_enc:
return torch.float16
elif args.bf16_text_enc:
return torch.bfloat16
elif args.fp32_text_enc:
return torch.float32
@@ -912,15 +949,61 @@ def force_channels_last():
#TODO
return False
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False):
STREAMS = {}
NUM_STREAMS = 1
if args.async_offload:
NUM_STREAMS = 2
logging.info("Using async weight offloading with {} streams".format(NUM_STREAMS))
stream_counters = {}
def get_offload_stream(device):
stream_counter = stream_counters.get(device, 0)
if NUM_STREAMS <= 1:
return None
if device in STREAMS:
ss = STREAMS[device]
s = ss[stream_counter]
stream_counter = (stream_counter + 1) % len(ss)
if is_device_cuda(device):
ss[stream_counter].wait_stream(torch.cuda.current_stream())
stream_counters[device] = stream_counter
return s
elif is_device_cuda(device):
ss = []
for k in range(NUM_STREAMS):
ss.append(torch.cuda.Stream(device=device, priority=0))
STREAMS[device] = ss
s = ss[stream_counter]
stream_counter = (stream_counter + 1) % len(ss)
stream_counters[device] = stream_counter
return s
return None
def sync_stream(device, stream):
if stream is None:
return
if is_device_cuda(device):
torch.cuda.current_stream().wait_stream(stream)
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, stream=None):
if device is None or weight.device == device:
if not copy:
if dtype is None or weight.dtype == dtype:
return weight
if stream is not None:
with stream:
return weight.to(dtype=dtype, copy=copy)
return weight.to(dtype=dtype, copy=copy)
r = torch.empty_like(weight, dtype=dtype, device=device)
r.copy_(weight, non_blocking=non_blocking)
if stream is not None:
with stream:
r = torch.empty_like(weight, dtype=dtype, device=device)
r.copy_(weight, non_blocking=non_blocking)
else:
r = torch.empty_like(weight, dtype=dtype, device=device)
r.copy_(weight, non_blocking=non_blocking)
return r
def cast_to_device(tensor, device, dtype, copy=False):
@@ -969,7 +1052,7 @@ def pytorch_attention_flash_attention():
global ENABLE_PYTORCH_ATTENTION
if ENABLE_PYTORCH_ATTENTION:
#TODO: more reliable way of checking for flash attention?
if is_nvidia(): #pytorch flash attention only works on Nvidia
if is_nvidia():
return True
if is_intel_xpu():
return True
@@ -985,7 +1068,7 @@ def force_upcast_attention_dtype():
upcast = args.force_upcast_attention
macos_version = mac_version()
if macos_version is not None and ((14, 5) <= macos_version < (16,)): # black image bug on recent versions of macOS
if macos_version is not None and ((14, 5) <= macos_version): # black image bug on recent versions of macOS, I don't think it's ever getting fixed
upcast = True
if upcast:
@@ -1184,6 +1267,9 @@ def should_use_bf16(device=None, model_params=0, prioritize_performance=True, ma
return False
def supports_fp8_compute(device=None):
if SUPPORT_FP8_OPS:
return True
if not is_nvidia():
return False
@@ -1195,15 +1281,22 @@ def supports_fp8_compute(device=None):
if props.minor < 9:
return False
if torch_version_numeric[0] < 2 or (torch_version_numeric[0] == 2 and torch_version_numeric[1] < 3):
if torch_version_numeric < (2, 3):
return False
if WINDOWS:
if (torch_version_numeric[0] == 2 and torch_version_numeric[1] < 4):
if torch_version_numeric < (2, 4):
return False
return True
def extended_fp16_support():
# TODO: check why some models work with fp16 on newer torch versions but not on older
if torch_version_numeric < (2, 7):
return False
return True
def soft_empty_cache(force=False):
global cpu_state
if cpu_state == CPUState.MPS:
@@ -1212,6 +1305,8 @@ def soft_empty_cache(force=False):
torch.xpu.empty_cache()
elif is_ascend_npu():
torch.npu.empty_cache()
elif is_mlu():
torch.mlu.empty_cache()
elif torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()

View File

@@ -17,23 +17,26 @@
"""
from __future__ import annotations
from typing import Optional, Callable
import torch
import collections
import copy
import inspect
import logging
import uuid
import collections
import math
import uuid
from typing import Callable, Optional
import torch
import comfy.utils
import comfy.float
import comfy.model_management
import comfy.lora
import comfy.hooks
import comfy.lora
import comfy.model_management
import comfy.patcher_extension
from comfy.patcher_extension import CallbacksMP, WrappersMP, PatcherInjection
import comfy.utils
from comfy.comfy_types import UnetWrapperFunction
from comfy.patcher_extension import CallbacksMP, PatcherInjection, WrappersMP
def string_to_seed(data):
crc = 0xFFFFFFFF

View File

@@ -77,6 +77,25 @@ class IMG_TO_IMG(X0):
def calculate_input(self, sigma, noise):
return noise
class COSMOS_RFLOW:
def calculate_input(self, sigma, noise):
sigma = (sigma / (sigma + 1))
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
return noise * (1.0 - sigma)
def calculate_denoised(self, sigma, model_output, model_input):
sigma = (sigma / (sigma + 1))
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
return model_input * (1.0 - sigma) - model_output * sigma
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
sigma = sigma.view(sigma.shape[:1] + (1,) * (noise.ndim - 1))
noise = noise * sigma
noise += latent_image
return noise
def inverse_noise_scaling(self, sigma, latent):
return latent
class ModelSamplingDiscrete(torch.nn.Module):
def __init__(self, model_config=None, zsnr=None):
@@ -111,13 +130,14 @@ class ModelSamplingDiscrete(torch.nn.Module):
self.num_timesteps = int(timesteps)
self.linear_start = linear_start
self.linear_end = linear_end
self.zsnr = zsnr
# self.register_buffer('betas', torch.tensor(betas, dtype=torch.float32))
# self.register_buffer('alphas_cumprod', torch.tensor(alphas_cumprod, dtype=torch.float32))
# self.register_buffer('alphas_cumprod_prev', torch.tensor(alphas_cumprod_prev, dtype=torch.float32))
sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5
if zsnr:
if self.zsnr:
sigmas = rescale_zero_terminal_snr_sigmas(sigmas)
self.set_sigmas(sigmas)
@@ -349,3 +369,15 @@ class ModelSamplingFlux(torch.nn.Module):
if percent >= 1.0:
return 0.0
return flux_time_shift(self.shift, 1.0, 1.0 - percent)
class ModelSamplingCosmosRFlow(ModelSamplingContinuousEDM):
def timestep(self, sigma):
return sigma / (sigma + 1)
def sigma(self, timestep):
sigma_max = self.sigma_max
if timestep >= (sigma_max / (sigma_max + 1)):
return sigma_max
return timestep / (1 - timestep)

View File

@@ -21,6 +21,8 @@ import logging
import comfy.model_management
from comfy.cli_args import args, PerformanceFeature
import comfy.float
import comfy.rmsnorm
import contextlib
cast_to = comfy.model_management.cast_to #TODO: remove once no more references
@@ -36,20 +38,31 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None):
if device is None:
device = input.device
offload_stream = comfy.model_management.get_offload_stream(device)
if offload_stream is not None:
wf_context = offload_stream
else:
wf_context = contextlib.nullcontext()
bias = None
non_blocking = comfy.model_management.device_supports_non_blocking(device)
if s.bias is not None:
has_function = len(s.bias_function) > 0
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=has_function)
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=has_function, stream=offload_stream)
if has_function:
for f in s.bias_function:
bias = f(bias)
with wf_context:
for f in s.bias_function:
bias = f(bias)
has_function = len(s.weight_function) > 0
weight = comfy.model_management.cast_to(s.weight, dtype, device, non_blocking=non_blocking, copy=has_function)
weight = comfy.model_management.cast_to(s.weight, dtype, device, non_blocking=non_blocking, copy=has_function, stream=offload_stream)
if has_function:
for f in s.weight_function:
weight = f(weight)
with wf_context:
for f in s.weight_function:
weight = f(weight)
comfy.model_management.sync_stream(device, offload_stream)
return weight, bias
class CastWeightBiasOp:
@@ -146,6 +159,25 @@ class disable_weight_init:
else:
return super().forward(*args, **kwargs)
class RMSNorm(comfy.rmsnorm.RMSNorm, CastWeightBiasOp):
def reset_parameters(self):
self.bias = None
return None
def forward_comfy_cast_weights(self, input):
if self.weight is not None:
weight, bias = cast_bias_weight(self, input)
else:
weight = None
return comfy.rmsnorm.rms_norm(input, weight, self.eps) # TODO: switch to commented out line when old torch is deprecated
# return torch.nn.functional.rms_norm(input, self.normalized_shape, weight, self.eps)
def forward(self, *args, **kwargs):
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
class ConvTranspose2d(torch.nn.ConvTranspose2d, CastWeightBiasOp):
def reset_parameters(self):
return None
@@ -243,6 +275,9 @@ class manual_cast(disable_weight_init):
class ConvTranspose1d(disable_weight_init.ConvTranspose1d):
comfy_cast_weights = True
class RMSNorm(disable_weight_init.RMSNorm):
comfy_cast_weights = True
class Embedding(disable_weight_init.Embedding):
comfy_cast_weights = True
@@ -273,10 +308,10 @@ def fp8_linear(self, input):
if scale_input is None:
scale_input = torch.ones((), device=input.device, dtype=torch.float32)
input = torch.clamp(input, min=-448, max=448, out=input)
input = input.reshape(-1, input_shape[2]).to(dtype)
input = input.reshape(-1, input_shape[2]).to(dtype).contiguous()
else:
scale_input = scale_input.to(input.device)
input = (input * (1.0 / scale_input).to(input_dtype)).reshape(-1, input_shape[2]).to(dtype)
input = (input * (1.0 / scale_input).to(input_dtype)).reshape(-1, input_shape[2]).to(dtype).contiguous()
if bias is not None:
o = torch._scaled_mm(input, w, out_dtype=input_dtype, bias=bias, scale_a=scale_input, scale_b=scale_weight)
@@ -357,6 +392,25 @@ def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None
return scaled_fp8_op
CUBLAS_IS_AVAILABLE = False
try:
from cublas_ops import CublasLinear
CUBLAS_IS_AVAILABLE = True
except ImportError:
pass
if CUBLAS_IS_AVAILABLE:
class cublas_ops(disable_weight_init):
class Linear(CublasLinear, disable_weight_init.Linear):
def reset_parameters(self):
return None
def forward_comfy_cast_weights(self, input):
return super().forward(input)
def forward(self, *args, **kwargs):
return super().forward(*args, **kwargs)
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None):
fp8_compute = comfy.model_management.supports_fp8_compute(load_device)
if scaled_fp8 is not None:
@@ -369,6 +423,15 @@ def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_
):
return fp8_ops
if (
PerformanceFeature.CublasOps in args.fast and
CUBLAS_IS_AVAILABLE and
weight_dtype == torch.float16 and
(compute_dtype == torch.float16 or compute_dtype is None)
):
logging.info("Using cublas ops")
return cublas_ops
if compute_dtype is None or weight_dtype == compute_dtype:
return disable_weight_init

View File

@@ -48,6 +48,7 @@ def get_all_callbacks(call_type: str, transformer_options: dict, is_model_option
class WrappersMP:
OUTER_SAMPLE = "outer_sample"
PREPARE_SAMPLING = "prepare_sampling"
SAMPLER_SAMPLE = "sampler_sample"
CALC_COND_BATCH = "calc_cond_batch"
APPLY_MODEL = "apply_model"

55
comfy/rmsnorm.py Normal file
View File

@@ -0,0 +1,55 @@
import torch
import comfy.model_management
import numbers
RMSNorm = None
try:
rms_norm_torch = torch.nn.functional.rms_norm
RMSNorm = torch.nn.RMSNorm
except:
rms_norm_torch = None
def rms_norm(x, weight=None, eps=1e-6):
if rms_norm_torch is not None and not (torch.jit.is_tracing() or torch.jit.is_scripting()):
if weight is None:
return rms_norm_torch(x, (x.shape[-1],), eps=eps)
else:
return rms_norm_torch(x, weight.shape, weight=comfy.model_management.cast_to(weight, dtype=x.dtype, device=x.device), eps=eps)
else:
r = x * torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + eps)
if weight is None:
return r
else:
return r * comfy.model_management.cast_to(weight, dtype=x.dtype, device=x.device)
if RMSNorm is None:
class RMSNorm(torch.nn.Module):
def __init__(
self,
normalized_shape,
eps=1e-6,
elementwise_affine=True,
device=None,
dtype=None,
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
if isinstance(normalized_shape, numbers.Integral):
# mypy error: incompatible types in assignment
normalized_shape = (normalized_shape,) # type: ignore[assignment]
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
self.eps = eps
self.elementwise_affine = elementwise_affine
if self.elementwise_affine:
self.weight = torch.nn.Parameter(
torch.empty(self.normalized_shape, **factory_kwargs)
)
else:
self.register_parameter("weight", None)
self.bias = None
def forward(self, x):
return rms_norm(x, self.weight, self.eps)

View File

@@ -1,5 +1,7 @@
from __future__ import annotations
import uuid
import math
import collections
import comfy.model_management
import comfy.conds
import comfy.utils
@@ -104,15 +106,36 @@ def cleanup_additional_models(models):
if hasattr(m, 'cleanup'):
m.cleanup()
def estimate_memory(model, noise_shape, conds):
cond_shapes = collections.defaultdict(list)
cond_shapes_min = {}
for _, cs in conds.items():
for cond in cs:
for k, v in model.model.extra_conds_shapes(**cond).items():
cond_shapes[k].append(v)
if cond_shapes_min.get(k, None) is None:
cond_shapes_min[k] = [v]
elif math.prod(v) > math.prod(cond_shapes_min[k][0]):
cond_shapes_min[k] = [v]
memory_required = model.model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:]), cond_shapes=cond_shapes)
minimum_memory_required = model.model.memory_required([noise_shape[0]] + list(noise_shape[1:]), cond_shapes=cond_shapes_min)
return memory_required, minimum_memory_required
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
executor = comfy.patcher_extension.WrapperExecutor.new_executor(
_prepare_sampling,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.PREPARE_SAMPLING, model_options, is_model_options=True)
)
return executor.execute(model, noise_shape, conds, model_options=model_options)
def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
real_model: BaseModel = None
models, inference_memory = get_additional_models(conds, model.model_dtype())
models += get_additional_models_from_model_options(model_options)
models += model.get_nested_additional_models() # TODO: does this require inference_memory update?
memory_required = model.memory_required([noise_shape[0] * 2] + list(noise_shape[1:])) + inference_memory
minimum_memory_required = model.memory_required([noise_shape[0]] + list(noise_shape[1:])) + inference_memory
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required, minimum_memory_required=minimum_memory_required)
memory_required, minimum_memory_required = estimate_memory(model, noise_shape, conds)
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required + inference_memory, minimum_memory_required=minimum_memory_required + inference_memory)
real_model = model.model
return real_model, conds, models

View File

@@ -256,7 +256,13 @@ def _calc_cond_batch(model: 'BaseModel', conds: list[list[dict]], x_in: torch.Te
for i in range(1, len(to_batch_temp) + 1):
batch_amount = to_batch_temp[:len(to_batch_temp)//i]
input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]
if model.memory_required(input_shape) * 1.5 < free_memory:
cond_shapes = collections.defaultdict(list)
for tt in batch_amount:
cond = {k: v.size() for k, v in to_run[tt][0].conditioning.items()}
for k, v in to_run[tt][0].conditioning.items():
cond_shapes[k].append(v.size())
if model.memory_required(input_shape, cond_shapes=cond_shapes) * 1.5 < free_memory:
to_batch = batch_amount
break
@@ -710,7 +716,7 @@ KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_c
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu",
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
"ipndm", "ipndm_v", "deis", "res_multistep", "res_multistep_cfg_pp", "res_multistep_ancestral", "res_multistep_ancestral_cfg_pp",
"gradient_estimation", "er_sde"]
"gradient_estimation", "gradient_estimation_cfg_pp", "er_sde", "seeds_2", "seeds_3"]
class KSAMPLER(Sampler):
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):

View File

@@ -15,6 +15,7 @@ import comfy.ldm.lightricks.vae.causal_video_autoencoder
import comfy.ldm.cosmos.vae
import comfy.ldm.wan.vae
import comfy.ldm.hunyuan3d.vae
import comfy.ldm.ace.vae.music_dcae_pipeline
import yaml
import math
@@ -41,6 +42,9 @@ import comfy.text_encoders.hunyuan_video
import comfy.text_encoders.cosmos
import comfy.text_encoders.lumina2
import comfy.text_encoders.wan
import comfy.text_encoders.hidream
import comfy.text_encoders.ace
import comfy.text_encoders.omnigen2
import comfy.model_patcher
import comfy.lora
@@ -119,6 +123,7 @@ class CLIP:
self.layer_idx = None
self.use_clip_schedule = False
logging.info("CLIP/text encoder model load device: {}, offload device: {}, current: {}, dtype: {}".format(load_device, offload_device, params['device'], dtype))
self.tokenizer_options = {}
def clone(self):
n = CLIP(no_init=True)
@@ -126,6 +131,7 @@ class CLIP:
n.cond_stage_model = self.cond_stage_model
n.tokenizer = self.tokenizer
n.layer_idx = self.layer_idx
n.tokenizer_options = self.tokenizer_options.copy()
n.use_clip_schedule = self.use_clip_schedule
n.apply_hooks_to_conds = self.apply_hooks_to_conds
return n
@@ -133,10 +139,18 @@ class CLIP:
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
return self.patcher.add_patches(patches, strength_patch, strength_model)
def set_tokenizer_option(self, option_name, value):
self.tokenizer_options[option_name] = value
def clip_layer(self, layer_idx):
self.layer_idx = layer_idx
def tokenize(self, text, return_word_ids=False, **kwargs):
tokenizer_options = kwargs.get("tokenizer_options", {})
if len(self.tokenizer_options) > 0:
tokenizer_options = {**self.tokenizer_options, **tokenizer_options}
if len(tokenizer_options) > 0:
kwargs["tokenizer_options"] = tokenizer_options
return self.tokenizer.tokenize_with_weights(text, return_word_ids, **kwargs)
def add_hooks_to_dict(self, pooled_dict: dict[str]):
@@ -265,9 +279,11 @@ class VAE:
self.process_input = lambda image: image * 2.0 - 1.0
self.process_output = lambda image: torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)
self.working_dtypes = [torch.bfloat16, torch.float32]
self.disable_offload = False
self.downscale_index_formula = None
self.upscale_index_formula = None
self.extra_1d_channel = None
if config is None:
if "decoder.mid.block_1.mix_factor" in sd:
@@ -337,6 +353,7 @@ class VAE:
self.process_output = lambda audio: audio
self.process_input = lambda audio: audio
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
self.disable_offload = True
elif "blocks.2.blocks.3.stack.5.weight" in sd or "decoder.blocks.2.blocks.3.stack.5.weight" in sd or "layers.4.layers.1.attn_block.attn.qkv.weight" in sd or "encoder.layers.4.layers.1.attn_block.attn.qkv.weight" in sd: #genmo mochi vae
if "blocks.2.blocks.3.stack.5.weight" in sd:
sd = comfy.utils.state_dict_prefix_replace(sd, {"": "decoder."})
@@ -424,6 +441,20 @@ class VAE:
ddconfig = {"embed_dim": 64, "num_freqs": 8, "include_pi": False, "heads": 16, "width": 1024, "num_decoder_layers": 16, "qkv_bias": False, "qk_norm": True, "geo_decoder_mlp_expand_ratio": mlp_expand, "geo_decoder_downsample_ratio": downsample_ratio, "geo_decoder_ln_post": ln_post}
self.first_stage_model = comfy.ldm.hunyuan3d.vae.ShapeVAE(**ddconfig)
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
elif "vocoder.backbone.channel_layers.0.0.bias" in sd: #Ace Step Audio
self.first_stage_model = comfy.ldm.ace.vae.music_dcae_pipeline.MusicDCAE(source_sample_rate=44100)
self.memory_used_encode = lambda shape, dtype: (shape[2] * 330) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (shape[2] * shape[3] * 87000) * model_management.dtype_size(dtype)
self.latent_channels = 8
self.output_channels = 2
self.upscale_ratio = 4096
self.downscale_ratio = 4096
self.latent_dim = 2
self.process_output = lambda audio: audio
self.process_input = lambda audio: audio
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
self.disable_offload = True
self.extra_1d_channel = 16
else:
logging.warning("WARNING: No VAE weights detected, VAE not initalized.")
self.first_stage_model = None
@@ -482,7 +513,13 @@ class VAE:
return output
def decode_tiled_1d(self, samples, tile_x=128, overlap=32):
decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float()
if samples.ndim == 3:
decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float()
else:
og_shape = samples.shape
samples = samples.reshape((og_shape[0], og_shape[1] * og_shape[2], -1))
decode_fn = lambda a: self.first_stage_model.decode(a.reshape((-1, og_shape[1], og_shape[2], a.shape[-1])).to(self.vae_dtype).to(self.device)).float()
return self.process_output(comfy.utils.tiled_scale_multidim(samples, decode_fn, tile=(tile_x,), overlap=overlap, upscale_amount=self.upscale_ratio, out_channels=self.output_channels, output_device=self.output_device))
def decode_tiled_3d(self, samples, tile_t=999, tile_x=32, tile_y=32, overlap=(1, 8, 8)):
@@ -502,9 +539,24 @@ class VAE:
samples /= 3.0
return samples
def encode_tiled_1d(self, samples, tile_x=128 * 2048, overlap=32 * 2048):
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float()
return comfy.utils.tiled_scale_multidim(samples, encode_fn, tile=(tile_x,), overlap=overlap, upscale_amount=(1/self.downscale_ratio), out_channels=self.latent_channels, output_device=self.output_device)
def encode_tiled_1d(self, samples, tile_x=256 * 2048, overlap=64 * 2048):
if self.latent_dim == 1:
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float()
out_channels = self.latent_channels
upscale_amount = 1 / self.downscale_ratio
else:
extra_channel_size = self.extra_1d_channel
out_channels = self.latent_channels * extra_channel_size
tile_x = tile_x // extra_channel_size
overlap = overlap // extra_channel_size
upscale_amount = 1 / self.downscale_ratio
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).reshape(1, out_channels, -1).float()
out = comfy.utils.tiled_scale_multidim(samples, encode_fn, tile=(tile_x,), overlap=overlap, upscale_amount=upscale_amount, out_channels=out_channels, output_device=self.output_device)
if self.latent_dim == 1:
return out
else:
return out.reshape(samples.shape[0], self.latent_channels, extra_channel_size, -1)
def encode_tiled_3d(self, samples, tile_t=9999, tile_x=512, tile_y=512, overlap=(1, 64, 64)):
encode_fn = lambda a: self.first_stage_model.encode((self.process_input(a)).to(self.vae_dtype).to(self.device)).float()
@@ -515,7 +567,7 @@ class VAE:
pixel_samples = None
try:
memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype)
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
free_memory = model_management.get_free_memory(self.device)
batch_number = int(free_memory / memory_used)
batch_number = max(1, batch_number)
@@ -529,7 +581,7 @@ class VAE:
except model_management.OOM_EXCEPTION:
logging.warning("Warning: Ran out of memory when regular VAE decoding, retrying with tiled VAE decoding.")
dims = samples_in.ndim - 2
if dims == 1:
if dims == 1 or self.extra_1d_channel is not None:
pixel_samples = self.decode_tiled_1d(samples_in)
elif dims == 2:
pixel_samples = self.decode_tiled_(samples_in)
@@ -544,7 +596,7 @@ class VAE:
def decode_tiled(self, samples, tile_x=None, tile_y=None, overlap=None, tile_t=None, overlap_t=None):
self.throw_exception_if_invalid()
memory_used = self.memory_used_decode(samples.shape, self.vae_dtype) #TODO: calculate mem required for tile
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
dims = samples.ndim - 2
args = {}
if tile_x is not None:
@@ -578,7 +630,7 @@ class VAE:
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
try:
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype)
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
free_memory = model_management.get_free_memory(self.device)
batch_number = int(free_memory / max(1, memory_used))
batch_number = max(1, batch_number)
@@ -596,7 +648,7 @@ class VAE:
tile = 256
overlap = tile // 4
samples = self.encode_tiled_3d(pixel_samples, tile_x=tile, tile_y=tile, overlap=(1, overlap, overlap))
elif self.latent_dim == 1:
elif self.latent_dim == 1 or self.extra_1d_channel is not None:
samples = self.encode_tiled_1d(pixel_samples)
else:
samples = self.encode_tiled_(pixel_samples)
@@ -612,7 +664,7 @@ class VAE:
pixel_samples = pixel_samples.movedim(1, 0).unsqueeze(0)
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype) # TODO: calculate mem required for tile
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
args = {}
if tile_x is not None:
@@ -700,6 +752,10 @@ class CLIPType(Enum):
COSMOS = 11
LUMINA2 = 12
WAN = 13
HIDREAM = 14
CHROMA = 15
ACE = 16
OMNIGEN2 = 17
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
@@ -719,6 +775,7 @@ class TEModel(Enum):
LLAMA3_8 = 7
T5_XXL_OLD = 8
GEMMA_2_2B = 9
QWEN25_3B = 10
def detect_te_model(sd):
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
@@ -739,6 +796,8 @@ def detect_te_model(sd):
return TEModel.T5_BASE
if 'model.layers.0.post_feedforward_layernorm.weight' in sd:
return TEModel.GEMMA_2_2B
if 'model.layers.0.self_attn.k_proj.bias' in sd:
return TEModel.QWEN25_3B
if "model.layers.0.post_attention_layernorm.weight" in sd:
return TEModel.LLAMA3_8
return None
@@ -788,6 +847,9 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
elif clip_type == CLIPType.SD3:
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=True, t5=False)
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
elif clip_type == CLIPType.HIDREAM:
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=False, clip_g=True, t5=False, llama=False, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
else:
clip_target.clip = sdxl_clip.SDXLRefinerClipModel
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
@@ -801,13 +863,17 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
elif clip_type == CLIPType.LTXV:
clip_target.clip = comfy.text_encoders.lt.ltxv_te(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.lt.LTXVT5Tokenizer
elif clip_type == CLIPType.PIXART:
elif clip_type == CLIPType.PIXART or clip_type == CLIPType.CHROMA:
clip_target.clip = comfy.text_encoders.pixart_t5.pixart_te(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.pixart_t5.PixArtTokenizer
elif clip_type == CLIPType.WAN:
clip_target.clip = comfy.text_encoders.wan.te(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.wan.WanT5Tokenizer
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
elif clip_type == CLIPType.HIDREAM:
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**t5xxl_detect(clip_data),
clip_l=False, clip_g=False, t5=True, llama=False, dtype_llama=None, llama_scaled_fp8=None)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
else: #CLIPType.MOCHI
clip_target.clip = comfy.text_encoders.genmo.mochi_te(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.genmo.MochiT5Tokenizer
@@ -818,16 +884,32 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
clip_target.clip = comfy.text_encoders.aura_t5.AuraT5Model
clip_target.tokenizer = comfy.text_encoders.aura_t5.AuraT5Tokenizer
elif te_model == TEModel.T5_BASE:
clip_target.clip = comfy.text_encoders.sa_t5.SAT5Model
clip_target.tokenizer = comfy.text_encoders.sa_t5.SAT5Tokenizer
if clip_type == CLIPType.ACE or "spiece_model" in clip_data[0]:
clip_target.clip = comfy.text_encoders.ace.AceT5Model
clip_target.tokenizer = comfy.text_encoders.ace.AceT5Tokenizer
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
else:
clip_target.clip = comfy.text_encoders.sa_t5.SAT5Model
clip_target.tokenizer = comfy.text_encoders.sa_t5.SAT5Tokenizer
elif te_model == TEModel.GEMMA_2_2B:
clip_target.clip = comfy.text_encoders.lumina2.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.lumina2.LuminaTokenizer
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
elif te_model == TEModel.LLAMA3_8:
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**llama_detect(clip_data),
clip_l=False, clip_g=False, t5=False, llama=True, dtype_t5=None, t5xxl_scaled_fp8=None)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
elif te_model == TEModel.QWEN25_3B:
clip_target.clip = comfy.text_encoders.omnigen2.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.omnigen2.Omnigen2Tokenizer
else:
# clip_l
if clip_type == CLIPType.SD3:
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=True, clip_g=False, t5=False)
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
elif clip_type == CLIPType.HIDREAM:
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=True, clip_g=False, t5=False, llama=False, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
else:
clip_target.clip = sd1_clip.SD1ClipModel
clip_target.tokenizer = sd1_clip.SD1Tokenizer
@@ -845,12 +927,33 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
elif clip_type == CLIPType.HUNYUAN_VIDEO:
clip_target.clip = comfy.text_encoders.hunyuan_video.hunyuan_video_clip(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.hunyuan_video.HunyuanVideoTokenizer
elif clip_type == CLIPType.HIDREAM:
# Detect
hidream_dualclip_classes = []
for hidream_te in clip_data:
te_model = detect_te_model(hidream_te)
hidream_dualclip_classes.append(te_model)
clip_l = TEModel.CLIP_L in hidream_dualclip_classes
clip_g = TEModel.CLIP_G in hidream_dualclip_classes
t5 = TEModel.T5_XXL in hidream_dualclip_classes
llama = TEModel.LLAMA3_8 in hidream_dualclip_classes
# Initialize t5xxl_detect and llama_detect kwargs if needed
t5_kwargs = t5xxl_detect(clip_data) if t5 else {}
llama_kwargs = llama_detect(clip_data) if llama else {}
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=clip_l, clip_g=clip_g, t5=t5, llama=llama, **t5_kwargs, **llama_kwargs)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
else:
clip_target.clip = sdxl_clip.SDXLClipModel
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
elif len(clip_data) == 3:
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(**t5xxl_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
elif len(clip_data) == 4:
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**t5xxl_detect(clip_data), **llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
parameters = 0
for c in clip_data:
@@ -986,7 +1089,28 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
return (model_patcher, clip, vae, clipvision)
def load_diffusion_model_state_dict(sd, model_options={}): #load unet in diffusers or regular format
def load_diffusion_model_state_dict(sd, model_options={}):
"""
Loads a UNet diffusion model from a state dictionary, supporting both diffusers and regular formats.
Args:
sd (dict): State dictionary containing model weights and configuration
model_options (dict, optional): Additional options for model loading. Supports:
- dtype: Override model data type
- custom_operations: Custom model operations
- fp8_optimizations: Enable FP8 optimizations
Returns:
ModelPatcher: A wrapped model instance that handles device management and weight loading.
Returns None if the model configuration cannot be detected.
The function:
1. Detects and handles different model formats (regular, diffusers, mmdit)
2. Configures model dtype based on parameters and device capabilities
3. Handles weight conversion and device placement
4. Manages model optimization settings
5. Loads weights and returns a device-managed model instance
"""
dtype = model_options.get("dtype", None)
#Allow loading unets from checkpoint files
@@ -1044,7 +1168,7 @@ def load_diffusion_model_state_dict(sd, model_options={}): #load unet in diffuse
model.load_model_weights(new_sd, "")
left_over = sd.keys()
if len(left_over) > 0:
logging.info("left over keys in unet: {}".format(left_over))
logging.info("left over keys in diffusion model: {}".format(left_over))
return comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device)
@@ -1052,7 +1176,7 @@ def load_diffusion_model(unet_path, model_options={}):
sd = comfy.utils.load_torch_file(unet_path)
model = load_diffusion_model_state_dict(sd, model_options=model_options)
if model is None:
logging.error("ERROR UNSUPPORTED UNET {}".format(unet_path))
logging.error("ERROR UNSUPPORTED DIFFUSION MODEL {}".format(unet_path))
raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path))
return model

View File

@@ -82,7 +82,8 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
LAYERS = [
"last",
"pooled",
"hidden"
"hidden",
"all"
]
def __init__(self, device="cpu", max_length=77,
freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, dtype=None, model_class=comfy.clip_model.CLIPTextModel,
@@ -93,6 +94,8 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
if textmodel_json_config is None:
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
if "model_name" not in model_options:
model_options = {**model_options, "model_name": "clip_l"}
if isinstance(textmodel_json_config, dict):
config = textmodel_json_config
@@ -100,6 +103,10 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
with open(textmodel_json_config) as f:
config = json.load(f)
te_model_options = model_options.get("{}_model_config".format(model_options.get("model_name", "")), {})
for k, v in te_model_options.items():
config[k] = v
operations = model_options.get("custom_operations", None)
scaled_fp8 = None
@@ -147,7 +154,9 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
def set_clip_options(self, options):
layer_idx = options.get("layer", self.layer_idx)
self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled)
if layer_idx is None or abs(layer_idx) > self.num_layers:
if self.layer == "all":
pass
elif layer_idx is None or abs(layer_idx) > self.num_layers:
self.layer = "last"
else:
self.layer = "hidden"
@@ -244,7 +253,12 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
if self.enable_attention_masks:
attention_mask_model = attention_mask
outputs = self.transformer(None, attention_mask_model, embeds=embeds, num_tokens=num_tokens, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32)
if self.layer == "all":
intermediate_output = "all"
else:
intermediate_output = self.layer_idx
outputs = self.transformer(None, attention_mask_model, embeds=embeds, num_tokens=num_tokens, intermediate_output=intermediate_output, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32)
if self.layer == "last":
z = outputs[0].float()
@@ -443,13 +457,14 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No
return embed_out
class SDTokenizer:
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, tokenizer_data={}, tokenizer_args={}):
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, min_padding=None, tokenizer_data={}, tokenizer_args={}):
if tokenizer_path is None:
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path, **tokenizer_args)
self.max_length = max_length
self.min_length = min_length
self.max_length = tokenizer_data.get("{}_max_length".format(embedding_key), max_length)
self.min_length = tokenizer_data.get("{}_min_length".format(embedding_key), min_length)
self.end_token = None
self.min_padding = min_padding
empty = self.tokenizer('')["input_ids"]
self.tokenizer_adds_end_token = has_end_token
@@ -467,7 +482,8 @@ class SDTokenizer:
if end_token is not None:
self.end_token = end_token
else:
self.end_token = empty[0]
if has_end_token:
self.end_token = empty[0]
if pad_token is not None:
self.pad_token = pad_token
@@ -504,13 +520,15 @@ class SDTokenizer:
return (embed, leftover)
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
def tokenize_with_weights(self, text:str, return_word_ids=False, tokenizer_options={}, **kwargs):
'''
Takes a prompt and converts it to a list of (token, weight, word id) elements.
Tokens can both be integer tokens and pre computed CLIP tensors.
Word id values are unique per word and embedding, where the id 0 is reserved for non word tokens.
Returned list has the dimensions NxM where M is the input size of CLIP
'''
min_length = tokenizer_options.get("{}_min_length".format(self.embedding_key), self.min_length)
min_padding = tokenizer_options.get("{}_min_padding".format(self.embedding_key), self.min_padding)
text = escape_important(text)
parsed_weights = token_weights(text, 1.0)
@@ -589,10 +607,12 @@ class SDTokenizer:
#fill last batch
if self.end_token is not None:
batch.append((self.end_token, 1.0, 0))
if self.pad_to_max_length:
if min_padding is not None:
batch.extend([(self.pad_token, 1.0, 0)] * min_padding)
if self.pad_to_max_length and len(batch) < self.max_length:
batch.extend([(self.pad_token, 1.0, 0)] * (self.max_length - len(batch)))
if self.min_length is not None and len(batch) < self.min_length:
batch.extend([(self.pad_token, 1.0, 0)] * (self.min_length - len(batch)))
if min_length is not None and len(batch) < min_length:
batch.extend([(self.pad_token, 1.0, 0)] * (min_length - len(batch)))
if not return_word_ids:
batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]
@@ -620,7 +640,7 @@ class SD1Tokenizer:
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {}
out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids)
out[self.clip_name] = getattr(self, self.clip).tokenize_with_weights(text, return_word_ids, **kwargs)
return out
def untokenize(self, token_weight_pair):
@@ -645,6 +665,7 @@ class SD1ClipModel(torch.nn.Module):
self.clip = "clip_{}".format(self.clip_name)
clip_model = model_options.get("{}_class".format(self.clip), clip_model)
model_options = {**model_options, "model_name": self.clip}
setattr(self, self.clip, clip_model(device=device, dtype=dtype, model_options=model_options, **kwargs))
self.dtypes = set()

View File

@@ -9,6 +9,7 @@ class SDXLClipG(sd1_clip.SDClipModel):
layer_idx=-2
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
model_options = {**model_options, "model_name": "clip_g"}
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype,
special_tokens={"start": 49406, "end": 49407, "pad": 0}, layer_norm_hidden_state=False, return_projected_pooled=True, model_options=model_options)
@@ -17,19 +18,18 @@ class SDXLClipG(sd1_clip.SDClipModel):
class SDXLClipGTokenizer(sd1_clip.SDTokenizer):
def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}):
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g')
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g', tokenizer_data=tokenizer_data)
class SDXLTokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}):
clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer)
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory)
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.clip_g = SDXLClipGTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {}
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids)
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids, **kwargs)
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs)
return out
def untokenize(self, token_weight_pair):
@@ -41,8 +41,7 @@ class SDXLTokenizer:
class SDXLClipModel(torch.nn.Module):
def __init__(self, device="cpu", dtype=None, model_options={}):
super().__init__()
clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel)
self.clip_l = clip_l_class(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, model_options=model_options)
self.clip_l = sd1_clip.SDClipModel(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, model_options=model_options)
self.clip_g = SDXLClipG(device=device, dtype=dtype, model_options=model_options)
self.dtypes = set([dtype])
@@ -75,7 +74,7 @@ class SDXLRefinerClipModel(sd1_clip.SD1ClipModel):
class StableCascadeClipGTokenizer(sd1_clip.SDTokenizer):
def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}):
super().__init__(tokenizer_path, pad_with_end=True, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g')
super().__init__(tokenizer_path, pad_with_end=True, embedding_directory=embedding_directory, embedding_size=1280, embedding_key='clip_g', tokenizer_data=tokenizer_data)
class StableCascadeTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
@@ -84,6 +83,7 @@ class StableCascadeTokenizer(sd1_clip.SD1Tokenizer):
class StableCascadeClipG(sd1_clip.SDClipModel):
def __init__(self, device="cpu", max_length=77, freeze=True, layer="hidden", layer_idx=-1, dtype=None, model_options={}):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_config_bigg.json")
model_options = {**model_options, "model_name": "clip_g"}
super().__init__(device=device, freeze=freeze, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype,
special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=False, enable_attention_masks=True, return_projected_pooled=True, model_options=model_options)

View File

@@ -17,6 +17,8 @@ import comfy.text_encoders.hunyuan_video
import comfy.text_encoders.cosmos
import comfy.text_encoders.lumina2
import comfy.text_encoders.wan
import comfy.text_encoders.ace
import comfy.text_encoders.omnigen2
from . import supported_models_base
from . import latent_formats
@@ -785,6 +787,10 @@ class LTXV(supported_models_base.BASE):
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def __init__(self, unet_config):
super().__init__(unet_config)
self.memory_usage_factor = (unet_config.get("cross_attention_dim", 2048) / 2048) * 5.5
def get_model(self, state_dict, prefix="", device=None):
out = model_base.LTXV(self, device=device)
return out
@@ -903,6 +909,48 @@ class CosmosI2V(CosmosT2V):
out = model_base.CosmosVideo(self, image_to_video=True, device=device)
return out
class CosmosT2IPredict2(supported_models_base.BASE):
unet_config = {
"image_model": "cosmos_predict2",
"in_channels": 16,
}
sampling_settings = {
"sigma_data": 1.0,
"sigma_max": 80.0,
"sigma_min": 0.002,
}
unet_extra_config = {}
latent_format = latent_formats.Wan21
memory_usage_factor = 1.0
supported_inference_dtypes = [torch.bfloat16, torch.float32]
def __init__(self, unet_config):
super().__init__(unet_config)
self.memory_usage_factor = (unet_config.get("model_channels", 2048) / 2048) * 0.9
def get_model(self, state_dict, prefix="", device=None):
out = model_base.CosmosPredict2(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.cosmos.CosmosT5Tokenizer, comfy.text_encoders.cosmos.te(**t5_detect))
class CosmosI2VPredict2(CosmosT2IPredict2):
unet_config = {
"image_model": "cosmos_predict2",
"in_channels": 17,
}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.CosmosPredict2(self, image_to_video=True, device=device)
return out
class Lumina2(supported_models_base.BASE):
unet_config = {
"image_model": "lumina2",
@@ -969,12 +1017,48 @@ class WAN21_I2V(WAN21_T2V):
unet_config = {
"image_model": "wan2.1",
"model_type": "i2v",
"in_dim": 36,
}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.WAN21(self, image_to_video=True, device=device)
return out
class WAN21_FunControl2V(WAN21_T2V):
unet_config = {
"image_model": "wan2.1",
"model_type": "i2v",
"in_dim": 48,
}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.WAN21(self, image_to_video=False, device=device)
return out
class WAN21_Camera(WAN21_T2V):
unet_config = {
"image_model": "wan2.1",
"model_type": "camera",
"in_dim": 32,
}
def get_model(self, state_dict, prefix="", device=None):
out = model_base.WAN21_Camera(self, image_to_video=False, device=device)
return out
class WAN21_Vace(WAN21_T2V):
unet_config = {
"image_model": "wan2.1",
"model_type": "vace",
}
def __init__(self, unet_config):
super().__init__(unet_config)
self.memory_usage_factor = 1.2 * self.memory_usage_factor
def get_model(self, state_dict, prefix="", device=None):
out = model_base.WAN21_Vace(self, image_to_video=False, device=device)
return out
class Hunyuan3Dv2(supported_models_base.BASE):
unet_config = {
"image_model": "hunyuan3d2",
@@ -1013,6 +1097,126 @@ class Hunyuan3Dv2mini(Hunyuan3Dv2):
latent_format = latent_formats.Hunyuan3Dv2mini
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, Lumina2, WAN21_T2V, WAN21_I2V, Hunyuan3Dv2mini, Hunyuan3Dv2]
class HiDream(supported_models_base.BASE):
unet_config = {
"image_model": "hidream",
}
sampling_settings = {
"shift": 3.0,
}
sampling_settings = {
}
# memory_usage_factor = 1.2 # TODO
unet_extra_config = {}
latent_format = latent_formats.Flux
supported_inference_dtypes = [torch.bfloat16, torch.float32]
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.HiDream(self, device=device)
return out
def clip_target(self, state_dict={}):
return None # TODO
class Chroma(supported_models_base.BASE):
unet_config = {
"image_model": "chroma",
}
unet_extra_config = {
}
sampling_settings = {
"multiplier": 1.0,
}
latent_format = comfy.latent_formats.Flux
memory_usage_factor = 3.2
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.Chroma(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.pixart_t5.PixArtTokenizer, comfy.text_encoders.pixart_t5.pixart_te(**t5_detect))
class ACEStep(supported_models_base.BASE):
unet_config = {
"audio_model": "ace",
}
unet_extra_config = {
}
sampling_settings = {
"shift": 3.0,
}
latent_format = comfy.latent_formats.ACEAudio
memory_usage_factor = 0.5
supported_inference_dtypes = [torch.bfloat16, torch.float32]
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.ACEStep(self, device=device)
return out
def clip_target(self, state_dict={}):
return supported_models_base.ClipTarget(comfy.text_encoders.ace.AceT5Tokenizer, comfy.text_encoders.ace.AceT5Model)
class Omnigen2(supported_models_base.BASE):
unet_config = {
"image_model": "omnigen2",
}
sampling_settings = {
"multiplier": 1.0,
"shift": 2.6,
}
memory_usage_factor = 1.65 #TODO
unet_extra_config = {}
latent_format = latent_formats.Flux
supported_inference_dtypes = [torch.bfloat16, torch.float32]
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def __init__(self, unet_config):
super().__init__(unet_config)
if comfy.model_management.extended_fp16_support():
self.supported_inference_dtypes = [torch.float16] + self.supported_inference_dtypes
def get_model(self, state_dict, prefix="", device=None):
out = model_base.Omnigen2(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_3b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.omnigen2.LuminaTokenizer, comfy.text_encoders.omnigen2.te(**hunyuan_detect))
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, Lumina2, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, Hunyuan3Dv2mini, Hunyuan3Dv2, HiDream, Chroma, ACEStep, Omnigen2]
models += [SVD_img2vid]

153
comfy/text_encoders/ace.py Normal file
View File

@@ -0,0 +1,153 @@
from comfy import sd1_clip
from .spiece_tokenizer import SPieceTokenizer
import comfy.text_encoders.t5
import os
import re
import torch
import logging
from tokenizers import Tokenizer
from .ace_text_cleaners import multilingual_cleaners, japanese_to_romaji
SUPPORT_LANGUAGES = {
"en": 259, "de": 260, "fr": 262, "es": 284, "it": 285,
"pt": 286, "pl": 294, "tr": 295, "ru": 267, "cs": 293,
"nl": 297, "ar": 5022, "zh": 5023, "ja": 5412, "hu": 5753,
"ko": 6152, "hi": 6680
}
structure_pattern = re.compile(r"\[.*?\]")
DEFAULT_VOCAB_FILE = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "ace_lyrics_tokenizer"), "vocab.json")
class VoiceBpeTokenizer:
def __init__(self, vocab_file=DEFAULT_VOCAB_FILE):
self.tokenizer = None
if vocab_file is not None:
self.tokenizer = Tokenizer.from_file(vocab_file)
def preprocess_text(self, txt, lang):
txt = multilingual_cleaners(txt, lang)
return txt
def encode(self, txt, lang='en'):
# lang = lang.split("-")[0] # remove the region
# self.check_input_length(txt, lang)
txt = self.preprocess_text(txt, lang)
lang = "zh-cn" if lang == "zh" else lang
txt = f"[{lang}]{txt}"
txt = txt.replace(" ", "[SPACE]")
return self.tokenizer.encode(txt).ids
def get_lang(self, line):
if line.startswith("[") and line[3:4] == ']':
lang = line[1:3].lower()
if lang in SUPPORT_LANGUAGES:
return lang, line[4:]
return "en", line
def __call__(self, string):
lines = string.split("\n")
lyric_token_idx = [261]
for line in lines:
line = line.strip()
if not line:
lyric_token_idx += [2]
continue
lang, line = self.get_lang(line)
if lang not in SUPPORT_LANGUAGES:
lang = "en"
if "zh" in lang:
lang = "zh"
if "spa" in lang:
lang = "es"
try:
line_out = japanese_to_romaji(line)
if line_out != line:
lang = "ja"
line = line_out
except:
pass
try:
if structure_pattern.match(line):
token_idx = self.encode(line, "en")
else:
token_idx = self.encode(line, lang)
lyric_token_idx = lyric_token_idx + token_idx + [2]
except Exception as e:
logging.warning("tokenize error {} for line {} major_language {}".format(e, line, lang))
return {"input_ids": lyric_token_idx}
@staticmethod
def from_pretrained(path, **kwargs):
return VoiceBpeTokenizer(path, **kwargs)
def get_vocab(self):
return {}
class UMT5BaseModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "umt5_config_base.json")
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=True, zero_out_masked=False, model_options=model_options)
class UMT5BaseTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer = tokenizer_data.get("spiece_model", None)
super().__init__(tokenizer, pad_with_end=False, embedding_size=768, embedding_key='umt5base', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=0, tokenizer_data=tokenizer_data)
def state_dict(self):
return {"spiece_model": self.tokenizer.serialize_model()}
class LyricsTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "ace_lyrics_tokenizer"), "vocab.json")
super().__init__(tokenizer, pad_with_end=False, embedding_size=1024, embedding_key='lyrics', tokenizer_class=VoiceBpeTokenizer, has_start_token=True, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=2, has_end_token=False, tokenizer_data=tokenizer_data)
class AceT5Tokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}):
self.voicebpe = LyricsTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.umt5base = UMT5BaseTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {}
out["lyrics"] = self.voicebpe.tokenize_with_weights(kwargs.get("lyrics", ""), return_word_ids, **kwargs)
out["umt5base"] = self.umt5base.tokenize_with_weights(text, return_word_ids, **kwargs)
return out
def untokenize(self, token_weight_pair):
return self.umt5base.untokenize(token_weight_pair)
def state_dict(self):
return self.umt5base.state_dict()
class AceT5Model(torch.nn.Module):
def __init__(self, device="cpu", dtype=None, model_options={}, **kwargs):
super().__init__()
self.umt5base = UMT5BaseModel(device=device, dtype=dtype, model_options=model_options)
self.dtypes = set()
if dtype is not None:
self.dtypes.add(dtype)
def set_clip_options(self, options):
self.umt5base.set_clip_options(options)
def reset_clip_options(self):
self.umt5base.reset_clip_options()
def encode_token_weights(self, token_weight_pairs):
token_weight_pairs_umt5base = token_weight_pairs["umt5base"]
token_weight_pairs_lyrics = token_weight_pairs["lyrics"]
t5_out, t5_pooled = self.umt5base.encode_token_weights(token_weight_pairs_umt5base)
lyrics_embeds = torch.tensor(list(map(lambda a: a[0], token_weight_pairs_lyrics[0]))).unsqueeze(0)
return t5_out, None, {"conditioning_lyrics": lyrics_embeds}
def load_sd(self, sd):
return self.umt5base.load_sd(sd)

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,395 @@
# basic text cleaners for the ACE step model
# I didn't copy the ones from the reference code because I didn't want to deal with the dependencies
# TODO: more languages than english?
import re
def japanese_to_romaji(japanese_text):
"""
Convert Japanese hiragana and katakana to romaji (Latin alphabet representation).
Args:
japanese_text (str): Text containing hiragana and/or katakana characters
Returns:
str: The romaji (Latin alphabet) equivalent
"""
# Dictionary mapping kana characters to their romaji equivalents
kana_map = {
# Katakana characters
'': 'a', '': 'i', '': 'u', '': 'e', '': 'o',
'': 'ka', '': 'ki', '': 'ku', '': 'ke', '': 'ko',
'': 'sa', '': 'shi', '': 'su', '': 'se', '': 'so',
'': 'ta', '': 'chi', '': 'tsu', '': 'te', '': 'to',
'': 'na', '': 'ni', '': 'nu', '': 'ne', '': 'no',
'': 'ha', '': 'hi', '': 'fu', '': 'he', '': 'ho',
'': 'ma', '': 'mi', '': 'mu', '': 'me', '': 'mo',
'': 'ya', '': 'yu', '': 'yo',
'': 'ra', '': 'ri', '': 'ru', '': 're', '': 'ro',
'': 'wa', '': 'wo', '': 'n',
# Katakana voiced consonants
'': 'ga', '': 'gi', '': 'gu', '': 'ge', '': 'go',
'': 'za', '': 'ji', '': 'zu', '': 'ze', '': 'zo',
'': 'da', '': 'ji', '': 'zu', '': 'de', '': 'do',
'': 'ba', '': 'bi', '': 'bu', '': 'be', '': 'bo',
'': 'pa', '': 'pi', '': 'pu', '': 'pe', '': 'po',
# Katakana combinations
'キャ': 'kya', 'キュ': 'kyu', 'キョ': 'kyo',
'シャ': 'sha', 'シュ': 'shu', 'ショ': 'sho',
'チャ': 'cha', 'チュ': 'chu', 'チョ': 'cho',
'ニャ': 'nya', 'ニュ': 'nyu', 'ニョ': 'nyo',
'ヒャ': 'hya', 'ヒュ': 'hyu', 'ヒョ': 'hyo',
'ミャ': 'mya', 'ミュ': 'myu', 'ミョ': 'myo',
'リャ': 'rya', 'リュ': 'ryu', 'リョ': 'ryo',
'ギャ': 'gya', 'ギュ': 'gyu', 'ギョ': 'gyo',
'ジャ': 'ja', 'ジュ': 'ju', 'ジョ': 'jo',
'ビャ': 'bya', 'ビュ': 'byu', 'ビョ': 'byo',
'ピャ': 'pya', 'ピュ': 'pyu', 'ピョ': 'pyo',
# Katakana small characters and special cases
'': '', # Small tsu (doubles the following consonant)
'': 'ya', '': 'yu', '': 'yo',
# Katakana extras
'': 'vu', 'ファ': 'fa', 'フィ': 'fi', 'フェ': 'fe', 'フォ': 'fo',
'ウィ': 'wi', 'ウェ': 'we', 'ウォ': 'wo',
# Hiragana characters
'': 'a', '': 'i', '': 'u', '': 'e', '': 'o',
'': 'ka', '': 'ki', '': 'ku', '': 'ke', '': 'ko',
'': 'sa', '': 'shi', '': 'su', '': 'se', '': 'so',
'': 'ta', '': 'chi', '': 'tsu', '': 'te', '': 'to',
'': 'na', '': 'ni', '': 'nu', '': 'ne', '': 'no',
'': 'ha', '': 'hi', '': 'fu', '': 'he', '': 'ho',
'': 'ma', '': 'mi', '': 'mu', '': 'me', '': 'mo',
'': 'ya', '': 'yu', '': 'yo',
'': 'ra', '': 'ri', '': 'ru', '': 're', '': 'ro',
'': 'wa', '': 'wo', '': 'n',
# Hiragana voiced consonants
'': 'ga', '': 'gi', '': 'gu', '': 'ge', '': 'go',
'': 'za', '': 'ji', '': 'zu', '': 'ze', '': 'zo',
'': 'da', '': 'ji', '': 'zu', '': 'de', '': 'do',
'': 'ba', '': 'bi', '': 'bu', '': 'be', '': 'bo',
'': 'pa', '': 'pi', '': 'pu', '': 'pe', '': 'po',
# Hiragana combinations
'きゃ': 'kya', 'きゅ': 'kyu', 'きょ': 'kyo',
'しゃ': 'sha', 'しゅ': 'shu', 'しょ': 'sho',
'ちゃ': 'cha', 'ちゅ': 'chu', 'ちょ': 'cho',
'にゃ': 'nya', 'にゅ': 'nyu', 'にょ': 'nyo',
'ひゃ': 'hya', 'ひゅ': 'hyu', 'ひょ': 'hyo',
'みゃ': 'mya', 'みゅ': 'myu', 'みょ': 'myo',
'りゃ': 'rya', 'りゅ': 'ryu', 'りょ': 'ryo',
'ぎゃ': 'gya', 'ぎゅ': 'gyu', 'ぎょ': 'gyo',
'じゃ': 'ja', 'じゅ': 'ju', 'じょ': 'jo',
'びゃ': 'bya', 'びゅ': 'byu', 'びょ': 'byo',
'ぴゃ': 'pya', 'ぴゅ': 'pyu', 'ぴょ': 'pyo',
# Hiragana small characters and special cases
'': '', # Small tsu (doubles the following consonant)
'': 'ya', '': 'yu', '': 'yo',
# Common punctuation and spaces
' ': ' ', # Japanese space
'': ', ', '': '. ',
}
result = []
i = 0
while i < len(japanese_text):
# Check for small tsu (doubling the following consonant)
if i < len(japanese_text) - 1 and (japanese_text[i] == '' or japanese_text[i] == ''):
if i < len(japanese_text) - 1 and japanese_text[i+1] in kana_map:
next_romaji = kana_map[japanese_text[i+1]]
if next_romaji and next_romaji[0] not in 'aiueon':
result.append(next_romaji[0]) # Double the consonant
i += 1
continue
# Check for combinations with small ya, yu, yo
if i < len(japanese_text) - 1 and japanese_text[i+1] in ('', '', '', '', '', ''):
combo = japanese_text[i:i+2]
if combo in kana_map:
result.append(kana_map[combo])
i += 2
continue
# Regular character
if japanese_text[i] in kana_map:
result.append(kana_map[japanese_text[i]])
else:
# If it's not in our map, keep it as is (might be kanji, romaji, etc.)
result.append(japanese_text[i])
i += 1
return ''.join(result)
def number_to_text(num, ordinal=False):
"""
Convert a number (int or float) to its text representation.
Args:
num: The number to convert
Returns:
str: Text representation of the number
"""
if not isinstance(num, (int, float)):
return "Input must be a number"
# Handle special case of zero
if num == 0:
return "zero"
# Handle negative numbers
negative = num < 0
num = abs(num)
# Handle floats
if isinstance(num, float):
# Split into integer and decimal parts
int_part = int(num)
# Convert both parts
int_text = _int_to_text(int_part)
# Handle decimal part (convert to string and remove '0.')
decimal_str = str(num).split('.')[1]
decimal_text = " point " + " ".join(_digit_to_text(int(digit)) for digit in decimal_str)
result = int_text + decimal_text
else:
# Handle integers
result = _int_to_text(num)
# Add 'negative' prefix for negative numbers
if negative:
result = "negative " + result
return result
def _int_to_text(num):
"""Helper function to convert an integer to text"""
ones = ["", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine",
"ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen",
"seventeen", "eighteen", "nineteen"]
tens = ["", "", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"]
if num < 20:
return ones[num]
if num < 100:
return tens[num // 10] + (" " + ones[num % 10] if num % 10 != 0 else "")
if num < 1000:
return ones[num // 100] + " hundred" + (" " + _int_to_text(num % 100) if num % 100 != 0 else "")
if num < 1000000:
return _int_to_text(num // 1000) + " thousand" + (" " + _int_to_text(num % 1000) if num % 1000 != 0 else "")
if num < 1000000000:
return _int_to_text(num // 1000000) + " million" + (" " + _int_to_text(num % 1000000) if num % 1000000 != 0 else "")
return _int_to_text(num // 1000000000) + " billion" + (" " + _int_to_text(num % 1000000000) if num % 1000000000 != 0 else "")
def _digit_to_text(digit):
"""Convert a single digit to text"""
digits = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
return digits[digit]
_whitespace_re = re.compile(r"\s+")
# List of (regular expression, replacement) pairs for abbreviations:
_abbreviations = {
"en": [
(re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
for x in [
("mrs", "misess"),
("mr", "mister"),
("dr", "doctor"),
("st", "saint"),
("co", "company"),
("jr", "junior"),
("maj", "major"),
("gen", "general"),
("drs", "doctors"),
("rev", "reverend"),
("lt", "lieutenant"),
("hon", "honorable"),
("sgt", "sergeant"),
("capt", "captain"),
("esq", "esquire"),
("ltd", "limited"),
("col", "colonel"),
("ft", "fort"),
]
],
}
def expand_abbreviations_multilingual(text, lang="en"):
for regex, replacement in _abbreviations[lang]:
text = re.sub(regex, replacement, text)
return text
_symbols_multilingual = {
"en": [
(re.compile(r"%s" % re.escape(x[0]), re.IGNORECASE), x[1])
for x in [
("&", " and "),
("@", " at "),
("%", " percent "),
("#", " hash "),
("$", " dollar "),
("£", " pound "),
("°", " degree "),
]
],
}
def expand_symbols_multilingual(text, lang="en"):
for regex, replacement in _symbols_multilingual[lang]:
text = re.sub(regex, replacement, text)
text = text.replace(" ", " ") # Ensure there are no double spaces
return text.strip()
_ordinal_re = {
"en": re.compile(r"([0-9]+)(st|nd|rd|th)"),
}
_number_re = re.compile(r"[0-9]+")
_currency_re = {
"USD": re.compile(r"((\$[0-9\.\,]*[0-9]+)|([0-9\.\,]*[0-9]+\$))"),
"GBP": re.compile(r"((£[0-9\.\,]*[0-9]+)|([0-9\.\,]*[0-9]+£))"),
"EUR": re.compile(r"(([0-9\.\,]*[0-9]+€)|((€[0-9\.\,]*[0-9]+)))"),
}
_comma_number_re = re.compile(r"\b\d{1,3}(,\d{3})*(\.\d+)?\b")
_dot_number_re = re.compile(r"\b\d{1,3}(.\d{3})*(\,\d+)?\b")
_decimal_number_re = re.compile(r"([0-9]+[.,][0-9]+)")
def _remove_commas(m):
text = m.group(0)
if "," in text:
text = text.replace(",", "")
return text
def _remove_dots(m):
text = m.group(0)
if "." in text:
text = text.replace(".", "")
return text
def _expand_decimal_point(m, lang="en"):
amount = m.group(1).replace(",", ".")
return number_to_text(float(amount))
def _expand_currency(m, lang="en", currency="USD"):
amount = float((re.sub(r"[^\d.]", "", m.group(0).replace(",", "."))))
full_amount = number_to_text(amount)
and_equivalents = {
"en": ", ",
"es": " con ",
"fr": " et ",
"de": " und ",
"pt": " e ",
"it": " e ",
"pl": ", ",
"cs": ", ",
"ru": ", ",
"nl": ", ",
"ar": ", ",
"tr": ", ",
"hu": ", ",
"ko": ", ",
}
if amount.is_integer():
last_and = full_amount.rfind(and_equivalents[lang])
if last_and != -1:
full_amount = full_amount[:last_and]
return full_amount
def _expand_ordinal(m, lang="en"):
return number_to_text(int(m.group(1)), ordinal=True)
def _expand_number(m, lang="en"):
return number_to_text(int(m.group(0)))
def expand_numbers_multilingual(text, lang="en"):
if lang in ["en", "ru"]:
text = re.sub(_comma_number_re, _remove_commas, text)
else:
text = re.sub(_dot_number_re, _remove_dots, text)
try:
text = re.sub(_currency_re["GBP"], lambda m: _expand_currency(m, lang, "GBP"), text)
text = re.sub(_currency_re["USD"], lambda m: _expand_currency(m, lang, "USD"), text)
text = re.sub(_currency_re["EUR"], lambda m: _expand_currency(m, lang, "EUR"), text)
except:
pass
text = re.sub(_decimal_number_re, lambda m: _expand_decimal_point(m, lang), text)
text = re.sub(_ordinal_re[lang], lambda m: _expand_ordinal(m, lang), text)
text = re.sub(_number_re, lambda m: _expand_number(m, lang), text)
return text
def lowercase(text):
return text.lower()
def collapse_whitespace(text):
return re.sub(_whitespace_re, " ", text)
def multilingual_cleaners(text, lang):
text = text.replace('"', "")
if lang == "tr":
text = text.replace("İ", "i")
text = text.replace("Ö", "ö")
text = text.replace("Ü", "ü")
text = lowercase(text)
try:
text = expand_numbers_multilingual(text, lang)
except:
pass
try:
text = expand_abbreviations_multilingual(text, lang)
except:
pass
try:
text = expand_symbols_multilingual(text, lang=lang)
except:
pass
text = collapse_whitespace(text)
return text
def basic_cleaners(text):
"""Basic pipeline that lowercases and collapses whitespace without transliteration."""
text = lowercase(text)
text = collapse_whitespace(text)
return text

View File

@@ -11,7 +11,7 @@ class PT5XlModel(sd1_clip.SDClipModel):
class PT5XlTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_pile_tokenizer"), "tokenizer.model")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2048, embedding_key='pile_t5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, pad_token=1)
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2048, embedding_key='pile_t5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, pad_token=1, tokenizer_data=tokenizer_data)
class AuraT5Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):

View File

@@ -22,7 +22,7 @@ class CosmosT5XXL(sd1_clip.SD1ClipModel):
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=1024, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=512)
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=1024, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, tokenizer_data=tokenizer_data)
class CosmosT5Tokenizer(sd1_clip.SD1Tokenizer):

View File

@@ -9,19 +9,18 @@ import os
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256)
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, tokenizer_data=tokenizer_data)
class FluxTokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}):
clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer)
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory)
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {}
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids)
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs)
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids, **kwargs)
return out
def untokenize(self, token_weight_pair):
@@ -35,8 +34,7 @@ class FluxClipModel(torch.nn.Module):
def __init__(self, dtype_t5=None, device="cpu", dtype=None, model_options={}):
super().__init__()
dtype_t5 = comfy.model_management.pick_weight_dtype(dtype_t5, dtype, device)
clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel)
self.clip_l = clip_l_class(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
self.clip_l = sd1_clip.SDClipModel(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
self.t5xxl = comfy.text_encoders.sd3_clip.T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options)
self.dtypes = set([dtype, dtype_t5])

View File

@@ -18,7 +18,7 @@ class MochiT5XXL(sd1_clip.SD1ClipModel):
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256)
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, tokenizer_data=tokenizer_data)
class MochiT5Tokenizer(sd1_clip.SD1Tokenizer):

View File

@@ -0,0 +1,155 @@
from . import hunyuan_video
from . import sd3_clip
from comfy import sd1_clip
from comfy import sdxl_clip
import comfy.model_management
import torch
import logging
class HiDreamTokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}):
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.clip_g = sdxl_clip.SDXLClipGTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.t5xxl = sd3_clip.T5XXLTokenizer(embedding_directory=embedding_directory, min_length=128, max_length=128, tokenizer_data=tokenizer_data)
self.llama = hunyuan_video.LLAMA3Tokenizer(embedding_directory=embedding_directory, min_length=128, pad_token=128009, tokenizer_data=tokenizer_data)
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {}
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids, **kwargs)
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs)
t5xxl = self.t5xxl.tokenize_with_weights(text, return_word_ids, **kwargs)
out["t5xxl"] = [t5xxl[0]] # Use only first 128 tokens
out["llama"] = self.llama.tokenize_with_weights(text, return_word_ids, **kwargs)
return out
def untokenize(self, token_weight_pair):
return self.clip_g.untokenize(token_weight_pair)
def state_dict(self):
return {}
class HiDreamTEModel(torch.nn.Module):
def __init__(self, clip_l=True, clip_g=True, t5=True, llama=True, dtype_t5=None, dtype_llama=None, device="cpu", dtype=None, model_options={}):
super().__init__()
self.dtypes = set()
if clip_l:
self.clip_l = sd1_clip.SDClipModel(device=device, dtype=dtype, return_projected_pooled=True, model_options=model_options)
self.dtypes.add(dtype)
else:
self.clip_l = None
if clip_g:
self.clip_g = sdxl_clip.SDXLClipG(device=device, dtype=dtype, model_options=model_options)
self.dtypes.add(dtype)
else:
self.clip_g = None
if t5:
dtype_t5 = comfy.model_management.pick_weight_dtype(dtype_t5, dtype, device)
self.t5xxl = sd3_clip.T5XXLModel(device=device, dtype=dtype_t5, model_options=model_options, attention_mask=True)
self.dtypes.add(dtype_t5)
else:
self.t5xxl = None
if llama:
dtype_llama = comfy.model_management.pick_weight_dtype(dtype_llama, dtype, device)
if "vocab_size" not in model_options:
model_options["vocab_size"] = 128256
self.llama = hunyuan_video.LLAMAModel(device=device, dtype=dtype_llama, model_options=model_options, layer="all", layer_idx=None, special_tokens={"start": 128000, "pad": 128009})
self.dtypes.add(dtype_llama)
else:
self.llama = None
logging.debug("Created HiDream text encoder with: clip_l {}, clip_g {}, t5xxl {}:{}, llama {}:{}".format(clip_l, clip_g, t5, dtype_t5, llama, dtype_llama))
def set_clip_options(self, options):
if self.clip_l is not None:
self.clip_l.set_clip_options(options)
if self.clip_g is not None:
self.clip_g.set_clip_options(options)
if self.t5xxl is not None:
self.t5xxl.set_clip_options(options)
if self.llama is not None:
self.llama.set_clip_options(options)
def reset_clip_options(self):
if self.clip_l is not None:
self.clip_l.reset_clip_options()
if self.clip_g is not None:
self.clip_g.reset_clip_options()
if self.t5xxl is not None:
self.t5xxl.reset_clip_options()
if self.llama is not None:
self.llama.reset_clip_options()
def encode_token_weights(self, token_weight_pairs):
token_weight_pairs_l = token_weight_pairs["l"]
token_weight_pairs_g = token_weight_pairs["g"]
token_weight_pairs_t5 = token_weight_pairs["t5xxl"]
token_weight_pairs_llama = token_weight_pairs["llama"]
lg_out = None
pooled = None
extra = {}
if len(token_weight_pairs_g) > 0 or len(token_weight_pairs_l) > 0:
if self.clip_l is not None:
lg_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
else:
l_pooled = torch.zeros((1, 768), device=comfy.model_management.intermediate_device())
if self.clip_g is not None:
g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g)
else:
g_pooled = torch.zeros((1, 1280), device=comfy.model_management.intermediate_device())
pooled = torch.cat((l_pooled, g_pooled), dim=-1)
if self.t5xxl is not None:
t5_output = self.t5xxl.encode_token_weights(token_weight_pairs_t5)
t5_out, t5_pooled = t5_output[:2]
else:
t5_out = None
if self.llama is not None:
ll_output = self.llama.encode_token_weights(token_weight_pairs_llama)
ll_out, ll_pooled = ll_output[:2]
ll_out = ll_out[:, 1:]
else:
ll_out = None
if t5_out is None:
t5_out = torch.zeros((1, 128, 4096), device=comfy.model_management.intermediate_device())
if ll_out is None:
ll_out = torch.zeros((1, 32, 1, 4096), device=comfy.model_management.intermediate_device())
if pooled is None:
pooled = torch.zeros((1, 768 + 1280), device=comfy.model_management.intermediate_device())
extra["conditioning_llama3"] = ll_out
return t5_out, pooled, extra
def load_sd(self, sd):
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
return self.clip_g.load_sd(sd)
elif "text_model.encoder.layers.1.mlp.fc1.weight" in sd:
return self.clip_l.load_sd(sd)
elif "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" in sd:
return self.t5xxl.load_sd(sd)
else:
return self.llama.load_sd(sd)
def hidream_clip(clip_l=True, clip_g=True, t5=True, llama=True, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None):
class HiDreamTEModel_(HiDreamTEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8
if llama_scaled_fp8 is not None and "llama_scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["llama_scaled_fp8"] = llama_scaled_fp8
super().__init__(clip_l=clip_l, clip_g=clip_g, t5=t5, llama=llama, dtype_t5=dtype_t5, dtype_llama=dtype_llama, device=device, dtype=dtype, model_options=model_options)
return HiDreamTEModel_

View File

@@ -21,36 +21,41 @@ def llama_detect(state_dict, prefix=""):
class LLAMA3Tokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}, min_length=256):
def __init__(self, embedding_directory=None, tokenizer_data={}, min_length=256, pad_token=128258):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "llama_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='llama', tokenizer_class=LlamaTokenizerFast, has_start_token=True, has_end_token=False, pad_to_max_length=False, max_length=99999999, pad_token=128258, min_length=min_length)
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='llama', tokenizer_class=LlamaTokenizerFast, has_start_token=True, has_end_token=False, pad_to_max_length=False, max_length=99999999, pad_token=pad_token, min_length=min_length, tokenizer_data=tokenizer_data)
class LLAMAModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}):
def __init__(self, device="cpu", layer="hidden", layer_idx=-3, dtype=None, attention_mask=True, model_options={}, special_tokens={"start": 128000, "pad": 128258}):
llama_scaled_fp8 = model_options.get("llama_scaled_fp8", None)
if llama_scaled_fp8 is not None:
model_options = model_options.copy()
model_options["scaled_fp8"] = llama_scaled_fp8
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"start": 128000, "pad": 128258}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Llama2, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
textmodel_json_config = {}
vocab_size = model_options.get("vocab_size", None)
if vocab_size is not None:
textmodel_json_config["vocab_size"] = vocab_size
model_options = {**model_options, "model_name": "llama"}
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens=special_tokens, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Llama2, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
class HunyuanVideoTokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}):
clip_l_tokenizer_class = tokenizer_data.get("clip_l_tokenizer_class", sd1_clip.SDTokenizer)
self.clip_l = clip_l_tokenizer_class(embedding_directory=embedding_directory)
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.llama_template = """<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: 1. The main content and theme of the video.2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects.3. Actions, events, behaviors temporal relationships, physical movement changes of the objects.4. background environment, light, style and atmosphere.5. camera angles, movements, and transitions used in the video:<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>""" # 95 tokens
self.llama = LLAMA3Tokenizer(embedding_directory=embedding_directory, min_length=1)
self.llama = LLAMA3Tokenizer(embedding_directory=embedding_directory, min_length=1, tokenizer_data=tokenizer_data)
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, image_embeds=None, image_interleave=1, **kwargs):
out = {}
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids, **kwargs)
if llama_template is None:
llama_text = self.llama_template.format(text)
else:
llama_text = llama_template.format(text)
llama_text_tokens = self.llama.tokenize_with_weights(llama_text, return_word_ids)
llama_text_tokens = self.llama.tokenize_with_weights(llama_text, return_word_ids, **kwargs)
embed_count = 0
for r in llama_text_tokens:
for i in range(len(r)):
@@ -72,8 +77,7 @@ class HunyuanVideoClipModel(torch.nn.Module):
def __init__(self, dtype_llama=None, device="cpu", dtype=None, model_options={}):
super().__init__()
dtype_llama = comfy.model_management.pick_weight_dtype(dtype_llama, dtype, device)
clip_l_class = model_options.get("clip_l_class", sd1_clip.SDClipModel)
self.clip_l = clip_l_class(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
self.clip_l = sd1_clip.SDClipModel(device=device, dtype=dtype, return_projected_pooled=False, model_options=model_options)
self.llama = LLAMAModel(device=device, dtype=dtype_llama, model_options=model_options)
self.dtypes = set([dtype, dtype_llama])

View File

@@ -9,24 +9,26 @@ import torch
class HyditBertModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "hydit_clip.json")
model_options = {**model_options, "model_name": "hydit_clip"}
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"start": 101, "end": 102, "pad": 0}, model_class=BertModel, enable_attention_masks=True, return_attention_masks=True, model_options=model_options)
class HyditBertTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "hydit_clip_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=1024, embedding_key='chinese_roberta', tokenizer_class=BertTokenizer, pad_to_max_length=False, max_length=512, min_length=77)
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=1024, embedding_key='chinese_roberta', tokenizer_class=BertTokenizer, pad_to_max_length=False, max_length=512, min_length=77, tokenizer_data=tokenizer_data)
class MT5XLModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, model_options={}):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "mt5_config_xl.json")
model_options = {**model_options, "model_name": "mt5xl"}
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.text_encoders.t5.T5, enable_attention_masks=True, return_attention_masks=True, model_options=model_options)
class MT5XLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
#tokenizer_path = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "mt5_tokenizer"), "spiece.model")
tokenizer = tokenizer_data.get("spiece_model", None)
super().__init__(tokenizer, pad_with_end=False, embedding_size=2048, embedding_key='mt5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256)
super().__init__(tokenizer, pad_with_end=False, embedding_size=2048, embedding_key='mt5xl', tokenizer_class=SPieceTokenizer, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256, tokenizer_data=tokenizer_data)
def state_dict(self):
return {"spiece_model": self.tokenizer.serialize_model()}
@@ -35,12 +37,12 @@ class HyditTokenizer:
def __init__(self, embedding_directory=None, tokenizer_data={}):
mt5_tokenizer_data = tokenizer_data.get("mt5xl.spiece_model", None)
self.hydit_clip = HyditBertTokenizer(embedding_directory=embedding_directory)
self.mt5xl = MT5XLTokenizer(tokenizer_data={"spiece_model": mt5_tokenizer_data}, embedding_directory=embedding_directory)
self.mt5xl = MT5XLTokenizer(tokenizer_data={**tokenizer_data, "spiece_model": mt5_tokenizer_data}, embedding_directory=embedding_directory)
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {}
out["hydit_clip"] = self.hydit_clip.tokenize_with_weights(text, return_word_ids)
out["mt5xl"] = self.mt5xl.tokenize_with_weights(text, return_word_ids)
out["hydit_clip"] = self.hydit_clip.tokenize_with_weights(text, return_word_ids, **kwargs)
out["mt5xl"] = self.mt5xl.tokenize_with_weights(text, return_word_ids, **kwargs)
return out
def untokenize(self, token_weight_pair):

View File

@@ -24,6 +24,24 @@ class Llama2Config:
head_dim = 128
rms_norm_add = False
mlp_activation = "silu"
qkv_bias = False
@dataclass
class Qwen25_3BConfig:
vocab_size: int = 151936
hidden_size: int = 2048
intermediate_size: int = 11008
num_hidden_layers: int = 36
num_attention_heads: int = 16
num_key_value_heads: int = 2
max_position_embeddings: int = 128000
rms_norm_eps: float = 1e-6
rope_theta: float = 1000000.0
transformer_type: str = "llama"
head_dim = 128
rms_norm_add = False
mlp_activation = "silu"
qkv_bias = True
@dataclass
class Gemma2_2B_Config:
@@ -40,6 +58,7 @@ class Gemma2_2B_Config:
head_dim = 256
rms_norm_add = True
mlp_activation = "gelu_pytorch_tanh"
qkv_bias = False
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-5, add=False, device=None, dtype=None):
@@ -98,9 +117,9 @@ class Attention(nn.Module):
self.inner_size = self.num_heads * self.head_dim
ops = ops or nn
self.q_proj = ops.Linear(config.hidden_size, self.inner_size, bias=False, device=device, dtype=dtype)
self.k_proj = ops.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False, device=device, dtype=dtype)
self.v_proj = ops.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=False, device=device, dtype=dtype)
self.q_proj = ops.Linear(config.hidden_size, self.inner_size, bias=config.qkv_bias, device=device, dtype=dtype)
self.k_proj = ops.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=config.qkv_bias, device=device, dtype=dtype)
self.v_proj = ops.Linear(config.hidden_size, self.num_kv_heads * self.head_dim, bias=config.qkv_bias, device=device, dtype=dtype)
self.o_proj = ops.Linear(self.inner_size, config.hidden_size, bias=False, device=device, dtype=dtype)
def forward(
@@ -268,11 +287,17 @@ class Llama2_(nn.Module):
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
intermediate = None
all_intermediate = None
if intermediate_output is not None:
if intermediate_output < 0:
if intermediate_output == "all":
all_intermediate = []
intermediate_output = None
elif intermediate_output < 0:
intermediate_output = len(self.layers) + intermediate_output
for i, layer in enumerate(self.layers):
if all_intermediate is not None:
all_intermediate.append(x.unsqueeze(1).clone())
x = layer(
x=x,
attention_mask=mask,
@@ -283,6 +308,12 @@ class Llama2_(nn.Module):
intermediate = x.clone()
x = self.norm(x)
if all_intermediate is not None:
all_intermediate.append(x.unsqueeze(1).clone())
if all_intermediate is not None:
intermediate = torch.cat(all_intermediate, dim=1)
if intermediate is not None and final_layer_norm_intermediate:
intermediate = self.norm(intermediate)
@@ -308,6 +339,14 @@ class Llama2(BaseLlama, torch.nn.Module):
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Qwen25_3B(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
config = Qwen25_3BConfig(**config_dict)
self.num_layers = config.num_hidden_layers
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Gemma2_2B(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):

View File

@@ -1,25 +0,0 @@
{
"_name_or_path": "openai/clip-vit-large-patch14",
"architectures": [
"CLIPTextModel"
],
"attention_dropout": 0.0,
"bos_token_id": 0,
"dropout": 0.0,
"eos_token_id": 49407,
"hidden_act": "quick_gelu",
"hidden_size": 768,
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 3072,
"layer_norm_eps": 1e-05,
"max_position_embeddings": 248,
"model_type": "clip_text_model",
"num_attention_heads": 12,
"num_hidden_layers": 12,
"pad_token_id": 1,
"projection_dim": 768,
"torch_dtype": "float32",
"transformers_version": "4.24.0",
"vocab_size": 49408
}

View File

@@ -1,30 +1,27 @@
from comfy import sd1_clip
import os
class LongClipTokenizer_(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(max_length=248, embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
class LongClipModel_(sd1_clip.SDClipModel):
def __init__(self, *args, **kwargs):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "long_clipl.json")
super().__init__(*args, textmodel_json_config=textmodel_json_config, **kwargs)
class LongClipTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, tokenizer=LongClipTokenizer_)
class LongClipModel(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}, **kwargs):
super().__init__(device=device, dtype=dtype, model_options=model_options, clip_model=LongClipModel_, **kwargs)
def model_options_long_clip(sd, tokenizer_data, model_options):
w = sd.get("clip_l.text_model.embeddings.position_embedding.weight", None)
if w is None:
w = sd.get("clip_g.text_model.embeddings.position_embedding.weight", None)
else:
model_name = "clip_g"
if w is None:
w = sd.get("text_model.embeddings.position_embedding.weight", None)
if w is not None and w.shape[0] == 248:
if w is not None:
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
model_name = "clip_g"
elif "text_model.encoder.layers.1.mlp.fc1.weight" in sd:
model_name = "clip_l"
else:
model_name = "clip_l"
if w is not None:
tokenizer_data = tokenizer_data.copy()
model_options = model_options.copy()
tokenizer_data["clip_l_tokenizer_class"] = LongClipTokenizer_
model_options["clip_l_class"] = LongClipModel_
model_config = model_options.get("model_config", {})
model_config["max_position_embeddings"] = w.shape[0]
model_options["{}_model_config".format(model_name)] = model_config
tokenizer_data["{}_max_length".format(model_name)] = w.shape[0]
return tokenizer_data, model_options

View File

@@ -6,7 +6,7 @@ import comfy.text_encoders.genmo
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=128) #pad to 128?
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=128, tokenizer_data=tokenizer_data) #pad to 128?
class LTXVT5Tokenizer(sd1_clip.SD1Tokenizer):

View File

@@ -6,7 +6,7 @@ import comfy.text_encoders.llama
class Gemma2BTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer = tokenizer_data.get("spiece_model", None)
super().__init__(tokenizer, pad_with_end=False, embedding_size=2304, embedding_key='gemma2_2b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False})
super().__init__(tokenizer, pad_with_end=False, embedding_size=2304, embedding_key='gemma2_2b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False}, tokenizer_data=tokenizer_data)
def state_dict(self):
return {"spiece_model": self.tokenizer.serialize_model()}

View File

@@ -0,0 +1,44 @@
from transformers import Qwen2Tokenizer
from comfy import sd1_clip
import comfy.text_encoders.llama
import os
class Qwen25_3BTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2048, embedding_key='qwen25_3b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=151643, tokenizer_data=tokenizer_data)
class Omnigen2Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="qwen25_3b", tokenizer=Qwen25_3BTokenizer)
self.llama_template = '<|im_start|>system\nYou are a helpful assistant that generates high-quality images based on user instructions.<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n'
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None,**kwargs):
if llama_template is None:
llama_text = self.llama_template.format(text)
else:
llama_text = llama_template.format(text)
return super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, **kwargs)
class Qwen25_3BModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options={}):
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen25_3B, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
class Omnigen2Model(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
super().__init__(device=device, dtype=dtype, name="qwen25_3b", clip_model=Qwen25_3BModel, model_options=model_options)
def te(dtype_llama=None, llama_scaled_fp8=None):
class Omnigen2TEModel_(Omnigen2Model):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_scaled_fp8 is not None and "scaled_fp8" not in model_options:
model_options = model_options.copy()
model_options["scaled_fp8"] = llama_scaled_fp8
if dtype_llama is not None:
dtype = dtype_llama
super().__init__(device=device, dtype=dtype, model_options=model_options)
return Omnigen2TEModel_

View File

@@ -24,7 +24,7 @@ class PixArtT5XXL(sd1_clip.SD1ClipModel):
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1) # no padding
super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_data=tokenizer_data) # no padding
class PixArtTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,241 @@
{
"add_bos_token": false,
"add_prefix_space": false,
"added_tokens_decoder": {
"151643": {
"content": "<|endoftext|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151644": {
"content": "<|im_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151645": {
"content": "<|im_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151646": {
"content": "<|object_ref_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151647": {
"content": "<|object_ref_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151648": {
"content": "<|box_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151649": {
"content": "<|box_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151650": {
"content": "<|quad_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151651": {
"content": "<|quad_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151652": {
"content": "<|vision_start|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151653": {
"content": "<|vision_end|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151654": {
"content": "<|vision_pad|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151655": {
"content": "<|image_pad|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151656": {
"content": "<|video_pad|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151657": {
"content": "<tool_call>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151658": {
"content": "</tool_call>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151659": {
"content": "<|fim_prefix|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151660": {
"content": "<|fim_middle|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151661": {
"content": "<|fim_suffix|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151662": {
"content": "<|fim_pad|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151663": {
"content": "<|repo_name|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151664": {
"content": "<|file_sep|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": false
},
"151665": {
"content": "<|img|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151666": {
"content": "<|endofimg|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151667": {
"content": "<|meta|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"151668": {
"content": "<|endofmeta|>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
}
},
"additional_special_tokens": [
"<|im_start|>",
"<|im_end|>",
"<|object_ref_start|>",
"<|object_ref_end|>",
"<|box_start|>",
"<|box_end|>",
"<|quad_start|>",
"<|quad_end|>",
"<|vision_start|>",
"<|vision_end|>",
"<|vision_pad|>",
"<|image_pad|>",
"<|video_pad|>"
],
"bos_token": null,
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
"clean_up_tokenization_spaces": false,
"eos_token": "<|im_end|>",
"errors": "replace",
"extra_special_tokens": {},
"model_max_length": 131072,
"pad_token": "<|endoftext|>",
"processor_class": "Qwen2_5_VLProcessor",
"split_special_tokens": false,
"tokenizer_class": "Qwen2Tokenizer",
"unk_token": null
}

File diff suppressed because one or more lines are too long

View File

@@ -11,7 +11,7 @@ class T5BaseModel(sd1_clip.SDClipModel):
class T5BaseTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=768, embedding_key='t5base', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=128)
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=768, embedding_key='t5base', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=128, tokenizer_data=tokenizer_data)
class SAT5Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):

View File

@@ -12,7 +12,7 @@ class SD2ClipHModel(sd1_clip.SDClipModel):
class SD2ClipHTokenizer(sd1_clip.SDTokenizer):
def __init__(self, tokenizer_path=None, embedding_directory=None, tokenizer_data={}):
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1024)
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1024, embedding_key='clip_h', tokenizer_data=tokenizer_data)
class SD2Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):

Some files were not shown because too many files have changed in this diff Show More