mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-08-02 23:14:49 +08:00
Compare commits
16 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
2bc4b5968f | ||
|
7395b0c0d1 | ||
|
0952569493 | ||
|
29832b3b61 | ||
|
be4e760648 | ||
|
c3d9cc4592 | ||
|
84cc9cb528 | ||
|
ebbb920163 | ||
|
d60fe0af4a | ||
|
5dbd250965 | ||
|
4ab1875283 | ||
|
11b1f27cb1 | ||
|
70e15fd743 | ||
|
e1474150de | ||
|
e62d72e8ca | ||
|
1650cda030 |
@@ -0,0 +1,2 @@
|
||||
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --fast fp16_accumulation
|
||||
pause
|
@@ -7,7 +7,7 @@ on:
|
||||
description: 'cuda version'
|
||||
required: true
|
||||
type: string
|
||||
default: "126"
|
||||
default: "128"
|
||||
|
||||
python_minor:
|
||||
description: 'python minor version'
|
||||
@@ -19,7 +19,7 @@ on:
|
||||
description: 'python patch version'
|
||||
required: true
|
||||
type: string
|
||||
default: "1"
|
||||
default: "2"
|
||||
# push:
|
||||
# branches:
|
||||
# - master
|
||||
@@ -34,7 +34,7 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
fetch-depth: 30
|
||||
persist-credentials: false
|
||||
- uses: actions/setup-python@v5
|
||||
with:
|
||||
@@ -74,7 +74,7 @@ jobs:
|
||||
pause" > ./update/update_comfyui_and_python_dependencies.bat
|
||||
cd ..
|
||||
|
||||
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=8 -mfb=64 -md=32m -ms=on -mf=BCJ2 ComfyUI_windows_portable_nightly_pytorch.7z ComfyUI_windows_portable_nightly_pytorch
|
||||
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=512m -ms=on -mf=BCJ2 ComfyUI_windows_portable_nightly_pytorch.7z ComfyUI_windows_portable_nightly_pytorch
|
||||
mv ComfyUI_windows_portable_nightly_pytorch.7z ComfyUI/ComfyUI_windows_portable_nvidia_or_cpu_nightly_pytorch.7z
|
||||
|
||||
cd ComfyUI_windows_portable_nightly_pytorch
|
||||
|
@@ -215,9 +215,9 @@ Nvidia users should install stable pytorch using this command:
|
||||
|
||||
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu126```
|
||||
|
||||
This is the command to install pytorch nightly instead which might have performance improvements:
|
||||
This is the command to install pytorch nightly instead which supports the new blackwell 50xx series GPUs and might have performance improvements.
|
||||
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu126```
|
||||
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu128```
|
||||
|
||||
#### Troubleshooting
|
||||
|
||||
|
@@ -18,15 +18,27 @@ from typing_extensions import NotRequired
|
||||
from comfy.cli_args import DEFAULT_VERSION_STRING
|
||||
|
||||
|
||||
def frontend_install_warning_message():
|
||||
req_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'requirements.txt'))
|
||||
extra = ""
|
||||
if sys.flags.no_user_site:
|
||||
extra = "-s "
|
||||
return f"Please install the updated requirements.txt file by running:\n{sys.executable} {extra}-m pip install -r {req_path}\n\nThis error is happening because the ComfyUI frontend is no longer shipped as part of the main repo but as a pip package instead.\n\nIf you are on the portable package you can run: update\\update_comfyui.bat to solve this problem"
|
||||
|
||||
try:
|
||||
import comfyui_frontend_package
|
||||
except ImportError:
|
||||
# TODO: Remove the check after roll out of 0.3.16
|
||||
req_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'requirements.txt'))
|
||||
logging.error(f"\n\n********** ERROR ***********\n\ncomfyui-frontend-package is not installed. Please install the updated requirements.txt file by running:\n{sys.executable} -m pip install -r {req_path}\n\nThis error is happening because the ComfyUI frontend is no longer shipped as part of the main repo but as a pip package instead.\n\nIf you are on the portable package you can run: update\\update_comfyui.bat to solve this problem\n********** ERROR **********\n")
|
||||
logging.error(f"\n\n********** ERROR ***********\n\ncomfyui-frontend-package is not installed. {frontend_install_warning_message()}\n********** ERROR **********\n")
|
||||
exit(-1)
|
||||
|
||||
|
||||
try:
|
||||
frontend_version = tuple(map(int, comfyui_frontend_package.__version__.split(".")))
|
||||
except:
|
||||
frontend_version = (0,)
|
||||
pass
|
||||
|
||||
REQUEST_TIMEOUT = 10 # seconds
|
||||
|
||||
|
||||
|
@@ -114,7 +114,7 @@ class InputTypeOptions(TypedDict):
|
||||
# default: bool
|
||||
label_on: str
|
||||
"""The label to use in the UI when the bool is True (``BOOLEAN``)"""
|
||||
label_on: str
|
||||
label_off: str
|
||||
"""The label to use in the UI when the bool is False (``BOOLEAN``)"""
|
||||
# class InputTypeString(InputTypeOptions):
|
||||
# default: str
|
||||
|
@@ -19,6 +19,10 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.autograd import Function
|
||||
import comfy.ops
|
||||
|
||||
ops = comfy.ops.disable_weight_init
|
||||
|
||||
|
||||
class vector_quantize(Function):
|
||||
@staticmethod
|
||||
@@ -121,15 +125,15 @@ class ResBlock(nn.Module):
|
||||
self.norm1 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6)
|
||||
self.depthwise = nn.Sequential(
|
||||
nn.ReplicationPad2d(1),
|
||||
nn.Conv2d(c, c, kernel_size=3, groups=c)
|
||||
ops.Conv2d(c, c, kernel_size=3, groups=c)
|
||||
)
|
||||
|
||||
# channelwise
|
||||
self.norm2 = nn.LayerNorm(c, elementwise_affine=False, eps=1e-6)
|
||||
self.channelwise = nn.Sequential(
|
||||
nn.Linear(c, c_hidden),
|
||||
ops.Linear(c, c_hidden),
|
||||
nn.GELU(),
|
||||
nn.Linear(c_hidden, c),
|
||||
ops.Linear(c_hidden, c),
|
||||
)
|
||||
|
||||
self.gammas = nn.Parameter(torch.zeros(6), requires_grad=True)
|
||||
@@ -171,16 +175,16 @@ class StageA(nn.Module):
|
||||
# Encoder blocks
|
||||
self.in_block = nn.Sequential(
|
||||
nn.PixelUnshuffle(2),
|
||||
nn.Conv2d(3 * 4, c_levels[0], kernel_size=1)
|
||||
ops.Conv2d(3 * 4, c_levels[0], kernel_size=1)
|
||||
)
|
||||
down_blocks = []
|
||||
for i in range(levels):
|
||||
if i > 0:
|
||||
down_blocks.append(nn.Conv2d(c_levels[i - 1], c_levels[i], kernel_size=4, stride=2, padding=1))
|
||||
down_blocks.append(ops.Conv2d(c_levels[i - 1], c_levels[i], kernel_size=4, stride=2, padding=1))
|
||||
block = ResBlock(c_levels[i], c_levels[i] * 4)
|
||||
down_blocks.append(block)
|
||||
down_blocks.append(nn.Sequential(
|
||||
nn.Conv2d(c_levels[-1], c_latent, kernel_size=1, bias=False),
|
||||
ops.Conv2d(c_levels[-1], c_latent, kernel_size=1, bias=False),
|
||||
nn.BatchNorm2d(c_latent), # then normalize them to have mean 0 and std 1
|
||||
))
|
||||
self.down_blocks = nn.Sequential(*down_blocks)
|
||||
@@ -191,7 +195,7 @@ class StageA(nn.Module):
|
||||
|
||||
# Decoder blocks
|
||||
up_blocks = [nn.Sequential(
|
||||
nn.Conv2d(c_latent, c_levels[-1], kernel_size=1)
|
||||
ops.Conv2d(c_latent, c_levels[-1], kernel_size=1)
|
||||
)]
|
||||
for i in range(levels):
|
||||
for j in range(bottleneck_blocks if i == 0 else 1):
|
||||
@@ -199,11 +203,11 @@ class StageA(nn.Module):
|
||||
up_blocks.append(block)
|
||||
if i < levels - 1:
|
||||
up_blocks.append(
|
||||
nn.ConvTranspose2d(c_levels[levels - 1 - i], c_levels[levels - 2 - i], kernel_size=4, stride=2,
|
||||
ops.ConvTranspose2d(c_levels[levels - 1 - i], c_levels[levels - 2 - i], kernel_size=4, stride=2,
|
||||
padding=1))
|
||||
self.up_blocks = nn.Sequential(*up_blocks)
|
||||
self.out_block = nn.Sequential(
|
||||
nn.Conv2d(c_levels[0], 3 * 4, kernel_size=1),
|
||||
ops.Conv2d(c_levels[0], 3 * 4, kernel_size=1),
|
||||
nn.PixelShuffle(2),
|
||||
)
|
||||
|
||||
@@ -232,17 +236,17 @@ class Discriminator(nn.Module):
|
||||
super().__init__()
|
||||
d = max(depth - 3, 3)
|
||||
layers = [
|
||||
nn.utils.spectral_norm(nn.Conv2d(c_in, c_hidden // (2 ** d), kernel_size=3, stride=2, padding=1)),
|
||||
nn.utils.spectral_norm(ops.Conv2d(c_in, c_hidden // (2 ** d), kernel_size=3, stride=2, padding=1)),
|
||||
nn.LeakyReLU(0.2),
|
||||
]
|
||||
for i in range(depth - 1):
|
||||
c_in = c_hidden // (2 ** max((d - i), 0))
|
||||
c_out = c_hidden // (2 ** max((d - 1 - i), 0))
|
||||
layers.append(nn.utils.spectral_norm(nn.Conv2d(c_in, c_out, kernel_size=3, stride=2, padding=1)))
|
||||
layers.append(nn.utils.spectral_norm(ops.Conv2d(c_in, c_out, kernel_size=3, stride=2, padding=1)))
|
||||
layers.append(nn.InstanceNorm2d(c_out))
|
||||
layers.append(nn.LeakyReLU(0.2))
|
||||
self.encoder = nn.Sequential(*layers)
|
||||
self.shuffle = nn.Conv2d((c_hidden + c_cond) if c_cond > 0 else c_hidden, 1, kernel_size=1)
|
||||
self.shuffle = ops.Conv2d((c_hidden + c_cond) if c_cond > 0 else c_hidden, 1, kernel_size=1)
|
||||
self.logits = nn.Sigmoid()
|
||||
|
||||
def forward(self, x, cond=None):
|
||||
|
@@ -19,6 +19,9 @@ import torch
|
||||
import torchvision
|
||||
from torch import nn
|
||||
|
||||
import comfy.ops
|
||||
|
||||
ops = comfy.ops.disable_weight_init
|
||||
|
||||
# EfficientNet
|
||||
class EfficientNetEncoder(nn.Module):
|
||||
@@ -26,7 +29,7 @@ class EfficientNetEncoder(nn.Module):
|
||||
super().__init__()
|
||||
self.backbone = torchvision.models.efficientnet_v2_s().features.eval()
|
||||
self.mapper = nn.Sequential(
|
||||
nn.Conv2d(1280, c_latent, kernel_size=1, bias=False),
|
||||
ops.Conv2d(1280, c_latent, kernel_size=1, bias=False),
|
||||
nn.BatchNorm2d(c_latent, affine=False), # then normalize them to have mean 0 and std 1
|
||||
)
|
||||
self.mean = nn.Parameter(torch.tensor([0.485, 0.456, 0.406]))
|
||||
@@ -34,7 +37,7 @@ class EfficientNetEncoder(nn.Module):
|
||||
|
||||
def forward(self, x):
|
||||
x = x * 0.5 + 0.5
|
||||
x = (x - self.mean.view([3,1,1])) / self.std.view([3,1,1])
|
||||
x = (x - self.mean.view([3,1,1]).to(device=x.device, dtype=x.dtype)) / self.std.view([3,1,1]).to(device=x.device, dtype=x.dtype)
|
||||
o = self.mapper(self.backbone(x))
|
||||
return o
|
||||
|
||||
@@ -44,39 +47,39 @@ class Previewer(nn.Module):
|
||||
def __init__(self, c_in=16, c_hidden=512, c_out=3):
|
||||
super().__init__()
|
||||
self.blocks = nn.Sequential(
|
||||
nn.Conv2d(c_in, c_hidden, kernel_size=1), # 16 channels to 512 channels
|
||||
ops.Conv2d(c_in, c_hidden, kernel_size=1), # 16 channels to 512 channels
|
||||
nn.GELU(),
|
||||
nn.BatchNorm2d(c_hidden),
|
||||
|
||||
nn.Conv2d(c_hidden, c_hidden, kernel_size=3, padding=1),
|
||||
ops.Conv2d(c_hidden, c_hidden, kernel_size=3, padding=1),
|
||||
nn.GELU(),
|
||||
nn.BatchNorm2d(c_hidden),
|
||||
|
||||
nn.ConvTranspose2d(c_hidden, c_hidden // 2, kernel_size=2, stride=2), # 16 -> 32
|
||||
ops.ConvTranspose2d(c_hidden, c_hidden // 2, kernel_size=2, stride=2), # 16 -> 32
|
||||
nn.GELU(),
|
||||
nn.BatchNorm2d(c_hidden // 2),
|
||||
|
||||
nn.Conv2d(c_hidden // 2, c_hidden // 2, kernel_size=3, padding=1),
|
||||
ops.Conv2d(c_hidden // 2, c_hidden // 2, kernel_size=3, padding=1),
|
||||
nn.GELU(),
|
||||
nn.BatchNorm2d(c_hidden // 2),
|
||||
|
||||
nn.ConvTranspose2d(c_hidden // 2, c_hidden // 4, kernel_size=2, stride=2), # 32 -> 64
|
||||
ops.ConvTranspose2d(c_hidden // 2, c_hidden // 4, kernel_size=2, stride=2), # 32 -> 64
|
||||
nn.GELU(),
|
||||
nn.BatchNorm2d(c_hidden // 4),
|
||||
|
||||
nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
|
||||
ops.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
|
||||
nn.GELU(),
|
||||
nn.BatchNorm2d(c_hidden // 4),
|
||||
|
||||
nn.ConvTranspose2d(c_hidden // 4, c_hidden // 4, kernel_size=2, stride=2), # 64 -> 128
|
||||
ops.ConvTranspose2d(c_hidden // 4, c_hidden // 4, kernel_size=2, stride=2), # 64 -> 128
|
||||
nn.GELU(),
|
||||
nn.BatchNorm2d(c_hidden // 4),
|
||||
|
||||
nn.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
|
||||
ops.Conv2d(c_hidden // 4, c_hidden // 4, kernel_size=3, padding=1),
|
||||
nn.GELU(),
|
||||
nn.BatchNorm2d(c_hidden // 4),
|
||||
|
||||
nn.Conv2d(c_hidden // 4, c_out, kernel_size=1),
|
||||
ops.Conv2d(c_hidden // 4, c_out, kernel_size=1),
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
|
@@ -105,7 +105,9 @@ class Modulation(nn.Module):
|
||||
self.lin = operations.Linear(dim, self.multiplier * dim, bias=True, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, vec: Tensor) -> tuple:
|
||||
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
|
||||
if vec.ndim == 2:
|
||||
vec = vec[:, None, :]
|
||||
out = self.lin(nn.functional.silu(vec)).chunk(self.multiplier, dim=-1)
|
||||
|
||||
return (
|
||||
ModulationOut(*out[:3]),
|
||||
@@ -113,6 +115,20 @@ class Modulation(nn.Module):
|
||||
)
|
||||
|
||||
|
||||
def apply_mod(tensor, m_mult, m_add=None, modulation_dims=None):
|
||||
if modulation_dims is None:
|
||||
if m_add is not None:
|
||||
return tensor * m_mult + m_add
|
||||
else:
|
||||
return tensor * m_mult
|
||||
else:
|
||||
for d in modulation_dims:
|
||||
tensor[:, d[0]:d[1]] *= m_mult[:, d[2]]
|
||||
if m_add is not None:
|
||||
tensor[:, d[0]:d[1]] += m_add[:, d[2]]
|
||||
return tensor
|
||||
|
||||
|
||||
class DoubleStreamBlock(nn.Module):
|
||||
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
@@ -143,20 +159,20 @@ class DoubleStreamBlock(nn.Module):
|
||||
)
|
||||
self.flipped_img_txt = flipped_img_txt
|
||||
|
||||
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None):
|
||||
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims=None):
|
||||
img_mod1, img_mod2 = self.img_mod(vec)
|
||||
txt_mod1, txt_mod2 = self.txt_mod(vec)
|
||||
|
||||
# prepare image for attention
|
||||
img_modulated = self.img_norm1(img)
|
||||
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
|
||||
img_modulated = apply_mod(img_modulated, (1 + img_mod1.scale), img_mod1.shift, modulation_dims)
|
||||
img_qkv = self.img_attn.qkv(img_modulated)
|
||||
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
|
||||
|
||||
# prepare txt for attention
|
||||
txt_modulated = self.txt_norm1(txt)
|
||||
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
|
||||
txt_modulated = apply_mod(txt_modulated, (1 + txt_mod1.scale), txt_mod1.shift, modulation_dims)
|
||||
txt_qkv = self.txt_attn.qkv(txt_modulated)
|
||||
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
||||
@@ -179,12 +195,12 @@ class DoubleStreamBlock(nn.Module):
|
||||
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
|
||||
|
||||
# calculate the img bloks
|
||||
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
|
||||
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
|
||||
img = img + apply_mod(self.img_attn.proj(img_attn), img_mod1.gate, None, modulation_dims)
|
||||
img = img + apply_mod(self.img_mlp(apply_mod(self.img_norm2(img), (1 + img_mod2.scale), img_mod2.shift, modulation_dims)), img_mod2.gate, None, modulation_dims)
|
||||
|
||||
# calculate the txt bloks
|
||||
txt += txt_mod1.gate * self.txt_attn.proj(txt_attn)
|
||||
txt += txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
|
||||
txt += apply_mod(self.txt_attn.proj(txt_attn), txt_mod1.gate, None, modulation_dims)
|
||||
txt += apply_mod(self.txt_mlp(apply_mod(self.txt_norm2(txt), (1 + txt_mod2.scale), txt_mod2.shift, modulation_dims)), txt_mod2.gate, None, modulation_dims)
|
||||
|
||||
if txt.dtype == torch.float16:
|
||||
txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504)
|
||||
@@ -228,9 +244,9 @@ class SingleStreamBlock(nn.Module):
|
||||
self.mlp_act = nn.GELU(approximate="tanh")
|
||||
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None) -> Tensor:
|
||||
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims=None) -> Tensor:
|
||||
mod, _ = self.modulation(vec)
|
||||
qkv, mlp = torch.split(self.linear1((1 + mod.scale) * self.pre_norm(x) + mod.shift), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
||||
qkv, mlp = torch.split(self.linear1(apply_mod(self.pre_norm(x), (1 + mod.scale), mod.shift, modulation_dims)), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
|
||||
|
||||
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
q, k = self.norm(q, k, v)
|
||||
@@ -239,7 +255,7 @@ class SingleStreamBlock(nn.Module):
|
||||
attn = attention(q, k, v, pe=pe, mask=attn_mask)
|
||||
# compute activation in mlp stream, cat again and run second linear layer
|
||||
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
||||
x += mod.gate * output
|
||||
x += apply_mod(output, mod.gate, None, modulation_dims)
|
||||
if x.dtype == torch.float16:
|
||||
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
|
||||
return x
|
||||
@@ -252,8 +268,11 @@ class LastLayer(nn.Module):
|
||||
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
|
||||
self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device))
|
||||
|
||||
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
|
||||
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
|
||||
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
|
||||
def forward(self, x: Tensor, vec: Tensor, modulation_dims=None) -> Tensor:
|
||||
if vec.ndim == 2:
|
||||
vec = vec[:, None, :]
|
||||
|
||||
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=-1)
|
||||
x = apply_mod(self.norm_final(x), (1 + scale), shift, modulation_dims)
|
||||
x = self.linear(x)
|
||||
return x
|
||||
|
@@ -227,6 +227,7 @@ class HunyuanVideo(nn.Module):
|
||||
timesteps: Tensor,
|
||||
y: Tensor,
|
||||
guidance: Tensor = None,
|
||||
guiding_frame_index=None,
|
||||
control=None,
|
||||
transformer_options={},
|
||||
) -> Tensor:
|
||||
@@ -237,7 +238,15 @@ class HunyuanVideo(nn.Module):
|
||||
img = self.img_in(img)
|
||||
vec = self.time_in(timestep_embedding(timesteps, 256, time_factor=1.0).to(img.dtype))
|
||||
|
||||
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
|
||||
if guiding_frame_index is not None:
|
||||
token_replace_vec = self.time_in(timestep_embedding(guiding_frame_index, 256, time_factor=1.0))
|
||||
vec_ = self.vector_in(y[:, :self.params.vec_in_dim])
|
||||
vec = torch.cat([(vec_ + token_replace_vec).unsqueeze(1), (vec_ + vec).unsqueeze(1)], dim=1)
|
||||
frame_tokens = (initial_shape[-1] // self.patch_size[-1]) * (initial_shape[-2] // self.patch_size[-2])
|
||||
modulation_dims = [(0, frame_tokens, 0), (frame_tokens, None, 1)]
|
||||
else:
|
||||
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
|
||||
modulation_dims = None
|
||||
|
||||
if self.params.guidance_embed:
|
||||
if guidance is not None:
|
||||
@@ -271,7 +280,7 @@ class HunyuanVideo(nn.Module):
|
||||
txt = out["txt"]
|
||||
img = out["img"]
|
||||
else:
|
||||
img, txt = block(img=img, txt=txt, vec=vec, pe=pe, attn_mask=attn_mask)
|
||||
img, txt = block(img=img, txt=txt, vec=vec, pe=pe, attn_mask=attn_mask, modulation_dims=modulation_dims)
|
||||
|
||||
if control is not None: # Controlnet
|
||||
control_i = control.get("input")
|
||||
@@ -292,7 +301,7 @@ class HunyuanVideo(nn.Module):
|
||||
out = blocks_replace[("single_block", i)]({"img": img, "vec": vec, "pe": pe, "attention_mask": attn_mask}, {"original_block": block_wrap})
|
||||
img = out["img"]
|
||||
else:
|
||||
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask)
|
||||
img = block(img, vec=vec, pe=pe, attn_mask=attn_mask, modulation_dims=modulation_dims)
|
||||
|
||||
if control is not None: # Controlnet
|
||||
control_o = control.get("output")
|
||||
@@ -303,7 +312,7 @@ class HunyuanVideo(nn.Module):
|
||||
|
||||
img = img[:, : img_len]
|
||||
|
||||
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
|
||||
img = self.final_layer(img, vec, modulation_dims=modulation_dims) # (N, T, patch_size ** 2 * out_channels)
|
||||
|
||||
shape = initial_shape[-3:]
|
||||
for i in range(len(shape)):
|
||||
@@ -313,7 +322,7 @@ class HunyuanVideo(nn.Module):
|
||||
img = img.reshape(initial_shape[0], self.out_channels, initial_shape[2], initial_shape[3], initial_shape[4])
|
||||
return img
|
||||
|
||||
def forward(self, x, timestep, context, y, guidance=None, attention_mask=None, control=None, transformer_options={}, **kwargs):
|
||||
def forward(self, x, timestep, context, y, guidance=None, attention_mask=None, guiding_frame_index=None, control=None, transformer_options={}, **kwargs):
|
||||
bs, c, t, h, w = x.shape
|
||||
patch_size = self.patch_size
|
||||
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
|
||||
@@ -325,5 +334,5 @@ class HunyuanVideo(nn.Module):
|
||||
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).reshape(1, 1, -1)
|
||||
img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs)
|
||||
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
||||
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, guidance, control, transformer_options)
|
||||
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, guidance, guiding_frame_index, control, transformer_options)
|
||||
return out
|
||||
|
@@ -108,7 +108,7 @@ class BaseModel(torch.nn.Module):
|
||||
|
||||
if not unet_config.get("disable_unet_model_creation", False):
|
||||
if model_config.custom_operations is None:
|
||||
fp8 = model_config.optimizations.get("fp8", model_config.scaled_fp8 is not None)
|
||||
fp8 = model_config.optimizations.get("fp8", False)
|
||||
operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, scaled_fp8=model_config.scaled_fp8)
|
||||
else:
|
||||
operations = model_config.custom_operations
|
||||
@@ -898,20 +898,31 @@ class HunyuanVideo(BaseModel):
|
||||
guidance = kwargs.get("guidance", 6.0)
|
||||
if guidance is not None:
|
||||
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
|
||||
|
||||
guiding_frame_index = kwargs.get("guiding_frame_index", None)
|
||||
if guiding_frame_index is not None:
|
||||
out['guiding_frame_index'] = comfy.conds.CONDRegular(torch.FloatTensor([guiding_frame_index]))
|
||||
|
||||
return out
|
||||
|
||||
def scale_latent_inpaint(self, latent_image, **kwargs):
|
||||
return latent_image
|
||||
|
||||
class HunyuanVideoI2V(HunyuanVideo):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device)
|
||||
self.concat_keys = ("concat_image", "mask_inverted")
|
||||
|
||||
def scale_latent_inpaint(self, latent_image, **kwargs):
|
||||
return super().scale_latent_inpaint(latent_image=latent_image, **kwargs)
|
||||
|
||||
class HunyuanVideoSkyreelsI2V(HunyuanVideo):
|
||||
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
|
||||
super().__init__(model_config, model_type, device=device)
|
||||
self.concat_keys = ("concat_image",)
|
||||
|
||||
def scale_latent_inpaint(self, latent_image, **kwargs):
|
||||
return super().scale_latent_inpaint(latent_image=latent_image, **kwargs)
|
||||
|
||||
class CosmosVideo(BaseModel):
|
||||
def __init__(self, model_config, model_type=ModelType.EDM, image_to_video=False, device=None):
|
||||
|
@@ -471,6 +471,10 @@ def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=Fal
|
||||
model_config.scaled_fp8 = scaled_fp8_weight.dtype
|
||||
if model_config.scaled_fp8 == torch.float32:
|
||||
model_config.scaled_fp8 = torch.float8_e4m3fn
|
||||
if scaled_fp8_weight.nelement() == 2:
|
||||
model_config.optimizations["fp8"] = False
|
||||
else:
|
||||
model_config.optimizations["fp8"] = True
|
||||
|
||||
return model_config
|
||||
|
||||
|
@@ -581,7 +581,7 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu
|
||||
loaded_memory = loaded_model.model_loaded_memory()
|
||||
current_free_mem = get_free_memory(torch_dev) + loaded_memory
|
||||
|
||||
lowvram_model_memory = max(64 * 1024 * 1024, (current_free_mem - minimum_memory_required), min(current_free_mem * MIN_WEIGHT_MEMORY_RATIO, current_free_mem - minimum_inference_memory()))
|
||||
lowvram_model_memory = max(128 * 1024 * 1024, (current_free_mem - minimum_memory_required), min(current_free_mem * MIN_WEIGHT_MEMORY_RATIO, current_free_mem - minimum_inference_memory()))
|
||||
lowvram_model_memory = max(0.1, lowvram_model_memory - loaded_memory)
|
||||
|
||||
if vram_set_state == VRAMState.NO_VRAM:
|
||||
|
@@ -17,6 +17,7 @@
|
||||
"""
|
||||
|
||||
import torch
|
||||
import logging
|
||||
import comfy.model_management
|
||||
from comfy.cli_args import args, PerformanceFeature
|
||||
import comfy.float
|
||||
@@ -308,6 +309,7 @@ class fp8_ops(manual_cast):
|
||||
return torch.nn.functional.linear(input, weight, bias)
|
||||
|
||||
def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None):
|
||||
logging.info("Using scaled fp8: fp8 matrix mult: {}, scale input: {}".format(fp8_matrix_mult, scale_input))
|
||||
class scaled_fp8_op(manual_cast):
|
||||
class Linear(manual_cast.Linear):
|
||||
def __init__(self, *args, **kwargs):
|
||||
@@ -358,7 +360,7 @@ def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None
|
||||
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None):
|
||||
fp8_compute = comfy.model_management.supports_fp8_compute(load_device)
|
||||
if scaled_fp8 is not None:
|
||||
return scaled_fp8_ops(fp8_matrix_mult=fp8_compute, scale_input=True, override_dtype=scaled_fp8)
|
||||
return scaled_fp8_ops(fp8_matrix_mult=fp8_compute and fp8_optimizations, scale_input=fp8_optimizations, override_dtype=scaled_fp8)
|
||||
|
||||
if (
|
||||
fp8_compute and
|
||||
|
@@ -931,7 +931,7 @@ class WAN21_T2V(supported_models_base.BASE):
|
||||
|
||||
memory_usage_factor = 1.0
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||
supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32]
|
||||
|
||||
vae_key_prefix = ["vae."]
|
||||
text_encoder_key_prefix = ["text_encoders."]
|
||||
|
@@ -42,7 +42,7 @@ class HunyuanVideoTokenizer:
|
||||
self.llama_template = """<|start_header_id|>system<|end_header_id|>\n\nDescribe the video by detailing the following aspects: 1. The main content and theme of the video.2. The color, shape, size, texture, quantity, text, and spatial relationships of the objects.3. Actions, events, behaviors temporal relationships, physical movement changes of the objects.4. background environment, light, style and atmosphere.5. camera angles, movements, and transitions used in the video:<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|>""" # 95 tokens
|
||||
self.llama = LLAMA3Tokenizer(embedding_directory=embedding_directory, min_length=1)
|
||||
|
||||
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, image_embeds=None, **kwargs):
|
||||
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, image_embeds=None, image_interleave=1, **kwargs):
|
||||
out = {}
|
||||
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
|
||||
|
||||
@@ -56,7 +56,7 @@ class HunyuanVideoTokenizer:
|
||||
for i in range(len(r)):
|
||||
if r[i][0] == 128257:
|
||||
if image_embeds is not None and embed_count < image_embeds.shape[0]:
|
||||
r[i] = ({"type": "embedding", "data": image_embeds[embed_count], "original_type": "image"},) + r[i][1:]
|
||||
r[i] = ({"type": "embedding", "data": image_embeds[embed_count], "original_type": "image", "image_interleave": image_interleave},) + r[i][1:]
|
||||
embed_count += 1
|
||||
out["llama"] = llama_text_tokens
|
||||
return out
|
||||
@@ -92,10 +92,10 @@ class HunyuanVideoClipModel(torch.nn.Module):
|
||||
llama_out, llama_pooled, llama_extra_out = self.llama.encode_token_weights(token_weight_pairs_llama)
|
||||
|
||||
template_end = 0
|
||||
image_start = None
|
||||
image_end = None
|
||||
extra_template_end = 0
|
||||
extra_sizes = 0
|
||||
user_end = 9999999999999
|
||||
images = []
|
||||
|
||||
tok_pairs = token_weight_pairs_llama[0]
|
||||
for i, v in enumerate(tok_pairs):
|
||||
@@ -112,22 +112,28 @@ class HunyuanVideoClipModel(torch.nn.Module):
|
||||
else:
|
||||
if elem.get("original_type") == "image":
|
||||
elem_size = elem.get("data").shape[0]
|
||||
if image_start is None:
|
||||
if template_end > 0:
|
||||
if user_end == -1:
|
||||
extra_template_end += elem_size - 1
|
||||
else:
|
||||
image_start = i + extra_sizes
|
||||
image_end = i + elem_size + extra_sizes
|
||||
extra_sizes += elem_size - 1
|
||||
images.append((image_start, image_end, elem.get("image_interleave", 1)))
|
||||
extra_sizes += elem_size - 1
|
||||
|
||||
if llama_out.shape[1] > (template_end + 2):
|
||||
if tok_pairs[template_end + 1][0] == 271:
|
||||
template_end += 2
|
||||
llama_output = llama_out[:, template_end + extra_sizes:user_end + extra_sizes]
|
||||
llama_extra_out["attention_mask"] = llama_extra_out["attention_mask"][:, template_end + extra_sizes:user_end + extra_sizes]
|
||||
llama_output = llama_out[:, template_end + extra_sizes:user_end + extra_sizes + extra_template_end]
|
||||
llama_extra_out["attention_mask"] = llama_extra_out["attention_mask"][:, template_end + extra_sizes:user_end + extra_sizes + extra_template_end]
|
||||
if llama_extra_out["attention_mask"].sum() == torch.numel(llama_extra_out["attention_mask"]):
|
||||
llama_extra_out.pop("attention_mask") # attention mask is useless if no masked elements
|
||||
|
||||
if image_start is not None:
|
||||
image_output = llama_out[:, image_start: image_end]
|
||||
llama_output = torch.cat([image_output[:, ::2], llama_output], dim=1)
|
||||
if len(images) > 0:
|
||||
out = []
|
||||
for i in images:
|
||||
out.append(llama_out[:, i[0]: i[1]: i[2]])
|
||||
llama_output = torch.cat(out + [llama_output], dim=1)
|
||||
|
||||
l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
|
||||
return llama_output, l_pooled, llama_extra_out
|
||||
|
@@ -57,17 +57,17 @@ class TextEncodeHunyuanVideo_ImageToVideo:
|
||||
"clip": ("CLIP", ),
|
||||
"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
|
||||
"prompt": ("STRING", {"multiline": True, "dynamicPrompts": True}),
|
||||
"image_interleave": ("INT", {"default": 2, "min": 1, "max": 512, "tooltip": "How much the image influences things vs the text prompt. Higher number means more influence from the text prompt."}),
|
||||
}}
|
||||
RETURN_TYPES = ("CONDITIONING",)
|
||||
FUNCTION = "encode"
|
||||
|
||||
CATEGORY = "advanced/conditioning"
|
||||
|
||||
def encode(self, clip, clip_vision_output, prompt):
|
||||
tokens = clip.tokenize(prompt, llama_template=PROMPT_TEMPLATE_ENCODE_VIDEO_I2V, image_embeds=clip_vision_output.mm_projected)
|
||||
def encode(self, clip, clip_vision_output, prompt, image_interleave):
|
||||
tokens = clip.tokenize(prompt, llama_template=PROMPT_TEMPLATE_ENCODE_VIDEO_I2V, image_embeds=clip_vision_output.mm_projected, image_interleave=image_interleave)
|
||||
return (clip.encode_from_tokens_scheduled(tokens), )
|
||||
|
||||
|
||||
class HunyuanImageToVideo:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
@@ -77,6 +77,7 @@ class HunyuanImageToVideo:
|
||||
"height": ("INT", {"default": 480, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 16}),
|
||||
"length": ("INT", {"default": 53, "min": 1, "max": nodes.MAX_RESOLUTION, "step": 4}),
|
||||
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
|
||||
"guidance_type": (["v1 (concat)", "v2 (replace)"], )
|
||||
},
|
||||
"optional": {"start_image": ("IMAGE", ),
|
||||
}}
|
||||
@@ -87,8 +88,10 @@ class HunyuanImageToVideo:
|
||||
|
||||
CATEGORY = "conditioning/video_models"
|
||||
|
||||
def encode(self, positive, vae, width, height, length, batch_size, start_image=None):
|
||||
def encode(self, positive, vae, width, height, length, batch_size, guidance_type, start_image=None):
|
||||
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
|
||||
out_latent = {}
|
||||
|
||||
if start_image is not None:
|
||||
start_image = comfy.utils.common_upscale(start_image[:length, :, :, :3].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
|
||||
|
||||
@@ -96,13 +99,20 @@ class HunyuanImageToVideo:
|
||||
mask = torch.ones((1, 1, latent.shape[2], concat_latent_image.shape[-2], concat_latent_image.shape[-1]), device=start_image.device, dtype=start_image.dtype)
|
||||
mask[:, :, :((start_image.shape[0] - 1) // 4) + 1] = 0.0
|
||||
|
||||
positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent_image, "concat_mask": mask})
|
||||
if guidance_type == "v1 (concat)":
|
||||
cond = {"concat_latent_image": concat_latent_image, "concat_mask": mask}
|
||||
else:
|
||||
cond = {'guiding_frame_index': 0}
|
||||
latent[:, :, :concat_latent_image.shape[2]] = concat_latent_image
|
||||
out_latent["noise_mask"] = mask
|
||||
|
||||
positive = node_helpers.conditioning_set_values(positive, cond)
|
||||
|
||||
out_latent = {}
|
||||
out_latent["samples"] = latent
|
||||
return (positive, out_latent)
|
||||
|
||||
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"CLIPTextEncodeHunyuanDiT": CLIPTextEncodeHunyuanDiT,
|
||||
"TextEncodeHunyuanVideo_ImageToVideo": TextEncodeHunyuanVideo_ImageToVideo,
|
||||
|
@@ -1,3 +1,3 @@
|
||||
# This file is automatically generated by the build process when version is
|
||||
# updated in pyproject.toml.
|
||||
__version__ = "0.3.24"
|
||||
__version__ = "0.3.25"
|
||||
|
20
main.py
20
main.py
@@ -139,6 +139,7 @@ from server import BinaryEventTypes
|
||||
import nodes
|
||||
import comfy.model_management
|
||||
import comfyui_version
|
||||
import app.frontend_management
|
||||
|
||||
|
||||
def cuda_malloc_warning():
|
||||
@@ -292,12 +293,29 @@ def start_comfyui(asyncio_loop=None):
|
||||
return asyncio_loop, prompt_server, start_all
|
||||
|
||||
|
||||
def warn_frontend_version(frontend_version):
|
||||
try:
|
||||
required_frontend = (0,)
|
||||
req_path = os.path.join(os.path.dirname(__file__), 'requirements.txt')
|
||||
with open(req_path, 'r') as f:
|
||||
required_frontend = tuple(map(int, f.readline().split('=')[-1].split('.')))
|
||||
if frontend_version < required_frontend:
|
||||
logging.warning("________________________________________________________________________\nWARNING WARNING WARNING WARNING WARNING\n\nInstalled frontend version {} is lower than the recommended version {}.\n\n{}\n________________________________________________________________________".format('.'.join(map(str, frontend_version)), '.'.join(map(str, required_frontend)), app.frontend_management.frontend_install_warning_message()))
|
||||
except:
|
||||
pass
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Running directly, just start ComfyUI.
|
||||
logging.info("ComfyUI version: {}".format(comfyui_version.__version__))
|
||||
frontend_version = app.frontend_management.frontend_version
|
||||
logging.info("ComfyUI frontend version: {}".format('.'.join(map(str, frontend_version))))
|
||||
|
||||
event_loop, _, start_all_func = start_comfyui()
|
||||
try:
|
||||
event_loop.run_until_complete(start_all_func())
|
||||
x = start_all_func()
|
||||
warn_frontend_version(frontend_version)
|
||||
event_loop.run_until_complete(x)
|
||||
except KeyboardInterrupt:
|
||||
logging.info("\nStopped server")
|
||||
|
||||
|
@@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "ComfyUI"
|
||||
version = "0.3.24"
|
||||
version = "0.3.25"
|
||||
readme = "README.md"
|
||||
license = { file = "LICENSE" }
|
||||
requires-python = ">=3.9"
|
||||
|
@@ -1,4 +1,4 @@
|
||||
comfyui-frontend-package==1.10.17
|
||||
comfyui-frontend-package==1.11.8
|
||||
torch
|
||||
torchsde
|
||||
torchvision
|
||||
|
Reference in New Issue
Block a user