mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-08-02 23:14:49 +08:00
Compare commits
39 Commits
v0.3.26
...
weight-zip
Author | SHA1 | Date | |
---|---|---|---|
|
c8037ab667 | ||
|
3b19fc76e3 | ||
|
50614f1b79 | ||
|
6dc7b0bfe3 | ||
|
e8e990d6b8 | ||
|
2e24a15905 | ||
|
fd5297131f | ||
|
55a1b09ddc | ||
|
3c3988df45 | ||
|
7ebd8087ff | ||
|
c624c29d66 | ||
|
a2448fc527 | ||
|
6a0daa79b6 | ||
|
9c98c6358b | ||
|
7aceb9f91c | ||
|
35504e2f93 | ||
|
299436cfed | ||
|
52e566d2bc | ||
|
9b6cd9b874 | ||
|
3fc688aebd | ||
|
f4411250f3 | ||
|
d2a0fb6bb0 | ||
|
01015bff16 | ||
|
2330754b0e | ||
|
bc219a6487 | ||
|
94689766ad | ||
|
cfbe4b49ca | ||
|
ca8efab79f | ||
|
65ea778a5e | ||
|
db9f2a34fc | ||
|
7946049794 | ||
|
6f6349b6a7 | ||
|
1f138dd382 | ||
|
b779349b55 | ||
|
35e2dcf5d7 | ||
|
67c7184b74 | ||
|
6f8e766509 | ||
|
e1da98a14a | ||
|
a73410aafa |
@@ -19,5 +19,6 @@
|
||||
/app/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata
|
||||
/utils/ @yoland68 @robinjhuang @huchenlei @webfiltered @pythongosssss @ltdrdata
|
||||
|
||||
# Extra nodes
|
||||
/comfy_extras/ @yoland68 @robinjhuang @huchenlei @pythongosssss @ltdrdata @Kosinkadink
|
||||
# Node developers
|
||||
/comfy_extras/ @yoland68 @robinjhuang @huchenlei @pythongosssss @ltdrdata @Kosinkadink @webfiltered
|
||||
/comfy/comfy_types/ @yoland68 @robinjhuang @huchenlei @pythongosssss @ltdrdata @Kosinkadink @webfiltered
|
||||
|
@@ -11,33 +11,44 @@ from dataclasses import dataclass
|
||||
from functools import cached_property
|
||||
from pathlib import Path
|
||||
from typing import TypedDict, Optional
|
||||
from importlib.metadata import version
|
||||
|
||||
import requests
|
||||
from typing_extensions import NotRequired
|
||||
|
||||
from comfy.cli_args import DEFAULT_VERSION_STRING
|
||||
import app.logger
|
||||
|
||||
# The path to the requirements.txt file
|
||||
req_path = Path(__file__).parents[1] / "requirements.txt"
|
||||
|
||||
def frontend_install_warning_message():
|
||||
req_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'requirements.txt'))
|
||||
"""The warning message to display when the frontend version is not up to date."""
|
||||
|
||||
extra = ""
|
||||
if sys.flags.no_user_site:
|
||||
extra = "-s "
|
||||
return f"Please install the updated requirements.txt file by running:\n{sys.executable} {extra}-m pip install -r {req_path}\n\nThis error is happening because the ComfyUI frontend is no longer shipped as part of the main repo but as a pip package instead.\n\nIf you are on the portable package you can run: update\\update_comfyui.bat to solve this problem"
|
||||
|
||||
try:
|
||||
import comfyui_frontend_package
|
||||
except ImportError:
|
||||
# TODO: Remove the check after roll out of 0.3.16
|
||||
logging.error(f"\n\n********** ERROR ***********\n\ncomfyui-frontend-package is not installed. {frontend_install_warning_message()}\n********** ERROR **********\n")
|
||||
exit(-1)
|
||||
|
||||
def check_frontend_version():
|
||||
"""Check if the frontend version is up to date."""
|
||||
|
||||
def parse_version(version: str) -> tuple[int, int, int]:
|
||||
return tuple(map(int, version.split(".")))
|
||||
|
||||
try:
|
||||
frontend_version_str = version("comfyui-frontend-package")
|
||||
frontend_version = parse_version(frontend_version_str)
|
||||
with open(req_path, "r", encoding="utf-8") as f:
|
||||
required_frontend = parse_version(f.readline().split("=")[-1])
|
||||
if frontend_version < required_frontend:
|
||||
app.logger.log_startup_warning("________________________________________________________________________\nWARNING WARNING WARNING WARNING WARNING\n\nInstalled frontend version {} is lower than the recommended version {}.\n\n{}\n________________________________________________________________________".format('.'.join(map(str, frontend_version)), '.'.join(map(str, required_frontend)), frontend_install_warning_message()))
|
||||
else:
|
||||
logging.info("ComfyUI frontend version: {}".format(frontend_version_str))
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to check frontend version: {e}")
|
||||
|
||||
try:
|
||||
frontend_version = tuple(map(int, comfyui_frontend_package.__version__.split(".")))
|
||||
except:
|
||||
frontend_version = (0,)
|
||||
pass
|
||||
|
||||
REQUEST_TIMEOUT = 10 # seconds
|
||||
|
||||
@@ -133,9 +144,17 @@ def download_release_asset_zip(release: Release, destination_path: str) -> None:
|
||||
|
||||
|
||||
class FrontendManager:
|
||||
DEFAULT_FRONTEND_PATH = str(importlib.resources.files(comfyui_frontend_package) / "static")
|
||||
CUSTOM_FRONTENDS_ROOT = str(Path(__file__).parents[1] / "web_custom_versions")
|
||||
|
||||
@classmethod
|
||||
def default_frontend_path(cls) -> str:
|
||||
try:
|
||||
import comfyui_frontend_package
|
||||
return str(importlib.resources.files(comfyui_frontend_package) / "static")
|
||||
except ImportError:
|
||||
logging.error(f"\n\n********** ERROR ***********\n\ncomfyui-frontend-package is not installed. {frontend_install_warning_message()}\n********** ERROR **********\n")
|
||||
sys.exit(-1)
|
||||
|
||||
@classmethod
|
||||
def parse_version_string(cls, value: str) -> tuple[str, str, str]:
|
||||
"""
|
||||
@@ -172,7 +191,8 @@ class FrontendManager:
|
||||
main error source might be request timeout or invalid URL.
|
||||
"""
|
||||
if version_string == DEFAULT_VERSION_STRING:
|
||||
return cls.DEFAULT_FRONTEND_PATH
|
||||
check_frontend_version()
|
||||
return cls.default_frontend_path()
|
||||
|
||||
repo_owner, repo_name, version = cls.parse_version_string(version_string)
|
||||
|
||||
@@ -225,4 +245,5 @@ class FrontendManager:
|
||||
except Exception as e:
|
||||
logging.error("Failed to initialize frontend: %s", e)
|
||||
logging.info("Falling back to the default frontend.")
|
||||
return cls.DEFAULT_FRONTEND_PATH
|
||||
check_frontend_version()
|
||||
return cls.default_frontend_path()
|
||||
|
@@ -82,3 +82,17 @@ def setup_logger(log_level: str = 'INFO', capacity: int = 300, use_stdout: bool
|
||||
logger.addHandler(stdout_handler)
|
||||
|
||||
logger.addHandler(stream_handler)
|
||||
|
||||
|
||||
STARTUP_WARNINGS = []
|
||||
|
||||
|
||||
def log_startup_warning(msg):
|
||||
logging.warning(msg)
|
||||
STARTUP_WARNINGS.append(msg)
|
||||
|
||||
|
||||
def print_startup_warnings():
|
||||
for s in STARTUP_WARNINGS:
|
||||
logging.warning(s)
|
||||
STARTUP_WARNINGS.clear()
|
||||
|
@@ -106,6 +106,7 @@ attn_group.add_argument("--use-split-cross-attention", action="store_true", help
|
||||
attn_group.add_argument("--use-quad-cross-attention", action="store_true", help="Use the sub-quadratic cross attention optimization . Ignored when xformers is used.")
|
||||
attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", help="Use the new pytorch 2.0 cross attention function.")
|
||||
attn_group.add_argument("--use-sage-attention", action="store_true", help="Use sage attention.")
|
||||
attn_group.add_argument("--use-flash-attention", action="store_true", help="Use FlashAttention.")
|
||||
|
||||
parser.add_argument("--disable-xformers", action="store_true", help="Disable xformers.")
|
||||
|
||||
|
@@ -9,6 +9,7 @@ import comfy.model_patcher
|
||||
import comfy.model_management
|
||||
import comfy.utils
|
||||
import comfy.clip_model
|
||||
import comfy.image_encoders.dino2
|
||||
|
||||
class Output:
|
||||
def __getitem__(self, key):
|
||||
@@ -34,6 +35,12 @@ def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], s
|
||||
image = torch.clip((255. * image), 0, 255).round() / 255.0
|
||||
return (image - mean.view([3,1,1])) / std.view([3,1,1])
|
||||
|
||||
IMAGE_ENCODERS = {
|
||||
"clip_vision_model": comfy.clip_model.CLIPVisionModelProjection,
|
||||
"siglip_vision_model": comfy.clip_model.CLIPVisionModelProjection,
|
||||
"dinov2": comfy.image_encoders.dino2.Dinov2Model,
|
||||
}
|
||||
|
||||
class ClipVisionModel():
|
||||
def __init__(self, json_config):
|
||||
with open(json_config) as f:
|
||||
@@ -42,10 +49,11 @@ class ClipVisionModel():
|
||||
self.image_size = config.get("image_size", 224)
|
||||
self.image_mean = config.get("image_mean", [0.48145466, 0.4578275, 0.40821073])
|
||||
self.image_std = config.get("image_std", [0.26862954, 0.26130258, 0.27577711])
|
||||
model_class = IMAGE_ENCODERS.get(config.get("model_type", "clip_vision_model"))
|
||||
self.load_device = comfy.model_management.text_encoder_device()
|
||||
offload_device = comfy.model_management.text_encoder_offload_device()
|
||||
self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
|
||||
self.model = comfy.clip_model.CLIPVisionModelProjection(config, self.dtype, offload_device, comfy.ops.manual_cast)
|
||||
self.model = model_class(config, self.dtype, offload_device, comfy.ops.manual_cast)
|
||||
self.model.eval()
|
||||
|
||||
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
|
||||
@@ -111,6 +119,8 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336.json")
|
||||
else:
|
||||
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
|
||||
elif "embeddings.patch_embeddings.projection.weight" in sd:
|
||||
json_config = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "image_encoders"), "dino2_giant.json")
|
||||
else:
|
||||
return None
|
||||
|
||||
|
@@ -2,6 +2,7 @@
|
||||
|
||||
from __future__ import annotations
|
||||
from typing import Literal, TypedDict
|
||||
from typing_extensions import NotRequired
|
||||
from abc import ABC, abstractmethod
|
||||
from enum import Enum
|
||||
|
||||
@@ -26,6 +27,7 @@ class IO(StrEnum):
|
||||
BOOLEAN = "BOOLEAN"
|
||||
INT = "INT"
|
||||
FLOAT = "FLOAT"
|
||||
COMBO = "COMBO"
|
||||
CONDITIONING = "CONDITIONING"
|
||||
SAMPLER = "SAMPLER"
|
||||
SIGMAS = "SIGMAS"
|
||||
@@ -66,6 +68,7 @@ class IO(StrEnum):
|
||||
b = frozenset(value.split(","))
|
||||
return not (b.issubset(a) or a.issubset(b))
|
||||
|
||||
|
||||
class RemoteInputOptions(TypedDict):
|
||||
route: str
|
||||
"""The route to the remote source."""
|
||||
@@ -80,6 +83,14 @@ class RemoteInputOptions(TypedDict):
|
||||
refresh: int
|
||||
"""The TTL of the remote input's value in milliseconds. Specifies the interval at which the remote input's value is refreshed."""
|
||||
|
||||
|
||||
class MultiSelectOptions(TypedDict):
|
||||
placeholder: NotRequired[str]
|
||||
"""The placeholder text to display in the multi-select widget when no items are selected."""
|
||||
chip: NotRequired[bool]
|
||||
"""Specifies whether to use chips instead of comma separated values for the multi-select widget."""
|
||||
|
||||
|
||||
class InputTypeOptions(TypedDict):
|
||||
"""Provides type hinting for the return type of the INPUT_TYPES node function.
|
||||
|
||||
@@ -133,9 +144,22 @@ class InputTypeOptions(TypedDict):
|
||||
"""Specifies which folder to get preview images from if the input has the ``image_upload`` flag.
|
||||
"""
|
||||
remote: RemoteInputOptions
|
||||
"""Specifies the configuration for a remote input."""
|
||||
"""Specifies the configuration for a remote input.
|
||||
Available after ComfyUI frontend v1.9.7
|
||||
https://github.com/Comfy-Org/ComfyUI_frontend/pull/2422"""
|
||||
control_after_generate: bool
|
||||
"""Specifies whether a control widget should be added to the input, adding options to automatically change the value after each prompt is queued. Currently only used for INT and COMBO types."""
|
||||
options: NotRequired[list[str | int | float]]
|
||||
"""COMBO type only. Specifies the selectable options for the combo widget.
|
||||
Prefer:
|
||||
["COMBO", {"options": ["Option 1", "Option 2", "Option 3"]}]
|
||||
Over:
|
||||
[["Option 1", "Option 2", "Option 3"]]
|
||||
"""
|
||||
multi_select: NotRequired[MultiSelectOptions]
|
||||
"""COMBO type only. Specifies the configuration for a multi-select widget.
|
||||
Available after ComfyUI frontend v1.13.4
|
||||
https://github.com/Comfy-Org/ComfyUI_frontend/pull/2987"""
|
||||
|
||||
|
||||
class HiddenInputTypeDict(TypedDict):
|
||||
|
141
comfy/image_encoders/dino2.py
Normal file
141
comfy/image_encoders/dino2.py
Normal file
@@ -0,0 +1,141 @@
|
||||
import torch
|
||||
from comfy.text_encoders.bert import BertAttention
|
||||
import comfy.model_management
|
||||
from comfy.ldm.modules.attention import optimized_attention_for_device
|
||||
|
||||
|
||||
class Dino2AttentionOutput(torch.nn.Module):
|
||||
def __init__(self, input_dim, output_dim, layer_norm_eps, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.dense = operations.Linear(input_dim, output_dim, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x):
|
||||
return self.dense(x)
|
||||
|
||||
|
||||
class Dino2AttentionBlock(torch.nn.Module):
|
||||
def __init__(self, embed_dim, heads, layer_norm_eps, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.attention = BertAttention(embed_dim, heads, dtype, device, operations)
|
||||
self.output = Dino2AttentionOutput(embed_dim, embed_dim, layer_norm_eps, dtype, device, operations)
|
||||
|
||||
def forward(self, x, mask, optimized_attention):
|
||||
return self.output(self.attention(x, mask, optimized_attention))
|
||||
|
||||
|
||||
class LayerScale(torch.nn.Module):
|
||||
def __init__(self, dim, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.lambda1 = torch.nn.Parameter(torch.empty(dim, device=device, dtype=dtype))
|
||||
|
||||
def forward(self, x):
|
||||
return x * comfy.model_management.cast_to_device(self.lambda1, x.device, x.dtype)
|
||||
|
||||
|
||||
class SwiGLUFFN(torch.nn.Module):
|
||||
def __init__(self, dim, dtype, device, operations):
|
||||
super().__init__()
|
||||
in_features = out_features = dim
|
||||
hidden_features = int(dim * 4)
|
||||
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
|
||||
|
||||
self.weights_in = operations.Linear(in_features, 2 * hidden_features, bias=True, device=device, dtype=dtype)
|
||||
self.weights_out = operations.Linear(hidden_features, out_features, bias=True, device=device, dtype=dtype)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.weights_in(x)
|
||||
x1, x2 = x.chunk(2, dim=-1)
|
||||
x = torch.nn.functional.silu(x1) * x2
|
||||
return self.weights_out(x)
|
||||
|
||||
|
||||
class Dino2Block(torch.nn.Module):
|
||||
def __init__(self, dim, num_heads, layer_norm_eps, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.attention = Dino2AttentionBlock(dim, num_heads, layer_norm_eps, dtype, device, operations)
|
||||
self.layer_scale1 = LayerScale(dim, dtype, device, operations)
|
||||
self.layer_scale2 = LayerScale(dim, dtype, device, operations)
|
||||
self.mlp = SwiGLUFFN(dim, dtype, device, operations)
|
||||
self.norm1 = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
|
||||
self.norm2 = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x, optimized_attention):
|
||||
x = x + self.layer_scale1(self.attention(self.norm1(x), None, optimized_attention))
|
||||
x = x + self.layer_scale2(self.mlp(self.norm2(x)))
|
||||
return x
|
||||
|
||||
|
||||
class Dino2Encoder(torch.nn.Module):
|
||||
def __init__(self, dim, num_heads, layer_norm_eps, num_layers, dtype, device, operations):
|
||||
super().__init__()
|
||||
self.layer = torch.nn.ModuleList([Dino2Block(dim, num_heads, layer_norm_eps, dtype, device, operations) for _ in range(num_layers)])
|
||||
|
||||
def forward(self, x, intermediate_output=None):
|
||||
optimized_attention = optimized_attention_for_device(x.device, False, small_input=True)
|
||||
|
||||
if intermediate_output is not None:
|
||||
if intermediate_output < 0:
|
||||
intermediate_output = len(self.layer) + intermediate_output
|
||||
|
||||
intermediate = None
|
||||
for i, l in enumerate(self.layer):
|
||||
x = l(x, optimized_attention)
|
||||
if i == intermediate_output:
|
||||
intermediate = x.clone()
|
||||
return x, intermediate
|
||||
|
||||
|
||||
class Dino2PatchEmbeddings(torch.nn.Module):
|
||||
def __init__(self, dim, num_channels=3, patch_size=14, image_size=518, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.projection = operations.Conv2d(
|
||||
in_channels=num_channels,
|
||||
out_channels=dim,
|
||||
kernel_size=patch_size,
|
||||
stride=patch_size,
|
||||
bias=True,
|
||||
dtype=dtype,
|
||||
device=device
|
||||
)
|
||||
|
||||
def forward(self, pixel_values):
|
||||
return self.projection(pixel_values).flatten(2).transpose(1, 2)
|
||||
|
||||
|
||||
class Dino2Embeddings(torch.nn.Module):
|
||||
def __init__(self, dim, dtype, device, operations):
|
||||
super().__init__()
|
||||
patch_size = 14
|
||||
image_size = 518
|
||||
|
||||
self.patch_embeddings = Dino2PatchEmbeddings(dim, patch_size=patch_size, image_size=image_size, dtype=dtype, device=device, operations=operations)
|
||||
self.position_embeddings = torch.nn.Parameter(torch.empty(1, (image_size // patch_size) ** 2 + 1, dim, dtype=dtype, device=device))
|
||||
self.cls_token = torch.nn.Parameter(torch.empty(1, 1, dim, dtype=dtype, device=device))
|
||||
self.mask_token = torch.nn.Parameter(torch.empty(1, dim, dtype=dtype, device=device))
|
||||
|
||||
def forward(self, pixel_values):
|
||||
x = self.patch_embeddings(pixel_values)
|
||||
# TODO: mask_token?
|
||||
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
|
||||
x = x + comfy.model_management.cast_to_device(self.position_embeddings, x.device, x.dtype)
|
||||
return x
|
||||
|
||||
|
||||
class Dinov2Model(torch.nn.Module):
|
||||
def __init__(self, config_dict, dtype, device, operations):
|
||||
super().__init__()
|
||||
num_layers = config_dict["num_hidden_layers"]
|
||||
dim = config_dict["hidden_size"]
|
||||
heads = config_dict["num_attention_heads"]
|
||||
layer_norm_eps = config_dict["layer_norm_eps"]
|
||||
|
||||
self.embeddings = Dino2Embeddings(dim, dtype, device, operations)
|
||||
self.encoder = Dino2Encoder(dim, heads, layer_norm_eps, num_layers, dtype, device, operations)
|
||||
self.layernorm = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, pixel_values, attention_mask=None, intermediate_output=None):
|
||||
x = self.embeddings(pixel_values)
|
||||
x, i = self.encoder(x, intermediate_output=intermediate_output)
|
||||
x = self.layernorm(x)
|
||||
pooled_output = x[:, 0, :]
|
||||
return x, i, pooled_output, None
|
21
comfy/image_encoders/dino2_giant.json
Normal file
21
comfy/image_encoders/dino2_giant.json
Normal file
@@ -0,0 +1,21 @@
|
||||
{
|
||||
"attention_probs_dropout_prob": 0.0,
|
||||
"drop_path_rate": 0.0,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_dropout_prob": 0.0,
|
||||
"hidden_size": 1536,
|
||||
"image_size": 518,
|
||||
"initializer_range": 0.02,
|
||||
"layer_norm_eps": 1e-06,
|
||||
"layerscale_value": 1.0,
|
||||
"mlp_ratio": 4,
|
||||
"model_type": "dinov2",
|
||||
"num_attention_heads": 24,
|
||||
"num_channels": 3,
|
||||
"num_hidden_layers": 40,
|
||||
"patch_size": 14,
|
||||
"qkv_bias": true,
|
||||
"use_swiglu_ffn": true,
|
||||
"image_mean": [0.485, 0.456, 0.406],
|
||||
"image_std": [0.229, 0.224, 0.225]
|
||||
}
|
@@ -688,10 +688,10 @@ def sample_dpmpp_sde(model, x, sigmas, extra_args=None, callback=None, disable=N
|
||||
if len(sigmas) <= 1:
|
||||
return x
|
||||
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
||||
seed = extra_args.get("seed", None)
|
||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
sigma_fn = lambda t: t.neg().exp()
|
||||
t_fn = lambda sigma: sigma.log().neg()
|
||||
@@ -762,10 +762,10 @@ def sample_dpmpp_2m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
|
||||
if solver_type not in {'heun', 'midpoint'}:
|
||||
raise ValueError('solver_type must be \'heun\' or \'midpoint\'')
|
||||
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
seed = extra_args.get("seed", None)
|
||||
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
|
||||
old_denoised = None
|
||||
@@ -808,10 +808,10 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
|
||||
if len(sigmas) <= 1:
|
||||
return x
|
||||
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
seed = extra_args.get("seed", None)
|
||||
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed, cpu=True) if noise_sampler is None else noise_sampler
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
|
||||
denoised_1, denoised_2 = None, None
|
||||
@@ -858,7 +858,7 @@ def sample_dpmpp_3m_sde(model, x, sigmas, extra_args=None, callback=None, disabl
|
||||
def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None):
|
||||
if len(sigmas) <= 1:
|
||||
return x
|
||||
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
||||
return sample_dpmpp_3m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler)
|
||||
@@ -867,7 +867,7 @@ def sample_dpmpp_3m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, di
|
||||
def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type='midpoint'):
|
||||
if len(sigmas) <= 1:
|
||||
return x
|
||||
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
||||
return sample_dpmpp_2m_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, solver_type=solver_type)
|
||||
@@ -876,7 +876,7 @@ def sample_dpmpp_2m_sde_gpu(model, x, sigmas, extra_args=None, callback=None, di
|
||||
def sample_dpmpp_sde_gpu(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=1 / 2):
|
||||
if len(sigmas) <= 1:
|
||||
return x
|
||||
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
|
||||
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=extra_args.get("seed", None), cpu=False) if noise_sampler is None else noise_sampler
|
||||
return sample_dpmpp_sde(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, r=r)
|
||||
@@ -1366,3 +1366,59 @@ def sample_gradient_estimation(model, x, sigmas, extra_args=None, callback=None,
|
||||
x = x + d_bar * dt
|
||||
old_d = d
|
||||
return x
|
||||
|
||||
@torch.no_grad()
|
||||
def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., noise_sampler=None, noise_scaler=None, max_stage=3):
|
||||
"""
|
||||
Extended Reverse-Time SDE solver (VE ER-SDE-Solver-3). Arxiv: https://arxiv.org/abs/2309.06169.
|
||||
Code reference: https://github.com/QinpengCui/ER-SDE-Solver/blob/main/er_sde_solver.py.
|
||||
"""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
seed = extra_args.get("seed", None)
|
||||
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
|
||||
def default_noise_scaler(sigma):
|
||||
return sigma * ((sigma ** 0.3).exp() + 10.0)
|
||||
noise_scaler = default_noise_scaler if noise_scaler is None else noise_scaler
|
||||
num_integration_points = 200.0
|
||||
point_indice = torch.arange(0, num_integration_points, dtype=torch.float32, device=x.device)
|
||||
|
||||
old_denoised = None
|
||||
old_denoised_d = None
|
||||
|
||||
for i in trange(len(sigmas) - 1, disable=disable):
|
||||
denoised = model(x, sigmas[i] * s_in, **extra_args)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
||||
stage_used = min(max_stage, i + 1)
|
||||
if sigmas[i + 1] == 0:
|
||||
x = denoised
|
||||
elif stage_used == 1:
|
||||
r = noise_scaler(sigmas[i + 1]) / noise_scaler(sigmas[i])
|
||||
x = r * x + (1 - r) * denoised
|
||||
else:
|
||||
r = noise_scaler(sigmas[i + 1]) / noise_scaler(sigmas[i])
|
||||
x = r * x + (1 - r) * denoised
|
||||
|
||||
dt = sigmas[i + 1] - sigmas[i]
|
||||
sigma_step_size = -dt / num_integration_points
|
||||
sigma_pos = sigmas[i + 1] + point_indice * sigma_step_size
|
||||
scaled_pos = noise_scaler(sigma_pos)
|
||||
|
||||
# Stage 2
|
||||
s = torch.sum(1 / scaled_pos) * sigma_step_size
|
||||
denoised_d = (denoised - old_denoised) / (sigmas[i] - sigmas[i - 1])
|
||||
x = x + (dt + s * noise_scaler(sigmas[i + 1])) * denoised_d
|
||||
|
||||
if stage_used >= 3:
|
||||
# Stage 3
|
||||
s_u = torch.sum((sigma_pos - sigmas[i]) / scaled_pos) * sigma_step_size
|
||||
denoised_u = (denoised_d - old_denoised_d) / ((sigmas[i] - sigmas[i - 2]) / 2)
|
||||
x = x + ((dt ** 2) / 2 + s_u * noise_scaler(sigmas[i + 1])) * denoised_u
|
||||
old_denoised_d = denoised_d
|
||||
|
||||
if s_noise != 0 and sigmas[i + 1] > 0:
|
||||
x = x + noise_sampler(sigmas[i], sigmas[i + 1]) * s_noise * (sigmas[i + 1] ** 2 - sigmas[i] ** 2 * r ** 2).sqrt().nan_to_num(nan=0.0)
|
||||
old_denoised = denoised
|
||||
return x
|
||||
|
@@ -10,10 +10,11 @@ def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None) -> Tensor:
|
||||
q_shape = q.shape
|
||||
k_shape = k.shape
|
||||
|
||||
q = q.float().reshape(*q.shape[:-1], -1, 1, 2)
|
||||
k = k.float().reshape(*k.shape[:-1], -1, 1, 2)
|
||||
q = (pe[..., 0] * q[..., 0] + pe[..., 1] * q[..., 1]).reshape(*q_shape).type_as(v)
|
||||
k = (pe[..., 0] * k[..., 0] + pe[..., 1] * k[..., 1]).reshape(*k_shape).type_as(v)
|
||||
if pe is not None:
|
||||
q = q.to(dtype=pe.dtype).reshape(*q.shape[:-1], -1, 1, 2)
|
||||
k = k.to(dtype=pe.dtype).reshape(*k.shape[:-1], -1, 1, 2)
|
||||
q = (pe[..., 0] * q[..., 0] + pe[..., 1] * q[..., 1]).reshape(*q_shape).type_as(v)
|
||||
k = (pe[..., 0] * k[..., 0] + pe[..., 1] * k[..., 1]).reshape(*k_shape).type_as(v)
|
||||
|
||||
heads = q.shape[1]
|
||||
x = optimized_attention(q, k, v, heads, skip_reshape=True, mask=mask)
|
||||
@@ -36,8 +37,8 @@ def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
|
||||
|
||||
|
||||
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor):
|
||||
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
|
||||
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
|
||||
xq_ = xq.to(dtype=freqs_cis.dtype).reshape(*xq.shape[:-1], -1, 1, 2)
|
||||
xk_ = xk.to(dtype=freqs_cis.dtype).reshape(*xk.shape[:-1], -1, 1, 2)
|
||||
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
||||
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
|
||||
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
|
||||
|
@@ -115,8 +115,11 @@ class Flux(nn.Module):
|
||||
vec = vec + self.vector_in(y[:,:self.params.vec_in_dim])
|
||||
txt = self.txt_in(txt)
|
||||
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
pe = self.pe_embedder(ids)
|
||||
if img_ids is not None:
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
pe = self.pe_embedder(ids)
|
||||
else:
|
||||
pe = None
|
||||
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
for i, block in enumerate(self.double_blocks):
|
||||
|
@@ -24,6 +24,13 @@ if model_management.sage_attention_enabled():
|
||||
logging.error(f"\n\nTo use the `--use-sage-attention` feature, the `sageattention` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install sageattention")
|
||||
exit(-1)
|
||||
|
||||
if model_management.flash_attention_enabled():
|
||||
try:
|
||||
from flash_attn import flash_attn_func
|
||||
except ModuleNotFoundError:
|
||||
logging.error(f"\n\nTo use the `--use-flash-attention` feature, the `flash-attn` package must be installed first.\ncommand:\n\t{sys.executable} -m pip install flash-attn")
|
||||
exit(-1)
|
||||
|
||||
from comfy.cli_args import args
|
||||
import comfy.ops
|
||||
ops = comfy.ops.disable_weight_init
|
||||
@@ -496,6 +503,63 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=
|
||||
return out
|
||||
|
||||
|
||||
try:
|
||||
@torch.library.custom_op("flash_attention::flash_attn", mutates_args=())
|
||||
def flash_attn_wrapper(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor,
|
||||
dropout_p: float = 0.0, causal: bool = False) -> torch.Tensor:
|
||||
return flash_attn_func(q, k, v, dropout_p=dropout_p, causal=causal)
|
||||
|
||||
|
||||
@flash_attn_wrapper.register_fake
|
||||
def flash_attn_fake(q, k, v, dropout_p=0.0, causal=False):
|
||||
# Output shape is the same as q
|
||||
return q.new_empty(q.shape)
|
||||
except AttributeError as error:
|
||||
FLASH_ATTN_ERROR = error
|
||||
|
||||
def flash_attn_wrapper(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor,
|
||||
dropout_p: float = 0.0, causal: bool = False) -> torch.Tensor:
|
||||
assert False, f"Could not define flash_attn_wrapper: {FLASH_ATTN_ERROR}"
|
||||
|
||||
|
||||
def attention_flash(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False):
|
||||
if skip_reshape:
|
||||
b, _, _, dim_head = q.shape
|
||||
else:
|
||||
b, _, dim_head = q.shape
|
||||
dim_head //= heads
|
||||
q, k, v = map(
|
||||
lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
|
||||
(q, k, v),
|
||||
)
|
||||
|
||||
if mask is not None:
|
||||
# add a batch dimension if there isn't already one
|
||||
if mask.ndim == 2:
|
||||
mask = mask.unsqueeze(0)
|
||||
# add a heads dimension if there isn't already one
|
||||
if mask.ndim == 3:
|
||||
mask = mask.unsqueeze(1)
|
||||
|
||||
try:
|
||||
assert mask is None
|
||||
out = flash_attn_wrapper(
|
||||
q.transpose(1, 2),
|
||||
k.transpose(1, 2),
|
||||
v.transpose(1, 2),
|
||||
dropout_p=0.0,
|
||||
causal=False,
|
||||
).transpose(1, 2)
|
||||
except Exception as e:
|
||||
logging.warning(f"Flash Attention failed, using default SDPA: {e}")
|
||||
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
|
||||
if not skip_output_reshape:
|
||||
out = (
|
||||
out.transpose(1, 2).reshape(b, -1, heads * dim_head)
|
||||
)
|
||||
return out
|
||||
|
||||
|
||||
optimized_attention = attention_basic
|
||||
|
||||
if model_management.sage_attention_enabled():
|
||||
@@ -504,6 +568,9 @@ if model_management.sage_attention_enabled():
|
||||
elif model_management.xformers_enabled():
|
||||
logging.info("Using xformers attention")
|
||||
optimized_attention = attention_xformers
|
||||
elif model_management.flash_attention_enabled():
|
||||
logging.info("Using Flash Attention")
|
||||
optimized_attention = attention_flash
|
||||
elif model_management.pytorch_attention_enabled():
|
||||
logging.info("Using pytorch attention")
|
||||
optimized_attention = attention_pytorch
|
||||
|
@@ -384,6 +384,7 @@ class WanModel(torch.nn.Module):
|
||||
context,
|
||||
clip_fea=None,
|
||||
freqs=None,
|
||||
transformer_options={},
|
||||
):
|
||||
r"""
|
||||
Forward pass through the diffusion model
|
||||
@@ -423,14 +424,18 @@ class WanModel(torch.nn.Module):
|
||||
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
||||
context = torch.concat([context_clip, context], dim=1)
|
||||
|
||||
# arguments
|
||||
kwargs = dict(
|
||||
e=e0,
|
||||
freqs=freqs,
|
||||
context=context)
|
||||
|
||||
for block in self.blocks:
|
||||
x = block(x, **kwargs)
|
||||
patches_replace = transformer_options.get("patches_replace", {})
|
||||
blocks_replace = patches_replace.get("dit", {})
|
||||
for i, block in enumerate(self.blocks):
|
||||
if ("double_block", i) in blocks_replace:
|
||||
def block_wrap(args):
|
||||
out = {}
|
||||
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"])
|
||||
return out
|
||||
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
|
||||
x = out["img"]
|
||||
else:
|
||||
x = block(x, e=e0, freqs=freqs, context=context)
|
||||
|
||||
# head
|
||||
x = self.head(x, e)
|
||||
@@ -439,7 +444,7 @@ class WanModel(torch.nn.Module):
|
||||
x = self.unpatchify(x, grid_sizes)
|
||||
return x
|
||||
|
||||
def forward(self, x, timestep, context, clip_fea=None, **kwargs):
|
||||
def forward(self, x, timestep, context, clip_fea=None, transformer_options={},**kwargs):
|
||||
bs, c, t, h, w = x.shape
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size)
|
||||
patch_size = self.patch_size
|
||||
@@ -453,7 +458,7 @@ class WanModel(torch.nn.Module):
|
||||
img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
|
||||
|
||||
freqs = self.rope_embedder(img_ids).movedim(1, 2)
|
||||
return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs)[:, :, :t, :h, :w]
|
||||
return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs, transformer_options=transformer_options)[:, :, :t, :h, :w]
|
||||
|
||||
def unpatchify(self, x, grid_sizes):
|
||||
r"""
|
||||
|
@@ -16,6 +16,7 @@
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
import torch
|
||||
import logging
|
||||
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep
|
||||
@@ -104,7 +105,7 @@ class BaseModel(torch.nn.Module):
|
||||
self.model_config = model_config
|
||||
self.manual_cast_dtype = model_config.manual_cast_dtype
|
||||
self.device = device
|
||||
self.current_patcher: 'ModelPatcher' = None
|
||||
self.current_patcher: ModelPatcher = None
|
||||
|
||||
if not unet_config.get("disable_unet_model_creation", False):
|
||||
if model_config.custom_operations is None:
|
||||
@@ -128,6 +129,7 @@ class BaseModel(torch.nn.Module):
|
||||
logging.info("model_type {}".format(model_type.name))
|
||||
logging.debug("adm {}".format(self.adm_channels))
|
||||
self.memory_usage_factor = model_config.memory_usage_factor
|
||||
self.zipper_initialized = False
|
||||
|
||||
def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
|
||||
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
|
||||
@@ -137,6 +139,16 @@ class BaseModel(torch.nn.Module):
|
||||
).execute(x, t, c_concat, c_crossattn, control, transformer_options, **kwargs)
|
||||
|
||||
def _apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
|
||||
# handle lowvram zipper initialization, if required
|
||||
if self.model_lowvram and not self.zipper_initialized:
|
||||
if self.current_patcher:
|
||||
self.zipper_initialized = True
|
||||
with self.current_patcher.use_ejected():
|
||||
loading = self.current_patcher._load_list_lowvram_only()
|
||||
|
||||
return self._apply_model_inner(x, t, c_concat, c_crossattn, control, transformer_options, **kwargs)
|
||||
|
||||
def _apply_model_inner(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs):
|
||||
sigma = t
|
||||
xc = self.model_sampling.calculate_input(sigma, x)
|
||||
if c_concat is not None:
|
||||
@@ -973,11 +985,11 @@ class WAN21(BaseModel):
|
||||
self.image_to_video = image_to_video
|
||||
|
||||
def concat_cond(self, **kwargs):
|
||||
if not self.image_to_video:
|
||||
noise = kwargs.get("noise", None)
|
||||
if self.diffusion_model.patch_embedding.weight.shape[1] == noise.shape[1]:
|
||||
return None
|
||||
|
||||
image = kwargs.get("concat_latent_image", None)
|
||||
noise = kwargs.get("noise", None)
|
||||
device = kwargs["device"]
|
||||
|
||||
if image is None:
|
||||
@@ -987,6 +999,9 @@ class WAN21(BaseModel):
|
||||
image = self.process_latent_in(image)
|
||||
image = utils.resize_to_batch_size(image, noise.shape[0])
|
||||
|
||||
if not self.image_to_video:
|
||||
return image
|
||||
|
||||
mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
|
||||
if mask is None:
|
||||
mask = torch.zeros_like(noise)[:, :4]
|
||||
|
@@ -186,12 +186,21 @@ def get_total_memory(dev=None, torch_total_too=False):
|
||||
else:
|
||||
return mem_total
|
||||
|
||||
def mac_version():
|
||||
try:
|
||||
return tuple(int(n) for n in platform.mac_ver()[0].split("."))
|
||||
except:
|
||||
return None
|
||||
|
||||
total_vram = get_total_memory(get_torch_device()) / (1024 * 1024)
|
||||
total_ram = psutil.virtual_memory().total / (1024 * 1024)
|
||||
logging.info("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram))
|
||||
|
||||
try:
|
||||
logging.info("pytorch version: {}".format(torch_version))
|
||||
mac_ver = mac_version()
|
||||
if mac_ver is not None:
|
||||
logging.info("Mac Version {}".format(mac_ver))
|
||||
except:
|
||||
pass
|
||||
|
||||
@@ -921,6 +930,9 @@ def cast_to_device(tensor, device, dtype, copy=False):
|
||||
def sage_attention_enabled():
|
||||
return args.use_sage_attention
|
||||
|
||||
def flash_attention_enabled():
|
||||
return args.use_flash_attention
|
||||
|
||||
def xformers_enabled():
|
||||
global directml_enabled
|
||||
global cpu_state
|
||||
@@ -969,12 +981,6 @@ def pytorch_attention_flash_attention():
|
||||
return True #if you have pytorch attention enabled on AMD it probably supports at least mem efficient attention
|
||||
return False
|
||||
|
||||
def mac_version():
|
||||
try:
|
||||
return tuple(int(n) for n in platform.mac_ver()[0].split("."))
|
||||
except:
|
||||
return None
|
||||
|
||||
def force_upcast_attention_dtype():
|
||||
upcast = args.force_upcast_attention
|
||||
|
||||
|
@@ -17,7 +17,7 @@
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
from typing import Optional, Callable
|
||||
from typing import Optional, Callable, TYPE_CHECKING
|
||||
import torch
|
||||
import copy
|
||||
import inspect
|
||||
@@ -26,6 +26,7 @@ import uuid
|
||||
import collections
|
||||
import math
|
||||
|
||||
import comfy.ops
|
||||
import comfy.utils
|
||||
import comfy.float
|
||||
import comfy.model_management
|
||||
@@ -34,6 +35,9 @@ import comfy.hooks
|
||||
import comfy.patcher_extension
|
||||
from comfy.patcher_extension import CallbacksMP, WrappersMP, PatcherInjection
|
||||
from comfy.comfy_types import UnetWrapperFunction
|
||||
if TYPE_CHECKING:
|
||||
from comfy.model_base import BaseModel
|
||||
|
||||
|
||||
def string_to_seed(data):
|
||||
crc = 0xFFFFFFFF
|
||||
@@ -201,7 +205,7 @@ class MemoryCounter:
|
||||
class ModelPatcher:
|
||||
def __init__(self, model, load_device, offload_device, size=0, weight_inplace_update=False):
|
||||
self.size = size
|
||||
self.model = model
|
||||
self.model: BaseModel = model
|
||||
if not hasattr(self.model, 'device'):
|
||||
logging.debug("Model doesn't have a device attribute.")
|
||||
self.model.device = offload_device
|
||||
@@ -568,6 +572,14 @@ class ModelPatcher:
|
||||
else:
|
||||
set_func(out_weight, inplace_update=inplace_update, seed=string_to_seed(key))
|
||||
|
||||
def _zipper_dict_lowvram_only(self):
|
||||
loading = self._load_list_lowvram_only()
|
||||
|
||||
|
||||
def _load_list_lowvram_only(self):
|
||||
loading = self._load_list()
|
||||
return [x for x in loading if hasattr(x[2], "prev_comfy_cast_weights")]
|
||||
|
||||
def _load_list(self):
|
||||
loading = []
|
||||
for n, m in self.model.named_modules():
|
||||
@@ -583,6 +595,35 @@ class ModelPatcher:
|
||||
loading.append((comfy.model_management.module_size(m), n, m, params))
|
||||
return loading
|
||||
|
||||
def prepare_teeth(self):
|
||||
ordered_list = self._load_list_lowvram_only()
|
||||
prev_i = None
|
||||
next_i = None
|
||||
# first, create teeth on modules in list
|
||||
for l in ordered_list:
|
||||
m: comfy.ops.CastWeightBiasOp = l[2]
|
||||
m.init_tooth(self.load_device, self.offload_device, l[1])
|
||||
# create teeth linked list
|
||||
for i in range(len(ordered_list)):
|
||||
if i+1 == len(ordered_list):
|
||||
next_i = None
|
||||
else:
|
||||
next_i = i+1
|
||||
m: comfy.ops.CastWeightBiasOp = ordered_list[i][2]
|
||||
if prev_i is not None:
|
||||
m.zipper_tooth.prev_tooth = ordered_list[prev_i][2].zipper_tooth
|
||||
else:
|
||||
m.zipper_tooth.start = True
|
||||
if next_i is not None:
|
||||
m.zipper_tooth.next_tooth = ordered_list[next_i][2].zipper_tooth
|
||||
prev_i = i
|
||||
|
||||
def clean_teeth(self):
|
||||
ordered_list = self._load_list_lowvram_only()
|
||||
for l in ordered_list:
|
||||
m: comfy.ops.CastWeightBiasOp = l[2]
|
||||
m.clean_tooth()
|
||||
|
||||
def load(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False, full_load=False):
|
||||
with self.use_ejected():
|
||||
self.unpatch_hooks()
|
||||
@@ -591,6 +632,8 @@ class ModelPatcher:
|
||||
lowvram_counter = 0
|
||||
loading = self._load_list()
|
||||
|
||||
logging.info(f"total size of _load_list: {sum([x[0] for x in loading])}")
|
||||
|
||||
load_completely = []
|
||||
loading.sort(reverse=True)
|
||||
for x in loading:
|
||||
@@ -672,6 +715,7 @@ class ModelPatcher:
|
||||
if lowvram_counter > 0:
|
||||
logging.info("loaded partially {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), patch_counter))
|
||||
self.model.model_lowvram = True
|
||||
self.model.zipper_initialized = False
|
||||
else:
|
||||
logging.info("loaded completely {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load))
|
||||
self.model.model_lowvram = False
|
||||
@@ -684,6 +728,9 @@ class ModelPatcher:
|
||||
self.model.model_loaded_weight_memory = mem_counter
|
||||
self.model.current_weight_patches_uuid = self.patches_uuid
|
||||
|
||||
if self.model.model_lowvram:
|
||||
self.prepare_teeth()
|
||||
|
||||
for callback in self.get_all_callbacks(CallbacksMP.ON_LOAD):
|
||||
callback(self, device_to, lowvram_model_memory, force_patch_weights, full_load)
|
||||
|
||||
@@ -715,6 +762,7 @@ class ModelPatcher:
|
||||
move_weight_functions(m, device_to)
|
||||
wipe_lowvram_weight(m)
|
||||
|
||||
self.clean_teeth()
|
||||
self.model.model_lowvram = False
|
||||
self.model.lowvram_patch_counter = 0
|
||||
|
||||
@@ -747,6 +795,7 @@ class ModelPatcher:
|
||||
|
||||
def partially_unload(self, device_to, memory_to_free=0):
|
||||
with self.use_ejected():
|
||||
hooks_unpatched = False
|
||||
memory_freed = 0
|
||||
patch_counter = 0
|
||||
unload_list = self._load_list()
|
||||
@@ -770,6 +819,10 @@ class ModelPatcher:
|
||||
move_weight = False
|
||||
break
|
||||
|
||||
if not hooks_unpatched:
|
||||
self.unpatch_hooks()
|
||||
hooks_unpatched = True
|
||||
|
||||
if bk.inplace_update:
|
||||
comfy.utils.copy_to_param(self.model, key, bk.weight)
|
||||
else:
|
||||
@@ -799,8 +852,10 @@ class ModelPatcher:
|
||||
logging.debug("freed {}".format(n))
|
||||
|
||||
self.model.model_lowvram = True
|
||||
self.model.zipper_initialized = False
|
||||
self.model.lowvram_patch_counter += patch_counter
|
||||
self.model.model_loaded_weight_memory -= memory_freed
|
||||
self.prepare_teeth()
|
||||
return memory_freed
|
||||
|
||||
def partially_load(self, device_to, extra_memory=0, force_patch_weights=False):
|
||||
|
120
comfy/ops.py
120
comfy/ops.py
@@ -16,6 +16,7 @@
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
import torch
|
||||
import logging
|
||||
import comfy.model_management
|
||||
@@ -56,6 +57,79 @@ class CastWeightBiasOp:
|
||||
comfy_cast_weights = False
|
||||
weight_function = []
|
||||
bias_function = []
|
||||
zipper_init: dict = None
|
||||
zipper_tooth: ZipperTooth = None
|
||||
_zipper_tooth: ZipperTooth = None
|
||||
|
||||
def init_tooth(self, load_device, offload_device, key: str=None):
|
||||
if self.zipper_tooth:
|
||||
self.clean_tooth()
|
||||
self.zipper_tooth = ZipperTooth(self, load_device, offload_device, key)
|
||||
|
||||
def clean_tooth(self):
|
||||
if self.zipper_tooth:
|
||||
del self.zipper_tooth
|
||||
self.zipper_tooth = None
|
||||
|
||||
def connect_teeth(self):
|
||||
if self.zipper_init is not None:
|
||||
|
||||
self.zipper_init[self.zipper_key] = (hasattr(self, "prev_comfy_cast_weights"), self.zipper_dict.get("prev_zipper_key", None))
|
||||
self.zipper_dict["prev_zipper_key"] = self.zipper_key
|
||||
|
||||
# def zipper_connect(self):
|
||||
# if self.zipper_dict is not None:
|
||||
# self.zipper_dict[self.zipper_key] = (hasattr(self, "prev_comfy_cast_weights"), self.zipper_dict.get("prev_zipper_key", None))
|
||||
# self.zipper_dict["prev_zipper_key"] = self.zipper_key
|
||||
|
||||
class ZipperTooth:
|
||||
def __init__(self, op: CastWeightBiasOp, load_device, offload_device, key: str=None):
|
||||
self.op = op
|
||||
self.key: str = key
|
||||
self.weight_preloaded: torch.Tensor = None
|
||||
self.bias_preloaded: torch.Tensor = None
|
||||
self.load_device = load_device
|
||||
self.offload_device = offload_device
|
||||
self.start = False
|
||||
|
||||
self.prev_tooth: ZipperTooth = None
|
||||
self.next_tooth: ZipperTooth = None
|
||||
|
||||
def get_bias_weight(self, input: torch.Tensor=None, dtype=None, device=None, bias_dtype=None):
|
||||
try:
|
||||
if self.start:
|
||||
return cast_bias_weight(self.op, input, dtype, device, bias_dtype)
|
||||
return self.weight_preloaded, self.bias_preloaded
|
||||
finally:
|
||||
# if self.prev_tooth:
|
||||
# self.prev_tooth.offload_previous(0)
|
||||
self.next_tooth.preload_next(0, input, dtype, device, bias_dtype)
|
||||
|
||||
def preload_next(self, teeth_count=1, input: torch.Tensor=None, dtype=None, device=None, bias_dtype=None):
|
||||
# TODO: queue load of tensors
|
||||
if input is not None:
|
||||
if dtype is None:
|
||||
dtype = input.dtype
|
||||
if bias_dtype is None:
|
||||
bias_dtype = dtype
|
||||
if device is None:
|
||||
device = input.device
|
||||
|
||||
non_blocking = comfy.model_management.device_supports_non_blocking(self.load_device)
|
||||
|
||||
if self.op.bias is not None:
|
||||
self.bias_preloaded = comfy.model_management.cast_to(self.op.bias, bias_dtype, device, non_blocking=non_blocking)
|
||||
|
||||
self.weight_preloaded = comfy.model_management.cast_to(self.op.weight, dtype, device, non_blocking=non_blocking)
|
||||
if self.next_tooth and teeth_count:
|
||||
self.next_tooth.preload_next(teeth_count-1)
|
||||
|
||||
def offload_previous(self, teeth_count=1):
|
||||
# TODO: queue offload of tensors
|
||||
self.weight_preloaded = None
|
||||
self.bias_preloaded = None
|
||||
if self.prev_tooth and teeth_count:
|
||||
self.prev_tooth.offload_previous(teeth_count-1)
|
||||
|
||||
class disable_weight_init:
|
||||
class Linear(torch.nn.Linear, CastWeightBiasOp):
|
||||
@@ -63,7 +137,11 @@ class disable_weight_init:
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
#if self.zipper_init:
|
||||
if self.zipper_tooth:
|
||||
weight, bias = self.zipper_tooth.get_bias_weight(input)
|
||||
else:
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.linear(input, weight, bias)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
@@ -77,7 +155,10 @@ class disable_weight_init:
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
if self.zipper_tooth:
|
||||
weight, bias = self.zipper_tooth.get_bias_weight(input)
|
||||
else:
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return self._conv_forward(input, weight, bias)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
@@ -91,7 +172,10 @@ class disable_weight_init:
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
if self.zipper_tooth:
|
||||
weight, bias = self.zipper_tooth.get_bias_weight(input)
|
||||
else:
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return self._conv_forward(input, weight, bias)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
@@ -105,7 +189,10 @@ class disable_weight_init:
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
if self.zipper_tooth:
|
||||
weight, bias = self.zipper_tooth.get_bias_weight(input)
|
||||
else:
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return self._conv_forward(input, weight, bias)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
@@ -119,7 +206,10 @@ class disable_weight_init:
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
if self.zipper_tooth:
|
||||
weight, bias = self.zipper_tooth.get_bias_weight(input)
|
||||
else:
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
@@ -134,7 +224,10 @@ class disable_weight_init:
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
if self.weight is not None:
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
if self.zipper_tooth:
|
||||
weight, bias = self.zipper_tooth.get_bias_weight(input)
|
||||
else:
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
else:
|
||||
weight = None
|
||||
bias = None
|
||||
@@ -156,7 +249,10 @@ class disable_weight_init:
|
||||
input, output_size, self.stride, self.padding, self.kernel_size,
|
||||
num_spatial_dims, self.dilation)
|
||||
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
if self.zipper_tooth:
|
||||
weight, bias = self.zipper_tooth.get_bias_weight(input)
|
||||
else:
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.conv_transpose2d(
|
||||
input, weight, bias, self.stride, self.padding,
|
||||
output_padding, self.groups, self.dilation)
|
||||
@@ -177,7 +273,10 @@ class disable_weight_init:
|
||||
input, output_size, self.stride, self.padding, self.kernel_size,
|
||||
num_spatial_dims, self.dilation)
|
||||
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
if self.zipper_tooth:
|
||||
weight, bias = self.zipper_tooth.get_bias_weight(input)
|
||||
else:
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.conv_transpose1d(
|
||||
input, weight, bias, self.stride, self.padding,
|
||||
output_padding, self.groups, self.dilation)
|
||||
@@ -197,7 +296,10 @@ class disable_weight_init:
|
||||
output_dtype = out_dtype
|
||||
if self.weight.dtype == torch.float16 or self.weight.dtype == torch.bfloat16:
|
||||
out_dtype = None
|
||||
weight, bias = cast_bias_weight(self, device=input.device, dtype=out_dtype)
|
||||
if self.zipper_tooth:
|
||||
weight, bias = self.zipper_tooth.get_bias_weight(device=input.device, dtype=out_dtype)
|
||||
else:
|
||||
weight, bias = cast_bias_weight(self, device=input.device, dtype=out_dtype)
|
||||
return torch.nn.functional.embedding(input, weight, self.padding_idx, self.max_norm, self.norm_type, self.scale_grad_by_freq, self.sparse).to(dtype=output_dtype)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
|
@@ -6,6 +6,7 @@ if TYPE_CHECKING:
|
||||
from comfy.model_patcher import ModelPatcher
|
||||
from comfy.model_base import BaseModel
|
||||
from comfy.controlnet import ControlBase
|
||||
from comfy.ops import CastWeightBiasOp
|
||||
import torch
|
||||
from functools import partial
|
||||
import collections
|
||||
@@ -18,6 +19,7 @@ import comfy.patcher_extension
|
||||
import comfy.hooks
|
||||
import scipy.stats
|
||||
import numpy
|
||||
import comfy.ops
|
||||
|
||||
|
||||
def add_area_dims(area, num_dims):
|
||||
@@ -360,15 +362,38 @@ def cfg_function(model, cond_pred, uncond_pred, cond_scale, x, timestep, model_o
|
||||
|
||||
#The main sampling function shared by all the samplers
|
||||
#Returns denoised
|
||||
def sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None):
|
||||
def sampling_function(model: BaseModel, x, timestep, uncond, cond, cond_scale, model_options={}, seed=None):
|
||||
if math.isclose(cond_scale, 1.0) and model_options.get("disable_cfg1_optimization", False) == False:
|
||||
uncond_ = None
|
||||
else:
|
||||
uncond_ = uncond
|
||||
|
||||
do_cleanup = False
|
||||
if "weight_zipper" not in model_options:
|
||||
do_cleanup = True
|
||||
#zipper_dict = {}
|
||||
model_options["weight_zipper"] = True
|
||||
loaded_modules = model.current_patcher._load_list_lowvram_only()
|
||||
low_m = [x for x in loaded_modules if hasattr(x[2], "prev_comfy_cast_weights")]
|
||||
sum_m = sum([x[0] for x in low_m])
|
||||
for l in loaded_modules:
|
||||
m: CastWeightBiasOp = l[2]
|
||||
if hasattr(m, "comfy_cast_weights"):
|
||||
m.zipper_tooth = comfy.ops.ZipperTooth
|
||||
#m.zipper_dict = zipper_dict
|
||||
m.zipper_key = l[1]
|
||||
|
||||
conds = [cond, uncond_]
|
||||
out = calc_cond_batch(model, conds, x, timestep, model_options)
|
||||
|
||||
if do_cleanup:
|
||||
zzz = 20
|
||||
for l in loaded_modules:
|
||||
m: CastWeightBiasOp = l[2]
|
||||
if hasattr(l[2], "comfy_cast_weights"):
|
||||
#m.zipper_dict = None
|
||||
m.zipper_key = None
|
||||
|
||||
for fn in model_options.get("sampler_pre_cfg_function", []):
|
||||
args = {"conds":conds, "conds_out": out, "cond_scale": cond_scale, "timestep": timestep,
|
||||
"input": x, "sigma": timestep, "model": model, "model_options": model_options}
|
||||
@@ -710,7 +735,7 @@ KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_c
|
||||
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu",
|
||||
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
|
||||
"ipndm", "ipndm_v", "deis", "res_multistep", "res_multistep_cfg_pp", "res_multistep_ancestral", "res_multistep_ancestral_cfg_pp",
|
||||
"gradient_estimation"]
|
||||
"gradient_estimation", "er_sde"]
|
||||
|
||||
class KSAMPLER(Sampler):
|
||||
def __init__(self, sampler_function, extra_options={}, inpaint_options={}):
|
||||
|
15
comfy/sd.py
15
comfy/sd.py
@@ -440,6 +440,10 @@ class VAE:
|
||||
self.patcher = comfy.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device)
|
||||
logging.info("VAE load device: {}, offload device: {}, dtype: {}".format(self.device, offload_device, self.vae_dtype))
|
||||
|
||||
def throw_exception_if_invalid(self):
|
||||
if self.first_stage_model is None:
|
||||
raise RuntimeError("ERROR: VAE is invalid: None\n\nIf the VAE is from a checkpoint loader node your checkpoint does not contain a valid VAE.")
|
||||
|
||||
def vae_encode_crop_pixels(self, pixels):
|
||||
downscale_ratio = self.spacial_compression_encode()
|
||||
|
||||
@@ -495,6 +499,7 @@ class VAE:
|
||||
return comfy.utils.tiled_scale_multidim(samples, encode_fn, tile=(tile_t, tile_x, tile_y), overlap=overlap, upscale_amount=self.downscale_ratio, out_channels=self.latent_channels, downscale=True, index_formulas=self.downscale_index_formula, output_device=self.output_device)
|
||||
|
||||
def decode(self, samples_in):
|
||||
self.throw_exception_if_invalid()
|
||||
pixel_samples = None
|
||||
try:
|
||||
memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype)
|
||||
@@ -525,6 +530,7 @@ class VAE:
|
||||
return pixel_samples
|
||||
|
||||
def decode_tiled(self, samples, tile_x=None, tile_y=None, overlap=None, tile_t=None, overlap_t=None):
|
||||
self.throw_exception_if_invalid()
|
||||
memory_used = self.memory_used_decode(samples.shape, self.vae_dtype) #TODO: calculate mem required for tile
|
||||
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
|
||||
dims = samples.ndim - 2
|
||||
@@ -553,6 +559,7 @@ class VAE:
|
||||
return output.movedim(1, -1)
|
||||
|
||||
def encode(self, pixel_samples):
|
||||
self.throw_exception_if_invalid()
|
||||
pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
|
||||
pixel_samples = pixel_samples.movedim(-1, 1)
|
||||
if self.latent_dim == 3 and pixel_samples.ndim < 5:
|
||||
@@ -585,6 +592,7 @@ class VAE:
|
||||
return samples
|
||||
|
||||
def encode_tiled(self, pixel_samples, tile_x=None, tile_y=None, overlap=None, tile_t=None, overlap_t=None):
|
||||
self.throw_exception_if_invalid()
|
||||
pixel_samples = self.vae_encode_crop_pixels(pixel_samples)
|
||||
dims = self.latent_dim
|
||||
pixel_samples = pixel_samples.movedim(-1, 1)
|
||||
@@ -899,7 +907,12 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
|
||||
|
||||
model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix, metadata=metadata)
|
||||
if model_config is None:
|
||||
return None
|
||||
logging.warning("Warning, This is not a checkpoint file, trying to load it as a diffusion model only.")
|
||||
diffusion_model = load_diffusion_model_state_dict(sd, model_options={})
|
||||
if diffusion_model is None:
|
||||
return None
|
||||
return (diffusion_model, None, VAE(sd={}), None) # The VAE object is there to throw an exception if it's actually used'
|
||||
|
||||
|
||||
unet_weight_dtype = list(model_config.supported_inference_dtypes)
|
||||
if model_config.scaled_fp8 is not None:
|
||||
|
@@ -19,8 +19,6 @@ class Load3D():
|
||||
"image": ("LOAD_3D", {}),
|
||||
"width": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}),
|
||||
"height": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}),
|
||||
"material": (["original", "normal", "wireframe", "depth"],),
|
||||
"up_direction": (["original", "-x", "+x", "-y", "+y", "-z", "+z"],),
|
||||
}}
|
||||
|
||||
RETURN_TYPES = ("IMAGE", "MASK", "STRING")
|
||||
@@ -55,8 +53,6 @@ class Load3DAnimation():
|
||||
"image": ("LOAD_3D_ANIMATION", {}),
|
||||
"width": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}),
|
||||
"height": ("INT", {"default": 1024, "min": 1, "max": 4096, "step": 1}),
|
||||
"material": (["original", "normal", "wireframe", "depth"],),
|
||||
"up_direction": (["original", "-x", "+x", "-y", "+y", "-z", "+z"],),
|
||||
}}
|
||||
|
||||
RETURN_TYPES = ("IMAGE", "MASK", "STRING")
|
||||
@@ -82,8 +78,6 @@ class Preview3D():
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {
|
||||
"model_file": ("STRING", {"default": "", "multiline": False}),
|
||||
"material": (["original", "normal", "wireframe", "depth"],),
|
||||
"up_direction": (["original", "-x", "+x", "-y", "+y", "-z", "+z"],),
|
||||
}}
|
||||
|
||||
OUTPUT_NODE = True
|
||||
@@ -102,8 +96,6 @@ class Preview3DAnimation():
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {
|
||||
"model_file": ("STRING", {"default": "", "multiline": False}),
|
||||
"material": (["original", "normal", "wireframe", "depth"],),
|
||||
"up_direction": (["original", "-x", "+x", "-y", "+y", "-z", "+z"],),
|
||||
}}
|
||||
|
||||
OUTPUT_NODE = True
|
||||
|
@@ -99,12 +99,13 @@ class LTXVAddGuide:
|
||||
"negative": ("CONDITIONING", ),
|
||||
"vae": ("VAE",),
|
||||
"latent": ("LATENT",),
|
||||
"image": ("IMAGE", {"tooltip": "Image or video to condition the latent video on. Must be 8*n + 1 frames." \
|
||||
"image": ("IMAGE", {"tooltip": "Image or video to condition the latent video on. Must be 8*n + 1 frames."
|
||||
"If the video is not 8*n + 1 frames, it will be cropped to the nearest 8*n + 1 frames."}),
|
||||
"frame_idx": ("INT", {"default": 0, "min": -9999, "max": 9999,
|
||||
"tooltip": "Frame index to start the conditioning at. Must be divisible by 8. " \
|
||||
"If a frame is not divisible by 8, it will be rounded down to the nearest multiple of 8. " \
|
||||
"Negative values are counted from the end of the video."}),
|
||||
"tooltip": "Frame index to start the conditioning at. For single-frame images or "
|
||||
"videos with 1-8 frames, any frame_idx value is acceptable. For videos with 9+ "
|
||||
"frames, frame_idx must be divisible by 8, otherwise it will be rounded down to "
|
||||
"the nearest multiple of 8. Negative values are counted from the end of the video."}),
|
||||
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
||||
}
|
||||
}
|
||||
@@ -127,12 +128,13 @@ class LTXVAddGuide:
|
||||
t = vae.encode(encode_pixels)
|
||||
return encode_pixels, t
|
||||
|
||||
def get_latent_index(self, cond, latent_length, frame_idx, scale_factors):
|
||||
def get_latent_index(self, cond, latent_length, guide_length, frame_idx, scale_factors):
|
||||
time_scale_factor, _, _ = scale_factors
|
||||
_, num_keyframes = get_keyframe_idxs(cond)
|
||||
latent_count = latent_length - num_keyframes
|
||||
frame_idx = frame_idx if frame_idx >= 0 else max((latent_count - 1) * 8 + 1 + frame_idx, 0)
|
||||
frame_idx = frame_idx // time_scale_factor * time_scale_factor # frame index must be divisible by 8
|
||||
frame_idx = frame_idx if frame_idx >= 0 else max((latent_count - 1) * time_scale_factor + 1 + frame_idx, 0)
|
||||
if guide_length > 1:
|
||||
frame_idx = frame_idx // time_scale_factor * time_scale_factor # frame index must be divisible by 8
|
||||
|
||||
latent_idx = (frame_idx + time_scale_factor - 1) // time_scale_factor
|
||||
|
||||
@@ -191,7 +193,7 @@ class LTXVAddGuide:
|
||||
_, _, latent_length, latent_height, latent_width = latent_image.shape
|
||||
image, t = self.encode(vae, latent_width, latent_height, image, scale_factors)
|
||||
|
||||
frame_idx, latent_idx = self.get_latent_index(positive, latent_length, frame_idx, scale_factors)
|
||||
frame_idx, latent_idx = self.get_latent_index(positive, latent_length, len(image), frame_idx, scale_factors)
|
||||
assert latent_idx + t.shape[2] <= latent_length, "Conditioning frames exceed the length of the latent sequence."
|
||||
|
||||
num_prefix_frames = min(self._num_prefix_frames, t.shape[2])
|
||||
|
@@ -634,6 +634,13 @@ def validate_inputs(prompt, item, validated):
|
||||
continue
|
||||
else:
|
||||
try:
|
||||
# Unwraps values wrapped in __value__ key. This is used to pass
|
||||
# list widget value to execution, as by default list value is
|
||||
# reserved to represent the connection between nodes.
|
||||
if isinstance(val, dict) and "__value__" in val:
|
||||
val = val["__value__"]
|
||||
inputs[x] = val
|
||||
|
||||
if type_input == "INT":
|
||||
val = int(val)
|
||||
inputs[x] = val
|
||||
|
18
main.py
18
main.py
@@ -139,7 +139,7 @@ from server import BinaryEventTypes
|
||||
import nodes
|
||||
import comfy.model_management
|
||||
import comfyui_version
|
||||
import app.frontend_management
|
||||
import app.logger
|
||||
|
||||
|
||||
def cuda_malloc_warning():
|
||||
@@ -293,28 +293,14 @@ def start_comfyui(asyncio_loop=None):
|
||||
return asyncio_loop, prompt_server, start_all
|
||||
|
||||
|
||||
def warn_frontend_version(frontend_version):
|
||||
try:
|
||||
required_frontend = (0,)
|
||||
req_path = os.path.join(os.path.dirname(__file__), 'requirements.txt')
|
||||
with open(req_path, 'r') as f:
|
||||
required_frontend = tuple(map(int, f.readline().split('=')[-1].split('.')))
|
||||
if frontend_version < required_frontend:
|
||||
logging.warning("________________________________________________________________________\nWARNING WARNING WARNING WARNING WARNING\n\nInstalled frontend version {} is lower than the recommended version {}.\n\n{}\n________________________________________________________________________".format('.'.join(map(str, frontend_version)), '.'.join(map(str, required_frontend)), app.frontend_management.frontend_install_warning_message()))
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Running directly, just start ComfyUI.
|
||||
logging.info("ComfyUI version: {}".format(comfyui_version.__version__))
|
||||
frontend_version = app.frontend_management.frontend_version
|
||||
logging.info("ComfyUI frontend version: {}".format('.'.join(map(str, frontend_version))))
|
||||
|
||||
event_loop, _, start_all_func = start_comfyui()
|
||||
try:
|
||||
x = start_all_func()
|
||||
warn_frontend_version(frontend_version)
|
||||
app.logger.print_startup_warnings()
|
||||
event_loop.run_until_complete(x)
|
||||
except KeyboardInterrupt:
|
||||
logging.info("\nStopped server")
|
||||
|
12
nodes.py
12
nodes.py
@@ -489,7 +489,7 @@ class SaveLatent:
|
||||
file = os.path.join(full_output_folder, file)
|
||||
|
||||
output = {}
|
||||
output["latent_tensor"] = samples["samples"]
|
||||
output["latent_tensor"] = samples["samples"].contiguous()
|
||||
output["latent_format_version_0"] = torch.tensor([])
|
||||
|
||||
comfy.utils.save_torch_file(output, file, metadata=metadata)
|
||||
@@ -770,6 +770,7 @@ class VAELoader:
|
||||
vae_path = folder_paths.get_full_path_or_raise("vae", vae_name)
|
||||
sd = comfy.utils.load_torch_file(vae_path)
|
||||
vae = comfy.sd.VAE(sd=sd)
|
||||
vae.throw_exception_if_invalid()
|
||||
return (vae,)
|
||||
|
||||
class ControlNetLoader:
|
||||
@@ -1785,14 +1786,7 @@ class LoadImageOutput(LoadImage):
|
||||
|
||||
DESCRIPTION = "Load an image from the output folder. When the refresh button is clicked, the node will update the image list and automatically select the first image, allowing for easy iteration."
|
||||
EXPERIMENTAL = True
|
||||
FUNCTION = "load_image_output"
|
||||
|
||||
def load_image_output(self, image):
|
||||
return self.load_image(f"{image} [output]")
|
||||
|
||||
@classmethod
|
||||
def VALIDATE_INPUTS(s, image):
|
||||
return True
|
||||
FUNCTION = "load_image"
|
||||
|
||||
|
||||
class ImageScale:
|
||||
|
@@ -1,4 +1,4 @@
|
||||
comfyui-frontend-package==1.11.8
|
||||
comfyui-frontend-package==1.12.14
|
||||
torch
|
||||
torchsde
|
||||
torchvision
|
||||
|
@@ -70,7 +70,7 @@ def test_get_release_invalid_version(mock_provider):
|
||||
def test_init_frontend_default():
|
||||
version_string = DEFAULT_VERSION_STRING
|
||||
frontend_path = FrontendManager.init_frontend(version_string)
|
||||
assert frontend_path == FrontendManager.DEFAULT_FRONTEND_PATH
|
||||
assert frontend_path == FrontendManager.default_frontend_path()
|
||||
|
||||
|
||||
def test_init_frontend_invalid_version():
|
||||
@@ -84,24 +84,29 @@ def test_init_frontend_invalid_provider():
|
||||
with pytest.raises(HTTPError):
|
||||
FrontendManager.init_frontend_unsafe(version_string)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_os_functions():
|
||||
with patch('app.frontend_management.os.makedirs') as mock_makedirs, \
|
||||
patch('app.frontend_management.os.listdir') as mock_listdir, \
|
||||
patch('app.frontend_management.os.rmdir') as mock_rmdir:
|
||||
with (
|
||||
patch("app.frontend_management.os.makedirs") as mock_makedirs,
|
||||
patch("app.frontend_management.os.listdir") as mock_listdir,
|
||||
patch("app.frontend_management.os.rmdir") as mock_rmdir,
|
||||
):
|
||||
mock_listdir.return_value = [] # Simulate empty directory
|
||||
yield mock_makedirs, mock_listdir, mock_rmdir
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_download():
|
||||
with patch('app.frontend_management.download_release_asset_zip') as mock:
|
||||
with patch("app.frontend_management.download_release_asset_zip") as mock:
|
||||
mock.side_effect = Exception("Download failed") # Simulate download failure
|
||||
yield mock
|
||||
|
||||
|
||||
def test_finally_block(mock_os_functions, mock_download, mock_provider):
|
||||
# Arrange
|
||||
mock_makedirs, mock_listdir, mock_rmdir = mock_os_functions
|
||||
version_string = 'test-owner/test-repo@1.0.0'
|
||||
version_string = "test-owner/test-repo@1.0.0"
|
||||
|
||||
# Act & Assert
|
||||
with pytest.raises(Exception):
|
||||
@@ -128,3 +133,42 @@ def test_parse_version_string_invalid():
|
||||
version_string = "invalid"
|
||||
with pytest.raises(argparse.ArgumentTypeError):
|
||||
FrontendManager.parse_version_string(version_string)
|
||||
|
||||
|
||||
def test_init_frontend_default_with_mocks():
|
||||
# Arrange
|
||||
version_string = DEFAULT_VERSION_STRING
|
||||
|
||||
# Act
|
||||
with (
|
||||
patch("app.frontend_management.check_frontend_version") as mock_check,
|
||||
patch.object(
|
||||
FrontendManager, "default_frontend_path", return_value="/mocked/path"
|
||||
),
|
||||
):
|
||||
frontend_path = FrontendManager.init_frontend(version_string)
|
||||
|
||||
# Assert
|
||||
assert frontend_path == "/mocked/path"
|
||||
mock_check.assert_called_once()
|
||||
|
||||
|
||||
def test_init_frontend_fallback_on_error():
|
||||
# Arrange
|
||||
version_string = "test-owner/test-repo@1.0.0"
|
||||
|
||||
# Act
|
||||
with (
|
||||
patch.object(
|
||||
FrontendManager, "init_frontend_unsafe", side_effect=Exception("Test error")
|
||||
),
|
||||
patch("app.frontend_management.check_frontend_version") as mock_check,
|
||||
patch.object(
|
||||
FrontendManager, "default_frontend_path", return_value="/default/path"
|
||||
),
|
||||
):
|
||||
frontend_path = FrontendManager.init_frontend(version_string)
|
||||
|
||||
# Assert
|
||||
assert frontend_path == "/default/path"
|
||||
mock_check.assert_called_once()
|
||||
|
Reference in New Issue
Block a user