mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-08-03 07:26:31 +08:00
Compare commits
18 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
39fb74c5bd | ||
|
74e124f4d7 | ||
|
a562c17e8a | ||
|
5942c17d55 | ||
|
c032b11e07 | ||
|
b8ffb2937f | ||
|
ce37c11164 | ||
|
b5c3906b38 | ||
|
5d43e75e5b | ||
|
517f4a94e4 | ||
|
52a471c5c7 | ||
|
ad76574cb8 | ||
|
9acfe4df41 | ||
|
9829b013ea | ||
|
5c69cde037 | ||
|
e9589d6d92 | ||
|
0d82a798a5 | ||
|
925fff26fd |
16
.github/workflows/pullrequest-ci-run.yml
vendored
16
.github/workflows/pullrequest-ci-run.yml
vendored
@@ -35,3 +35,19 @@ jobs:
|
||||
torch_version: ${{ matrix.torch_version }}
|
||||
google_credentials: ${{ secrets.GCS_SERVICE_ACCOUNT_JSON }}
|
||||
comfyui_flags: ${{ matrix.flags }}
|
||||
use_prior_commit: 'true'
|
||||
comment:
|
||||
if: ${{ github.event.label.name == 'Run-CI-Test' }}
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
pull-requests: write
|
||||
steps:
|
||||
- uses: actions/github-script@v6
|
||||
with:
|
||||
script: |
|
||||
github.rest.issues.createComment({
|
||||
issue_number: context.issue.number,
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
body: '(Automated Bot Message) CI Tests are running, you can view the results at https://ci.comfy.org/?branch=${{ github.event.pull_request.number }}%2Fmerge'
|
||||
})
|
||||
|
3
.gitignore
vendored
3
.gitignore
vendored
@@ -18,4 +18,5 @@ venv/
|
||||
/tests-ui/data/object_info.json
|
||||
/user/
|
||||
*.log
|
||||
web_custom_versions/
|
||||
web_custom_versions/
|
||||
.DS_Store
|
||||
|
@@ -34,6 +34,8 @@ import comfy.t2i_adapter.adapter
|
||||
import comfy.ldm.cascade.controlnet
|
||||
import comfy.cldm.mmdit
|
||||
import comfy.ldm.hydit.controlnet
|
||||
import comfy.ldm.flux.controlnet_xlabs
|
||||
|
||||
|
||||
def broadcast_image_to(tensor, target_batch_size, batched_number):
|
||||
current_batch_size = tensor.shape[0]
|
||||
@@ -416,6 +418,7 @@ def load_controlnet_mmdit(sd):
|
||||
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
|
||||
return control
|
||||
|
||||
|
||||
def load_controlnet_hunyuandit(controlnet_data):
|
||||
model_config, operations, load_device, unet_dtype, manual_cast_dtype = controlnet_config(controlnet_data)
|
||||
|
||||
@@ -427,6 +430,15 @@ def load_controlnet_hunyuandit(controlnet_data):
|
||||
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds, strength_type=StrengthType.CONSTANT)
|
||||
return control
|
||||
|
||||
def load_controlnet_flux_xlabs(sd):
|
||||
model_config, operations, load_device, unet_dtype, manual_cast_dtype = controlnet_config(sd)
|
||||
control_model = comfy.ldm.flux.controlnet_xlabs.ControlNetFlux(operations=operations, device=load_device, dtype=unet_dtype, **model_config.unet_config)
|
||||
control_model = controlnet_load_state_dict(control_model, sd)
|
||||
extra_conds = ['y', 'guidance']
|
||||
control = ControlNet(control_model, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
|
||||
return control
|
||||
|
||||
|
||||
def load_controlnet(ckpt_path, model=None):
|
||||
controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
if 'after_proj_list.18.bias' in controlnet_data.keys(): #Hunyuan DiT
|
||||
@@ -489,7 +501,10 @@ def load_controlnet(ckpt_path, model=None):
|
||||
logging.warning("leftover keys: {}".format(leftover_keys))
|
||||
controlnet_data = new_sd
|
||||
elif "controlnet_blocks.0.weight" in controlnet_data: #SD3 diffusers format
|
||||
return load_controlnet_mmdit(controlnet_data)
|
||||
if "double_blocks.0.img_attn.norm.key_norm.scale" in controlnet_data:
|
||||
return load_controlnet_flux_xlabs(controlnet_data)
|
||||
else:
|
||||
return load_controlnet_mmdit(controlnet_data)
|
||||
|
||||
pth_key = 'control_model.zero_convs.0.0.weight'
|
||||
pth = False
|
||||
|
@@ -22,7 +22,7 @@ def load_diffusers(model_path, output_vae=True, output_clip=True, embedding_dire
|
||||
if text_encoder2_path is not None:
|
||||
text_encoder_paths.append(text_encoder2_path)
|
||||
|
||||
unet = comfy.sd.load_unet(unet_path)
|
||||
unet = comfy.sd.load_diffusion_model(unet_path)
|
||||
|
||||
clip = None
|
||||
if output_clip:
|
||||
|
104
comfy/ldm/flux/controlnet_xlabs.py
Normal file
104
comfy/ldm/flux/controlnet_xlabs.py
Normal file
@@ -0,0 +1,104 @@
|
||||
#Original code can be found on: https://github.com/XLabs-AI/x-flux/blob/main/src/flux/controlnet.py
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
from einops import rearrange, repeat
|
||||
|
||||
from .layers import (DoubleStreamBlock, EmbedND, LastLayer,
|
||||
MLPEmbedder, SingleStreamBlock,
|
||||
timestep_embedding)
|
||||
|
||||
from .model import Flux
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
|
||||
class ControlNetFlux(Flux):
|
||||
def __init__(self, image_model=None, dtype=None, device=None, operations=None, **kwargs):
|
||||
super().__init__(final_layer=False, dtype=dtype, device=device, operations=operations, **kwargs)
|
||||
|
||||
# add ControlNet blocks
|
||||
self.controlnet_blocks = nn.ModuleList([])
|
||||
for _ in range(self.params.depth):
|
||||
controlnet_block = operations.Linear(self.hidden_size, self.hidden_size, dtype=dtype, device=device)
|
||||
# controlnet_block = zero_module(controlnet_block)
|
||||
self.controlnet_blocks.append(controlnet_block)
|
||||
self.pos_embed_input = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device)
|
||||
self.gradient_checkpointing = False
|
||||
self.input_hint_block = nn.Sequential(
|
||||
operations.Conv2d(3, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device),
|
||||
nn.SiLU(),
|
||||
operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device)
|
||||
)
|
||||
|
||||
def forward_orig(
|
||||
self,
|
||||
img: Tensor,
|
||||
img_ids: Tensor,
|
||||
controlnet_cond: Tensor,
|
||||
txt: Tensor,
|
||||
txt_ids: Tensor,
|
||||
timesteps: Tensor,
|
||||
y: Tensor,
|
||||
guidance: Tensor = None,
|
||||
) -> Tensor:
|
||||
if img.ndim != 3 or txt.ndim != 3:
|
||||
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
||||
|
||||
# running on sequences img
|
||||
img = self.img_in(img)
|
||||
controlnet_cond = self.input_hint_block(controlnet_cond)
|
||||
controlnet_cond = rearrange(controlnet_cond, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
|
||||
controlnet_cond = self.pos_embed_input(controlnet_cond)
|
||||
img = img + controlnet_cond
|
||||
vec = self.time_in(timestep_embedding(timesteps, 256))
|
||||
if self.params.guidance_embed:
|
||||
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
|
||||
vec = vec + self.vector_in(y)
|
||||
txt = self.txt_in(txt)
|
||||
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
pe = self.pe_embedder(ids)
|
||||
|
||||
block_res_samples = ()
|
||||
|
||||
for block in self.double_blocks:
|
||||
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
|
||||
block_res_samples = block_res_samples + (img,)
|
||||
|
||||
controlnet_block_res_samples = ()
|
||||
for block_res_sample, controlnet_block in zip(block_res_samples, self.controlnet_blocks):
|
||||
block_res_sample = controlnet_block(block_res_sample)
|
||||
controlnet_block_res_samples = controlnet_block_res_samples + (block_res_sample,)
|
||||
|
||||
return {"output": (controlnet_block_res_samples * 10)[:19]}
|
||||
|
||||
def forward(self, x, timesteps, context, y, guidance=None, hint=None, **kwargs):
|
||||
hint = hint * 2.0 - 1.0
|
||||
|
||||
bs, c, h, w = x.shape
|
||||
patch_size = 2
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
|
||||
|
||||
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
|
||||
|
||||
h_len = ((h + (patch_size // 2)) // patch_size)
|
||||
w_len = ((w + (patch_size // 2)) // patch_size)
|
||||
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
||||
img_ids[..., 1] = img_ids[..., 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype)[:, None]
|
||||
img_ids[..., 2] = img_ids[..., 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype)[None, :]
|
||||
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
||||
|
||||
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
||||
return self.forward_orig(img, img_ids, hint, context, txt_ids, timesteps, y, guidance)
|
@@ -170,8 +170,8 @@ class DoubleStreamBlock(nn.Module):
|
||||
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
|
||||
|
||||
# calculate the img bloks
|
||||
img += img_mod1.gate * self.img_attn.proj(img_attn)
|
||||
img += img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
|
||||
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
|
||||
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
|
||||
|
||||
# calculate the txt bloks
|
||||
txt += txt_mod1.gate * self.txt_attn.proj(txt_attn)
|
||||
|
@@ -38,7 +38,7 @@ class Flux(nn.Module):
|
||||
Transformer model for flow matching on sequences.
|
||||
"""
|
||||
|
||||
def __init__(self, image_model=None, dtype=None, device=None, operations=None, **kwargs):
|
||||
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
|
||||
super().__init__()
|
||||
self.dtype = dtype
|
||||
params = FluxParams(**kwargs)
|
||||
@@ -83,7 +83,8 @@ class Flux(nn.Module):
|
||||
]
|
||||
)
|
||||
|
||||
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations)
|
||||
if final_layer:
|
||||
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
def forward_orig(
|
||||
self,
|
||||
@@ -94,6 +95,7 @@ class Flux(nn.Module):
|
||||
timesteps: Tensor,
|
||||
y: Tensor,
|
||||
guidance: Tensor = None,
|
||||
control=None,
|
||||
) -> Tensor:
|
||||
if img.ndim != 3 or txt.ndim != 3:
|
||||
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
||||
@@ -112,8 +114,15 @@ class Flux(nn.Module):
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
pe = self.pe_embedder(ids)
|
||||
|
||||
for block in self.double_blocks:
|
||||
img, txt = block(img=img, txt=txt, vec=vec, pe=pe)
|
||||
for i in range(len(self.double_blocks)):
|
||||
img, txt = self.double_blocks[i](img=img, txt=txt, vec=vec, pe=pe)
|
||||
|
||||
if control is not None: #Controlnet
|
||||
control_o = control.get("output")
|
||||
if i < len(control_o):
|
||||
add = control_o[i]
|
||||
if add is not None:
|
||||
img += add
|
||||
|
||||
img = torch.cat((txt, img), 1)
|
||||
for block in self.single_blocks:
|
||||
@@ -123,7 +132,7 @@ class Flux(nn.Module):
|
||||
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
|
||||
return img
|
||||
|
||||
def forward(self, x, timestep, context, y, guidance, **kwargs):
|
||||
def forward(self, x, timestep, context, y, guidance, control=None, **kwargs):
|
||||
bs, c, h, w = x.shape
|
||||
patch_size = 2
|
||||
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
|
||||
@@ -138,5 +147,5 @@ class Flux(nn.Module):
|
||||
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
||||
|
||||
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
||||
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance)
|
||||
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance, control)
|
||||
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h,:w]
|
||||
|
@@ -1,3 +1,21 @@
|
||||
"""
|
||||
This file is part of ComfyUI.
|
||||
Copyright (C) 2024 Comfy
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
import torch
|
||||
import logging
|
||||
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep
|
||||
@@ -77,10 +95,13 @@ class BaseModel(torch.nn.Module):
|
||||
self.device = device
|
||||
|
||||
if not unet_config.get("disable_unet_model_creation", False):
|
||||
if self.manual_cast_dtype is not None:
|
||||
operations = comfy.ops.manual_cast
|
||||
if model_config.custom_operations is None:
|
||||
if self.manual_cast_dtype is not None:
|
||||
operations = comfy.ops.manual_cast
|
||||
else:
|
||||
operations = comfy.ops.disable_weight_init
|
||||
else:
|
||||
operations = comfy.ops.disable_weight_init
|
||||
operations = model_config.custom_operations
|
||||
self.diffusion_model = unet_model(**unet_config, device=device, operations=operations)
|
||||
if comfy.model_management.force_channels_last():
|
||||
self.diffusion_model.to(memory_format=torch.channels_last)
|
||||
|
@@ -338,8 +338,9 @@ class LoadedModel:
|
||||
def model_unload(self, memory_to_free=None, unpatch_weights=True):
|
||||
if memory_to_free is not None:
|
||||
if memory_to_free < self.model.loaded_size():
|
||||
self.model.partially_unload(self.model.offload_device, memory_to_free)
|
||||
return False
|
||||
freed = self.model.partially_unload(self.model.offload_device, memory_to_free)
|
||||
if freed >= memory_to_free:
|
||||
return False
|
||||
self.model.unpatch_model(self.model.offload_device, unpatch_weights=unpatch_weights)
|
||||
self.model.model_patches_to(self.model.offload_device)
|
||||
self.weights_loaded = self.weights_loaded and not unpatch_weights
|
||||
@@ -434,15 +435,15 @@ def free_memory(memory_required, device, keep_loaded=[]):
|
||||
soft_empty_cache()
|
||||
return unloaded_models
|
||||
|
||||
def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimum_memory_required=None):
|
||||
def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimum_memory_required=None, force_full_load=False):
|
||||
global vram_state
|
||||
|
||||
inference_memory = minimum_inference_memory()
|
||||
extra_mem = max(inference_memory, memory_required) + 100 * 1024 * 1024
|
||||
extra_mem = max(inference_memory, memory_required + 300 * 1024 * 1024)
|
||||
if minimum_memory_required is None:
|
||||
minimum_memory_required = extra_mem
|
||||
else:
|
||||
minimum_memory_required = max(inference_memory, minimum_memory_required) + 100 * 1024 * 1024
|
||||
minimum_memory_required = max(inference_memory, minimum_memory_required + 300 * 1024 * 1024)
|
||||
|
||||
models = set(models)
|
||||
|
||||
@@ -513,7 +514,7 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu
|
||||
else:
|
||||
vram_set_state = vram_state
|
||||
lowvram_model_memory = 0
|
||||
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
|
||||
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM) and not force_full_load:
|
||||
model_size = loaded_model.model_memory_required(torch_dev)
|
||||
current_free_mem = get_free_memory(torch_dev)
|
||||
lowvram_model_memory = max(64 * (1024 * 1024), (current_free_mem - minimum_memory_required), min(current_free_mem * 0.4, current_free_mem - minimum_inference_memory()))
|
||||
@@ -684,6 +685,20 @@ def text_encoder_device():
|
||||
else:
|
||||
return torch.device("cpu")
|
||||
|
||||
def text_encoder_initial_device(load_device, offload_device, model_size=0):
|
||||
if load_device == offload_device or model_size <= 1024 * 1024 * 1024:
|
||||
return offload_device
|
||||
|
||||
if is_device_mps(load_device):
|
||||
return offload_device
|
||||
|
||||
mem_l = get_free_memory(load_device)
|
||||
mem_o = get_free_memory(offload_device)
|
||||
if mem_l > (mem_o * 0.5) and model_size * 1.2 < mem_l:
|
||||
return load_device
|
||||
else:
|
||||
return offload_device
|
||||
|
||||
def text_encoder_dtype(device=None):
|
||||
if args.fp8_e4m3fn_text_enc:
|
||||
return torch.float8_e4m3fn
|
||||
|
@@ -355,13 +355,14 @@ class ModelPatcher:
|
||||
|
||||
return self.model
|
||||
|
||||
def lowvram_load(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False):
|
||||
def lowvram_load(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False, full_load=False):
|
||||
mem_counter = 0
|
||||
patch_counter = 0
|
||||
lowvram_counter = 0
|
||||
for n, m in self.model.named_modules():
|
||||
lowvram_weight = False
|
||||
if hasattr(m, "comfy_cast_weights"):
|
||||
|
||||
if not full_load and hasattr(m, "comfy_cast_weights"):
|
||||
module_mem = comfy.model_management.module_size(m)
|
||||
if mem_counter + module_mem >= lowvram_model_memory:
|
||||
lowvram_weight = True
|
||||
@@ -401,13 +402,16 @@ class ModelPatcher:
|
||||
if weight.device == device_to:
|
||||
continue
|
||||
|
||||
self.patch_weight_to_device(weight_key) #TODO: speed this up without OOM
|
||||
self.patch_weight_to_device(bias_key)
|
||||
weight_to = None
|
||||
if full_load:#TODO
|
||||
weight_to = device_to
|
||||
self.patch_weight_to_device(weight_key, device_to=weight_to) #TODO: speed this up without OOM
|
||||
self.patch_weight_to_device(bias_key, device_to=weight_to)
|
||||
m.to(device_to)
|
||||
logging.debug("lowvram: loaded module regularly {} {}".format(n, m))
|
||||
|
||||
if lowvram_counter > 0:
|
||||
logging.info("loaded in lowvram mode {}".format(lowvram_model_memory / (1024 * 1024)))
|
||||
logging.info("loaded partially {} {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), patch_counter))
|
||||
self.model.model_lowvram = True
|
||||
else:
|
||||
logging.info("loaded completely {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024)))
|
||||
@@ -665,12 +669,15 @@ class ModelPatcher:
|
||||
return memory_freed
|
||||
|
||||
def partially_load(self, device_to, extra_memory=0):
|
||||
self.unpatch_model(unpatch_weights=False)
|
||||
self.patch_model(patch_weights=False)
|
||||
full_load = False
|
||||
if self.model.model_lowvram == False:
|
||||
return 0
|
||||
if self.model.model_loaded_weight_memory + extra_memory > self.model_size():
|
||||
pass #TODO: Full load
|
||||
full_load = True
|
||||
current_used = self.model.model_loaded_weight_memory
|
||||
self.lowvram_load(device_to, lowvram_model_memory=current_used + extra_memory)
|
||||
self.lowvram_load(device_to, lowvram_model_memory=current_used + extra_memory, full_load=full_load)
|
||||
return self.model.model_loaded_weight_memory - current_used
|
||||
|
||||
def current_loaded_device(self):
|
||||
|
59
comfy/sd.py
59
comfy/sd.py
@@ -62,7 +62,7 @@ def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
|
||||
|
||||
|
||||
class CLIP:
|
||||
def __init__(self, target=None, embedding_directory=None, no_init=False, tokenizer_data={}):
|
||||
def __init__(self, target=None, embedding_directory=None, no_init=False, tokenizer_data={}, parameters=0):
|
||||
if no_init:
|
||||
return
|
||||
params = target.params.copy()
|
||||
@@ -71,20 +71,24 @@ class CLIP:
|
||||
|
||||
load_device = model_management.text_encoder_device()
|
||||
offload_device = model_management.text_encoder_offload_device()
|
||||
params['device'] = offload_device
|
||||
dtype = model_management.text_encoder_dtype(load_device)
|
||||
params['dtype'] = dtype
|
||||
|
||||
params['device'] = model_management.text_encoder_initial_device(load_device, offload_device, parameters * model_management.dtype_size(dtype))
|
||||
self.cond_stage_model = clip(**(params))
|
||||
|
||||
for dt in self.cond_stage_model.dtypes:
|
||||
if not model_management.supports_cast(load_device, dt):
|
||||
load_device = offload_device
|
||||
if params['device'] != offload_device:
|
||||
self.cond_stage_model.to(offload_device)
|
||||
logging.warning("Had to shift TE back.")
|
||||
|
||||
self.tokenizer = tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
|
||||
self.patcher = comfy.model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
|
||||
if params['device'] == load_device:
|
||||
model_management.load_models_gpu([self.patcher], force_full_load=True)
|
||||
self.layer_idx = None
|
||||
logging.debug("CLIP model load device: {}, offload device: {}".format(load_device, offload_device))
|
||||
logging.debug("CLIP model load device: {}, offload device: {}, current: {}".format(load_device, offload_device, params['device']))
|
||||
|
||||
def clone(self):
|
||||
n = CLIP(no_init=True)
|
||||
@@ -456,7 +460,11 @@ def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DI
|
||||
clip_target.clip = comfy.text_encoders.sd3_clip.SD3ClipModel
|
||||
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
|
||||
|
||||
clip = CLIP(clip_target, embedding_directory=embedding_directory)
|
||||
parameters = 0
|
||||
for c in clip_data:
|
||||
parameters += comfy.utils.calculate_parameters(c)
|
||||
|
||||
clip = CLIP(clip_target, embedding_directory=embedding_directory, parameters=parameters)
|
||||
for c in clip_data:
|
||||
m, u = clip.load_sd(c)
|
||||
if len(m) > 0:
|
||||
@@ -498,15 +506,19 @@ def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_cl
|
||||
|
||||
return (model, clip, vae)
|
||||
|
||||
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True):
|
||||
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}):
|
||||
sd = comfy.utils.load_torch_file(ckpt_path)
|
||||
sd_keys = sd.keys()
|
||||
out = load_state_dict_guess_config(sd, output_vae, output_clip, output_clipvision, embedding_directory, output_model, model_options)
|
||||
if out is None:
|
||||
raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
|
||||
return out
|
||||
|
||||
def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None, output_model=True, model_options={}):
|
||||
clip = None
|
||||
clipvision = None
|
||||
vae = None
|
||||
model = None
|
||||
model_patcher = None
|
||||
clip_target = None
|
||||
|
||||
diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd)
|
||||
parameters = comfy.utils.calculate_parameters(sd, diffusion_model_prefix)
|
||||
@@ -515,13 +527,18 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
|
||||
|
||||
model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix)
|
||||
if model_config is None:
|
||||
raise RuntimeError("ERROR: Could not detect model type of: {}".format(ckpt_path))
|
||||
return None
|
||||
|
||||
unet_weight_dtype = list(model_config.supported_inference_dtypes)
|
||||
if weight_dtype is not None:
|
||||
unet_weight_dtype.append(weight_dtype)
|
||||
|
||||
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype)
|
||||
model_config.custom_operations = model_options.get("custom_operations", None)
|
||||
unet_dtype = model_options.get("weight_dtype", None)
|
||||
|
||||
if unet_dtype is None:
|
||||
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype)
|
||||
|
||||
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
|
||||
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
|
||||
|
||||
@@ -545,7 +562,8 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
|
||||
if clip_target is not None:
|
||||
clip_sd = model_config.process_clip_state_dict(sd)
|
||||
if len(clip_sd) > 0:
|
||||
clip = CLIP(clip_target, embedding_directory=embedding_directory, tokenizer_data=clip_sd)
|
||||
parameters = comfy.utils.calculate_parameters(clip_sd)
|
||||
clip = CLIP(clip_target, embedding_directory=embedding_directory, tokenizer_data=clip_sd, parameters=parameters)
|
||||
m, u = clip.load_sd(clip_sd, full_model=True)
|
||||
if len(m) > 0:
|
||||
m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m))
|
||||
@@ -567,12 +585,13 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
|
||||
model_patcher = comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device())
|
||||
if inital_load_device != torch.device("cpu"):
|
||||
logging.info("loaded straight to GPU")
|
||||
model_management.load_model_gpu(model_patcher)
|
||||
model_management.load_models_gpu([model_patcher], force_full_load=True)
|
||||
|
||||
return (model_patcher, clip, vae, clipvision)
|
||||
|
||||
|
||||
def load_unet_state_dict(sd, dtype=None): #load unet in diffusers or regular format
|
||||
def load_diffusion_model_state_dict(sd, model_options={}): #load unet in diffusers or regular format
|
||||
dtype = model_options.get("dtype", None)
|
||||
|
||||
#Allow loading unets from checkpoint files
|
||||
diffusion_model_prefix = model_detection.unet_prefix_from_state_dict(sd)
|
||||
@@ -614,6 +633,7 @@ def load_unet_state_dict(sd, dtype=None): #load unet in diffusers or regular for
|
||||
|
||||
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
|
||||
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
|
||||
model_config.custom_operations = model_options.get("custom_operations", None)
|
||||
model = model_config.get_model(new_sd, "")
|
||||
model = model.to(offload_device)
|
||||
model.load_model_weights(new_sd, "")
|
||||
@@ -622,14 +642,23 @@ def load_unet_state_dict(sd, dtype=None): #load unet in diffusers or regular for
|
||||
logging.info("left over keys in unet: {}".format(left_over))
|
||||
return comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device)
|
||||
|
||||
def load_unet(unet_path, dtype=None):
|
||||
|
||||
def load_diffusion_model(unet_path, model_options={}):
|
||||
sd = comfy.utils.load_torch_file(unet_path)
|
||||
model = load_unet_state_dict(sd, dtype=dtype)
|
||||
model = load_diffusion_model_state_dict(sd, model_options=model_options)
|
||||
if model is None:
|
||||
logging.error("ERROR UNSUPPORTED UNET {}".format(unet_path))
|
||||
raise RuntimeError("ERROR: Could not detect model type of: {}".format(unet_path))
|
||||
return model
|
||||
|
||||
def load_unet(unet_path, dtype=None):
|
||||
print("WARNING: the load_unet function has been deprecated and will be removed please switch to: load_diffusion_model")
|
||||
return load_diffusion_model(unet_path, model_options={"dtype": dtype})
|
||||
|
||||
def load_unet_state_dict(sd, dtype=None):
|
||||
print("WARNING: the load_unet_state_dict function has been deprecated and will be removed please switch to: load_diffusion_model_state_dict")
|
||||
return load_diffusion_model_state_dict(sd, model_options={"dtype": dtype})
|
||||
|
||||
def save_checkpoint(output_path, model, clip=None, vae=None, clip_vision=None, metadata=None, extra_keys={}):
|
||||
clip_sd = None
|
||||
load_models = [model]
|
||||
|
@@ -1,3 +1,21 @@
|
||||
"""
|
||||
This file is part of ComfyUI.
|
||||
Copyright (C) 2024 Comfy
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
"""
|
||||
|
||||
import torch
|
||||
from . import model_base
|
||||
from . import utils
|
||||
@@ -30,6 +48,7 @@ class BASE:
|
||||
memory_usage_factor = 2.0
|
||||
|
||||
manual_cast_dtype = None
|
||||
custom_operations = None
|
||||
|
||||
@classmethod
|
||||
def matches(s, unet_config, state_dict=None):
|
||||
|
8
nodes.py
8
nodes.py
@@ -826,14 +826,14 @@ class UNETLoader:
|
||||
CATEGORY = "advanced/loaders"
|
||||
|
||||
def load_unet(self, unet_name, weight_dtype):
|
||||
dtype = None
|
||||
model_options = {}
|
||||
if weight_dtype == "fp8_e4m3fn":
|
||||
dtype = torch.float8_e4m3fn
|
||||
model_options["dtype"] = torch.float8_e4m3fn
|
||||
elif weight_dtype == "fp8_e5m2":
|
||||
dtype = torch.float8_e5m2
|
||||
model_options["dtype"] = torch.float8_e5m2
|
||||
|
||||
unet_path = folder_paths.get_full_path("unet", unet_name)
|
||||
model = comfy.sd.load_unet(unet_path, dtype=dtype)
|
||||
model = comfy.sd.load_diffusion_model(unet_path, model_options=model_options)
|
||||
return (model,)
|
||||
|
||||
class CLIPLoader:
|
||||
|
Reference in New Issue
Block a user