mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-08-02 23:14:49 +08:00
Compare commits
7 Commits
v0.3.27
...
annoate_ge
Author | SHA1 | Date | |
---|---|---|---|
|
522d923948 | ||
|
c05c9b552b | ||
|
27598702e9 | ||
|
8edc1f44c1 | ||
|
eade1551bb | ||
|
581a9991ff | ||
|
e471c726e5 |
@@ -69,6 +69,8 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
|
||||
- [Hunyuan Video](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_video/)
|
||||
- [Nvidia Cosmos](https://comfyanonymous.github.io/ComfyUI_examples/cosmos/)
|
||||
- [Wan 2.1](https://comfyanonymous.github.io/ComfyUI_examples/wan/)
|
||||
- 3D Models
|
||||
- [Hunyuan3D 2.0](https://docs.comfy.org/tutorials/3d/hunyuan3D-2)
|
||||
- [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
|
||||
- Asynchronous Queue system
|
||||
- Many optimizations: Only re-executes the parts of the workflow that changes between executions.
|
||||
|
@@ -471,7 +471,7 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha
|
||||
def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
|
||||
if skip_reshape:
|
||||
b, _, _, dim_head = q.shape
|
||||
tensor_layout="HND"
|
||||
tensor_layout = "HND"
|
||||
else:
|
||||
b, _, dim_head = q.shape
|
||||
dim_head //= heads
|
||||
@@ -479,7 +479,7 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=
|
||||
lambda t: t.view(b, -1, heads, dim_head),
|
||||
(q, k, v),
|
||||
)
|
||||
tensor_layout="NHD"
|
||||
tensor_layout = "NHD"
|
||||
|
||||
if mask is not None:
|
||||
# add a batch dimension if there isn't already one
|
||||
@@ -489,7 +489,17 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=
|
||||
if mask.ndim == 3:
|
||||
mask = mask.unsqueeze(1)
|
||||
|
||||
out = sageattn(q, k, v, attn_mask=mask, is_causal=False, tensor_layout=tensor_layout)
|
||||
try:
|
||||
out = sageattn(q, k, v, attn_mask=mask, is_causal=False, tensor_layout=tensor_layout)
|
||||
except Exception as e:
|
||||
logging.error("Error running sage attention: {}, using pytorch attention instead.".format(e))
|
||||
if tensor_layout == "NHD":
|
||||
q, k, v = map(
|
||||
lambda t: t.transpose(1, 2),
|
||||
(q, k, v),
|
||||
)
|
||||
return attention_pytorch(q, k, v, heads, mask=mask, skip_reshape=True, skip_output_reshape=skip_output_reshape)
|
||||
|
||||
if tensor_layout == "HND":
|
||||
if not skip_output_reshape:
|
||||
out = (
|
||||
|
@@ -46,6 +46,32 @@ cpu_state = CPUState.GPU
|
||||
|
||||
total_vram = 0
|
||||
|
||||
def get_supported_float8_types():
|
||||
float8_types = []
|
||||
try:
|
||||
float8_types.append(torch.float8_e4m3fn)
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
float8_types.append(torch.float8_e4m3fnuz)
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
float8_types.append(torch.float8_e5m2)
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
float8_types.append(torch.float8_e5m2fnuz)
|
||||
except:
|
||||
pass
|
||||
try:
|
||||
float8_types.append(torch.float8_e8m0fnu)
|
||||
except:
|
||||
pass
|
||||
return float8_types
|
||||
|
||||
FLOAT8_TYPES = get_supported_float8_types()
|
||||
|
||||
xpu_available = False
|
||||
torch_version = ""
|
||||
try:
|
||||
@@ -701,11 +727,8 @@ def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, tor
|
||||
return torch.float8_e5m2
|
||||
|
||||
fp8_dtype = None
|
||||
try:
|
||||
if weight_dtype in [torch.float8_e4m3fn, torch.float8_e5m2]:
|
||||
fp8_dtype = weight_dtype
|
||||
except:
|
||||
pass
|
||||
if weight_dtype in FLOAT8_TYPES:
|
||||
fp8_dtype = weight_dtype
|
||||
|
||||
if fp8_dtype is not None:
|
||||
if supports_fp8_compute(device): #if fp8 compute is supported the casting is most likely not expensive
|
||||
|
@@ -1,6 +1,9 @@
|
||||
import nodes
|
||||
from __future__ import annotations
|
||||
from typing import Type, Literal
|
||||
|
||||
import nodes
|
||||
from comfy_execution.graph_utils import is_link
|
||||
from comfy.comfy_types.node_typing import ComfyNodeABC, InputTypeDict, InputTypeOptions
|
||||
|
||||
class DependencyCycleError(Exception):
|
||||
pass
|
||||
@@ -54,7 +57,22 @@ class DynamicPrompt:
|
||||
def get_original_prompt(self):
|
||||
return self.original_prompt
|
||||
|
||||
def get_input_info(class_def, input_name, valid_inputs=None):
|
||||
def get_input_info(
|
||||
class_def: Type[ComfyNodeABC],
|
||||
input_name: str,
|
||||
valid_inputs: InputTypeDict | None = None
|
||||
) -> tuple[str, Literal["required", "optional", "hidden"], InputTypeOptions] | tuple[None, None, None]:
|
||||
"""Get the input type, category, and extra info for a given input name.
|
||||
|
||||
Arguments:
|
||||
class_def: The class definition of the node.
|
||||
input_name: The name of the input to get info for.
|
||||
valid_inputs: The valid inputs for the node, or None to use the class_def.INPUT_TYPES().
|
||||
|
||||
Returns:
|
||||
tuple[str, str, dict] | tuple[None, None, None]: The input type, category, and extra info for the input name.
|
||||
"""
|
||||
|
||||
valid_inputs = valid_inputs or class_def.INPUT_TYPES()
|
||||
input_info = None
|
||||
input_category = None
|
||||
@@ -126,7 +144,7 @@ class TopologicalSort:
|
||||
from_node_id, from_socket = value
|
||||
if subgraph_nodes is not None and from_node_id not in subgraph_nodes:
|
||||
continue
|
||||
input_type, input_category, input_info = self.get_input_info(unique_id, input_name)
|
||||
_, _, input_info = self.get_input_info(unique_id, input_name)
|
||||
is_lazy = input_info is not None and "lazy" in input_info and input_info["lazy"]
|
||||
if (include_lazy or not is_lazy) and not self.is_cached(from_node_id):
|
||||
node_ids.append(from_node_id)
|
||||
|
@@ -244,6 +244,30 @@ class ModelMergeCosmos14B(comfy_extras.nodes_model_merging.ModelMergeBlocks):
|
||||
|
||||
return {"required": arg_dict}
|
||||
|
||||
class ModelMergeWAN2_1(comfy_extras.nodes_model_merging.ModelMergeBlocks):
|
||||
CATEGORY = "advanced/model_merging/model_specific"
|
||||
DESCRIPTION = "1.3B model has 30 blocks, 14B model has 40 blocks. Image to video model has the extra img_emb."
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
arg_dict = { "model1": ("MODEL",),
|
||||
"model2": ("MODEL",)}
|
||||
|
||||
argument = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
|
||||
|
||||
arg_dict["patch_embedding."] = argument
|
||||
arg_dict["time_embedding."] = argument
|
||||
arg_dict["time_projection."] = argument
|
||||
arg_dict["text_embedding."] = argument
|
||||
arg_dict["img_emb."] = argument
|
||||
|
||||
for i in range(40):
|
||||
arg_dict["blocks.{}.".format(i)] = argument
|
||||
|
||||
arg_dict["head."] = argument
|
||||
|
||||
return {"required": arg_dict}
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"ModelMergeSD1": ModelMergeSD1,
|
||||
"ModelMergeSD2": ModelMergeSD1, #SD1 and SD2 have the same blocks
|
||||
@@ -256,4 +280,5 @@ NODE_CLASS_MAPPINGS = {
|
||||
"ModelMergeLTXV": ModelMergeLTXV,
|
||||
"ModelMergeCosmos7B": ModelMergeCosmos7B,
|
||||
"ModelMergeCosmos14B": ModelMergeCosmos14B,
|
||||
"ModelMergeWAN2_1": ModelMergeWAN2_1,
|
||||
}
|
||||
|
31
execution.py
31
execution.py
@@ -93,7 +93,7 @@ def get_input_data(inputs, class_def, unique_id, outputs=None, dynprompt=None, e
|
||||
missing_keys = {}
|
||||
for x in inputs:
|
||||
input_data = inputs[x]
|
||||
input_type, input_category, input_info = get_input_info(class_def, x, valid_inputs)
|
||||
_, input_category, input_info = get_input_info(class_def, x, valid_inputs)
|
||||
def mark_missing():
|
||||
missing_keys[x] = True
|
||||
input_data_all[x] = (None,)
|
||||
@@ -555,7 +555,7 @@ def validate_inputs(prompt, item, validated):
|
||||
received_types = {}
|
||||
|
||||
for x in valid_inputs:
|
||||
type_input, input_category, extra_info = get_input_info(obj_class, x, class_inputs)
|
||||
input_type, input_category, extra_info = get_input_info(obj_class, x, class_inputs)
|
||||
assert extra_info is not None
|
||||
if x not in inputs:
|
||||
if input_category == "required":
|
||||
@@ -571,7 +571,7 @@ def validate_inputs(prompt, item, validated):
|
||||
continue
|
||||
|
||||
val = inputs[x]
|
||||
info = (type_input, extra_info)
|
||||
info = (input_type, extra_info)
|
||||
if isinstance(val, list):
|
||||
if len(val) != 2:
|
||||
error = {
|
||||
@@ -592,8 +592,8 @@ def validate_inputs(prompt, item, validated):
|
||||
r = nodes.NODE_CLASS_MAPPINGS[o_class_type].RETURN_TYPES
|
||||
received_type = r[val[1]]
|
||||
received_types[x] = received_type
|
||||
if 'input_types' not in validate_function_inputs and not validate_node_input(received_type, type_input):
|
||||
details = f"{x}, received_type({received_type}) mismatch input_type({type_input})"
|
||||
if 'input_types' not in validate_function_inputs and not validate_node_input(received_type, input_type):
|
||||
details = f"{x}, received_type({received_type}) mismatch input_type({input_type})"
|
||||
error = {
|
||||
"type": "return_type_mismatch",
|
||||
"message": "Return type mismatch between linked nodes",
|
||||
@@ -641,22 +641,22 @@ def validate_inputs(prompt, item, validated):
|
||||
val = val["__value__"]
|
||||
inputs[x] = val
|
||||
|
||||
if type_input == "INT":
|
||||
if input_type == "INT":
|
||||
val = int(val)
|
||||
inputs[x] = val
|
||||
if type_input == "FLOAT":
|
||||
if input_type == "FLOAT":
|
||||
val = float(val)
|
||||
inputs[x] = val
|
||||
if type_input == "STRING":
|
||||
if input_type == "STRING":
|
||||
val = str(val)
|
||||
inputs[x] = val
|
||||
if type_input == "BOOLEAN":
|
||||
if input_type == "BOOLEAN":
|
||||
val = bool(val)
|
||||
inputs[x] = val
|
||||
except Exception as ex:
|
||||
error = {
|
||||
"type": "invalid_input_type",
|
||||
"message": f"Failed to convert an input value to a {type_input} value",
|
||||
"message": f"Failed to convert an input value to a {input_type} value",
|
||||
"details": f"{x}, {val}, {ex}",
|
||||
"extra_info": {
|
||||
"input_name": x,
|
||||
@@ -696,18 +696,19 @@ def validate_inputs(prompt, item, validated):
|
||||
errors.append(error)
|
||||
continue
|
||||
|
||||
if isinstance(type_input, list):
|
||||
if val not in type_input:
|
||||
if isinstance(input_type, list):
|
||||
combo_options = input_type
|
||||
if val not in combo_options:
|
||||
input_config = info
|
||||
list_info = ""
|
||||
|
||||
# Don't send back gigantic lists like if they're lots of
|
||||
# scanned model filepaths
|
||||
if len(type_input) > 20:
|
||||
list_info = f"(list of length {len(type_input)})"
|
||||
if len(combo_options) > 20:
|
||||
list_info = f"(list of length {len(combo_options)})"
|
||||
input_config = None
|
||||
else:
|
||||
list_info = str(type_input)
|
||||
list_info = str(combo_options)
|
||||
|
||||
error = {
|
||||
"type": "value_not_in_list",
|
||||
|
Reference in New Issue
Block a user