1
mirror of https://github.com/comfyanonymous/ComfyUI.git synced 2025-08-02 23:14:49 +08:00

Compare commits

...

34 Commits

Author SHA1 Message Date
comfyanonymous
75b9b55b22 Fix issues with #4302 and support loading diffusers format flux. 2024-08-10 21:28:24 -04:00
Jaret Burkett
1765f1c60c FLUX: Added full diffusers mapping for FLUX.1 schnell and dev. Adds full LoRA support from diffusers LoRAs. (#4302) 2024-08-10 21:26:41 -04:00
comfyanonymous
1de69fe4d5 Fix some issues with inference slowing down. 2024-08-10 16:21:25 -04:00
comfyanonymous
ae197f651b Speed up hunyuan dit inference a bit. 2024-08-10 07:36:27 -04:00
comfyanonymous
1b5b8ca81a Fix regression. 2024-08-09 21:45:21 -04:00
comfyanonymous
6678d5cf65 Fix regression. 2024-08-09 14:02:38 -04:00
TTPlanetPig
e172564eea Update controlnet.py to fix the default controlnet weight as constant (#4285) 2024-08-09 13:40:05 -04:00
comfyanonymous
a3cc326748 Better fix for lowvram issue. 2024-08-09 12:16:25 -04:00
comfyanonymous
86a97e91fc Fix controlnet regression. 2024-08-09 12:08:58 -04:00
comfyanonymous
5acdadc9f3 Fix issue with some lowvram weights. 2024-08-09 03:58:28 -04:00
comfyanonymous
55ad9d5f8c Fix regression. 2024-08-09 03:36:40 -04:00
comfyanonymous
a9f04edc58 Implement text encoder part of HunyuanDiT loras. 2024-08-09 03:21:10 -04:00
comfyanonymous
a475ec2300 Cleanup HunyuanDit controlnets.
Use the: ControlNetApply SD3 and HunyuanDiT node.
2024-08-09 02:59:34 -04:00
来新璐
06eb9fb426 feat: add support for HunYuanDit ControlNet (#4245)
* add support for HunYuanDit ControlNet

* fix hunyuandit controlnet

* fix typo in hunyuandit controlnet

* fix typo in hunyuandit controlnet

* fix code format style

* add control_weight support for HunyuanDit Controlnet

* use control_weights in HunyuanDit Controlnet

* fix typo
2024-08-09 02:59:24 -04:00
comfyanonymous
413322645e Raw torch is faster than einops? 2024-08-08 22:09:29 -04:00
comfyanonymous
11200de970 Cleaner code. 2024-08-08 20:07:09 -04:00
comfyanonymous
037c38eb0f Try to improve inference speed on some machines. 2024-08-08 17:29:27 -04:00
comfyanonymous
1e11d2d1f5 Better prints. 2024-08-08 17:29:27 -04:00
Alex "mcmonkey" Goodwin
65ea6be38f PullRequest CI Run: use pull_request_target to allow the CI Dashboard to work (#4277)
'_target' allows secrets to pass through, and we're just using the secret that allows uploading to the dashboard and are manually vetting PRs before running this workflow anyway
2024-08-08 17:20:48 -04:00
Alex "mcmonkey" Goodwin
5df6f57b5d minor fix on copypasta action name (#4276)
my bad sorry
2024-08-08 16:30:59 -04:00
Alex "mcmonkey" Goodwin
6588bfdef9 add GitHub workflow for CI tests of PRs (#4275)
When the 'Run-CI-Test' label is added to a PR, it will be tested by the CI, on a small matrix of stable versions.
2024-08-08 16:24:49 -04:00
Alex "mcmonkey" Goodwin
50ed2879ef Add full CI test matrix GitHub Workflow (#4274)
automatically runs a matrix of full GPU-enabled tests on all new commits to the ComfyUI master branch
2024-08-08 15:40:07 -04:00
comfyanonymous
66d4233210 Fix. 2024-08-08 15:16:51 -04:00
comfyanonymous
591010b7ef Support diffusers text attention flux loras. 2024-08-08 14:45:52 -04:00
comfyanonymous
08f92d55e9 Partial model shift support. 2024-08-08 14:45:06 -04:00
comfyanonymous
8115d8cce9 Add Flux fp16 support hack. 2024-08-07 15:08:39 -04:00
comfyanonymous
6969fc9ba4 Make supported_dtypes a priority list. 2024-08-07 15:00:06 -04:00
comfyanonymous
cb7c4b4be3 Workaround for lora OOM on lowvram mode. 2024-08-07 14:30:54 -04:00
comfyanonymous
1208863eca Fix "Comfy" lora keys.
They are in this format now:
diffusion_model.full.model.key.name.lora_up.weight
2024-08-07 13:49:31 -04:00
comfyanonymous
e1c528196e Fix bundled embed. 2024-08-07 13:30:45 -04:00
comfyanonymous
17030fd4c0 Support for "Comfy" lora format.
The keys are just: model.full.model.key.name.lora_up.weight

It is supported by all comfyui supported models.

Now people can just convert loras to this format instead of having to ask
for me to implement them.
2024-08-07 13:18:32 -04:00
comfyanonymous
c19dcd362f Controlnet code refactor. 2024-08-07 12:59:28 -04:00
comfyanonymous
1c08bf35b4 Support format for embeddings bundled in loras. 2024-08-07 03:45:25 -04:00
PhilWun
2a02546e20 Add type hints to folder_paths.py (#4191)
* add type hints to folder_paths.py

* replace deprecated standard collections type hints

* fix type error when using Python 3.8
2024-08-06 21:59:34 -04:00
17 changed files with 991 additions and 162 deletions

View File

@@ -0,0 +1,37 @@
# This is the GitHub Workflow that drives full-GPU-enabled tests of pull requests to ComfyUI, when the 'Run-CI-Test' label is added
# Results are reported as checkmarks on the commits, as well as onto https://ci.comfy.org/
name: Pull Request CI Workflow Runs
on:
pull_request_target:
types: [labeled]
jobs:
pr-test-stable:
if: ${{ github.event.label.name == 'Run-CI-Test' }}
strategy:
fail-fast: false
matrix:
os: [macos, linux, windows]
python_version: ["3.9", "3.10", "3.11", "3.12"]
cuda_version: ["12.1"]
torch_version: ["stable"]
include:
- os: macos
runner_label: [self-hosted, macOS]
flags: "--use-pytorch-cross-attention"
- os: linux
runner_label: [self-hosted, Linux]
flags: ""
- os: windows
runner_label: [self-hosted, win]
flags: ""
runs-on: ${{ matrix.runner_label }}
steps:
- name: Test Workflows
uses: comfy-org/comfy-action@main
with:
os: ${{ matrix.os }}
python_version: ${{ matrix.python_version }}
torch_version: ${{ matrix.torch_version }}
google_credentials: ${{ secrets.GCS_SERVICE_ACCOUNT_JSON }}
comfyui_flags: ${{ matrix.flags }}

95
.github/workflows/test-ci.yml vendored Normal file
View File

@@ -0,0 +1,95 @@
# This is the GitHub Workflow that drives automatic full-GPU-enabled tests of all new commits to the master branch of ComfyUI
# Results are reported as checkmarks on the commits, as well as onto https://ci.comfy.org/
name: Full Comfy CI Workflow Runs
on:
push:
branches:
- master
paths-ignore:
- 'app/**'
- 'input/**'
- 'output/**'
- 'notebooks/**'
- 'script_examples/**'
- '.github/**'
- 'web/**'
workflow_dispatch:
jobs:
test-stable:
strategy:
fail-fast: false
matrix:
os: [macos, linux, windows]
python_version: ["3.9", "3.10", "3.11", "3.12"]
cuda_version: ["12.1"]
torch_version: ["stable"]
include:
- os: macos
runner_label: [self-hosted, macOS]
flags: "--use-pytorch-cross-attention"
- os: linux
runner_label: [self-hosted, Linux]
flags: ""
- os: windows
runner_label: [self-hosted, win]
flags: ""
runs-on: ${{ matrix.runner_label }}
steps:
- name: Test Workflows
uses: comfy-org/comfy-action@main
with:
os: ${{ matrix.os }}
python_version: ${{ matrix.python_version }}
torch_version: ${{ matrix.torch_version }}
google_credentials: ${{ secrets.GCS_SERVICE_ACCOUNT_JSON }}
comfyui_flags: ${{ matrix.flags }}
test-win-nightly:
strategy:
fail-fast: true
matrix:
os: [windows]
python_version: ["3.9", "3.10", "3.11", "3.12"]
cuda_version: ["12.1"]
torch_version: ["nightly"]
include:
- os: windows
runner_label: [self-hosted, win]
flags: ""
runs-on: ${{ matrix.runner_label }}
steps:
- name: Test Workflows
uses: comfy-org/comfy-action@main
with:
os: ${{ matrix.os }}
python_version: ${{ matrix.python_version }}
torch_version: ${{ matrix.torch_version }}
google_credentials: ${{ secrets.GCS_SERVICE_ACCOUNT_JSON }}
comfyui_flags: ${{ matrix.flags }}
test-unix-nightly:
strategy:
fail-fast: false
matrix:
os: [macos, linux]
python_version: ["3.11"]
cuda_version: ["12.1"]
torch_version: ["nightly"]
include:
- os: macos
runner_label: [self-hosted, macOS]
flags: "--use-pytorch-cross-attention"
- os: linux
runner_label: [self-hosted, Linux]
flags: ""
runs-on: ${{ matrix.runner_label }}
steps:
- name: Test Workflows
uses: comfy-org/comfy-action@main
with:
os: ${{ matrix.os }}
python_version: ${{ matrix.python_version }}
torch_version: ${{ matrix.torch_version }}
google_credentials: ${{ secrets.GCS_SERVICE_ACCOUNT_JSON }}
comfyui_flags: ${{ matrix.flags }}

View File

@@ -1,4 +1,24 @@
"""
This file is part of ComfyUI.
Copyright (C) 2024 Comfy
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
import torch
from enum import Enum
import math
import os
import logging
@@ -13,7 +33,7 @@ import comfy.cldm.cldm
import comfy.t2i_adapter.adapter
import comfy.ldm.cascade.controlnet
import comfy.cldm.mmdit
import comfy.ldm.hydit.controlnet
def broadcast_image_to(tensor, target_batch_size, batched_number):
current_batch_size = tensor.shape[0]
@@ -33,6 +53,10 @@ def broadcast_image_to(tensor, target_batch_size, batched_number):
else:
return torch.cat([tensor] * batched_number, dim=0)
class StrengthType(Enum):
CONSTANT = 1
LINEAR_UP = 2
class ControlBase:
def __init__(self, device=None):
self.cond_hint_original = None
@@ -51,6 +75,8 @@ class ControlBase:
device = comfy.model_management.get_torch_device()
self.device = device
self.previous_controlnet = None
self.extra_conds = []
self.strength_type = StrengthType.CONSTANT
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0), vae=None):
self.cond_hint_original = cond_hint
@@ -93,6 +119,8 @@ class ControlBase:
c.latent_format = self.latent_format
c.extra_args = self.extra_args.copy()
c.vae = self.vae
c.extra_conds = self.extra_conds.copy()
c.strength_type = self.strength_type
def inference_memory_requirements(self, dtype):
if self.previous_controlnet is not None:
@@ -113,7 +141,10 @@ class ControlBase:
if x not in applied_to: #memory saving strategy, allow shared tensors and only apply strength to shared tensors once
applied_to.add(x)
x *= self.strength
if self.strength_type == StrengthType.CONSTANT:
x *= self.strength
elif self.strength_type == StrengthType.LINEAR_UP:
x *= (self.strength ** float(len(control_output) - i))
if x.dtype != output_dtype:
x = x.to(output_dtype)
@@ -142,7 +173,7 @@ class ControlBase:
class ControlNet(ControlBase):
def __init__(self, control_model=None, global_average_pooling=False, compression_ratio=8, latent_format=None, device=None, load_device=None, manual_cast_dtype=None):
def __init__(self, control_model=None, global_average_pooling=False, compression_ratio=8, latent_format=None, device=None, load_device=None, manual_cast_dtype=None, extra_conds=["y"], strength_type=StrengthType.CONSTANT):
super().__init__(device)
self.control_model = control_model
self.load_device = load_device
@@ -154,6 +185,8 @@ class ControlNet(ControlBase):
self.model_sampling_current = None
self.manual_cast_dtype = manual_cast_dtype
self.latent_format = latent_format
self.extra_conds += extra_conds
self.strength_type = strength_type
def get_control(self, x_noisy, t, cond, batched_number):
control_prev = None
@@ -191,13 +224,16 @@ class ControlNet(ControlBase):
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
context = cond.get('crossattn_controlnet', cond['c_crossattn'])
y = cond.get('y', None)
if y is not None:
y = y.to(dtype)
extra = self.extra_args.copy()
for c in self.extra_conds:
temp = cond.get(c, None)
if temp is not None:
extra[c] = temp.to(dtype)
timestep = self.model_sampling_current.timestep(t)
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.float(), context=context.to(dtype), y=y, **self.extra_args)
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.to(dtype), context=context.to(dtype), **extra)
return self.control_merge(control, control_prev, output_dtype)
def copy(self):
@@ -286,6 +322,7 @@ class ControlLora(ControlNet):
ControlBase.__init__(self, device)
self.control_weights = control_weights
self.global_average_pooling = global_average_pooling
self.extra_conds += ["y"]
def pre_run(self, model, percent_to_timestep_function):
super().pre_run(model, percent_to_timestep_function)
@@ -338,12 +375,8 @@ class ControlLora(ControlNet):
def inference_memory_requirements(self, dtype):
return comfy.utils.calculate_parameters(self.control_weights) * comfy.model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype)
def load_controlnet_mmdit(sd):
new_sd = comfy.model_detection.convert_diffusers_mmdit(sd, "")
model_config = comfy.model_detection.model_config_from_unet(new_sd, "", True)
num_blocks = comfy.model_detection.count_blocks(new_sd, 'joint_blocks.{}.')
for k in sd:
new_sd[k] = sd[k]
def controlnet_config(sd):
model_config = comfy.model_detection.model_config_from_unet(sd, "", True)
supported_inference_dtypes = model_config.supported_inference_dtypes
@@ -356,23 +389,49 @@ def load_controlnet_mmdit(sd):
else:
operations = comfy.ops.disable_weight_init
control_model = comfy.cldm.mmdit.ControlNet(num_blocks=num_blocks, operations=operations, device=load_device, dtype=unet_dtype, **controlnet_config)
missing, unexpected = control_model.load_state_dict(new_sd, strict=False)
return model_config, operations, load_device, unet_dtype, manual_cast_dtype
def controlnet_load_state_dict(control_model, sd):
missing, unexpected = control_model.load_state_dict(sd, strict=False)
if len(missing) > 0:
logging.warning("missing controlnet keys: {}".format(missing))
if len(unexpected) > 0:
logging.debug("unexpected controlnet keys: {}".format(unexpected))
return control_model
def load_controlnet_mmdit(sd):
new_sd = comfy.model_detection.convert_diffusers_mmdit(sd, "")
model_config, operations, load_device, unet_dtype, manual_cast_dtype = controlnet_config(new_sd)
num_blocks = comfy.model_detection.count_blocks(new_sd, 'joint_blocks.{}.')
for k in sd:
new_sd[k] = sd[k]
control_model = comfy.cldm.mmdit.ControlNet(num_blocks=num_blocks, operations=operations, device=load_device, dtype=unet_dtype, **model_config.unet_config)
control_model = controlnet_load_state_dict(control_model, new_sd)
latent_format = comfy.latent_formats.SD3()
latent_format.shift_factor = 0 #SD3 controlnet weirdness
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
return control
def load_controlnet_hunyuandit(controlnet_data):
model_config, operations, load_device, unet_dtype, manual_cast_dtype = controlnet_config(controlnet_data)
control_model = comfy.ldm.hydit.controlnet.HunYuanControlNet(operations=operations, device=load_device, dtype=unet_dtype)
control_model = controlnet_load_state_dict(control_model, controlnet_data)
latent_format = comfy.latent_formats.SDXL()
extra_conds = ['text_embedding_mask', 'encoder_hidden_states_t5', 'text_embedding_mask_t5', 'image_meta_size', 'style', 'cos_cis_img', 'sin_cis_img']
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds, strength_type=StrengthType.CONSTANT)
return control
def load_controlnet(ckpt_path, model=None):
controlnet_data = comfy.utils.load_torch_file(ckpt_path, safe_load=True)
if 'after_proj_list.18.bias' in controlnet_data.keys(): #Hunyuan DiT
return load_controlnet_hunyuandit(controlnet_data)
if "lora_controlnet" in controlnet_data:
return ControlLora(controlnet_data)

View File

@@ -2,12 +2,12 @@ import math
from dataclasses import dataclass
import torch
from einops import rearrange
from torch import Tensor, nn
from .math import attention, rope
import comfy.ops
class EmbedND(nn.Module):
def __init__(self, dim: int, theta: int, axes_dim: list):
super().__init__()
@@ -36,9 +36,7 @@ def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 10
"""
t = time_factor * t
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
t.device
)
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
@@ -48,7 +46,6 @@ def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 10
embedding = embedding.to(t)
return embedding
class MLPEmbedder(nn.Module):
def __init__(self, in_dim: int, hidden_dim: int, dtype=None, device=None, operations=None):
super().__init__()
@@ -94,14 +91,6 @@ class SelfAttention(nn.Module):
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
self.proj = operations.Linear(dim, dim, dtype=dtype, device=device)
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
qkv = self.qkv(x)
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
q, k = self.norm(q, k, v)
x = attention(q, k, v, pe=pe)
x = self.proj(x)
return x
@dataclass
class ModulationOut:
@@ -163,31 +152,34 @@ class DoubleStreamBlock(nn.Module):
img_modulated = self.img_norm1(img)
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
img_qkv = self.img_attn.qkv(img_modulated)
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = self.txt_norm1(txt)
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
txt_qkv = self.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
# run actual attention
q = torch.cat((txt_q, img_q), dim=2)
k = torch.cat((txt_k, img_k), dim=2)
v = torch.cat((txt_v, img_v), dim=2)
attn = attention(torch.cat((txt_q, img_q), dim=2),
torch.cat((txt_k, img_k), dim=2),
torch.cat((txt_v, img_v), dim=2), pe=pe)
attn = attention(q, k, v, pe=pe)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img bloks
img = img + img_mod1.gate * self.img_attn.proj(img_attn)
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
img += img_mod1.gate * self.img_attn.proj(img_attn)
img += img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift)
# calculate the txt bloks
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
txt += txt_mod1.gate * self.txt_attn.proj(txt_attn)
txt += txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
if txt.dtype == torch.float16:
txt = txt.clip(-65504, 65504)
return img, txt
@@ -232,14 +224,17 @@ class SingleStreamBlock(nn.Module):
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k = self.norm(q, k, v)
# compute attention
attn = attention(q, k, v, pe=pe)
# compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
return x + mod.gate * output
x += mod.gate * output
if x.dtype == torch.float16:
x = x.clip(-65504, 65504)
return x
class LastLayer(nn.Module):

View File

@@ -47,7 +47,7 @@ def reshape_for_broadcast(freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]], x
def rotate_half(x):
x_real, x_imag = x.float().reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
return torch.stack([-x_imag, x_real], dim=-1).flatten(3)
@@ -78,10 +78,9 @@ def apply_rotary_emb(
xk_out = None
if isinstance(freqs_cis, tuple):
cos, sin = reshape_for_broadcast(freqs_cis, xq, head_first) # [S, D]
cos, sin = cos.to(xq.device), sin.to(xq.device)
xq_out = (xq.float() * cos + rotate_half(xq.float()) * sin).type_as(xq)
xq_out = (xq * cos + rotate_half(xq) * sin)
if xk is not None:
xk_out = (xk.float() * cos + rotate_half(xk.float()) * sin).type_as(xk)
xk_out = (xk * cos + rotate_half(xk) * sin)
else:
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) # [B, S, H, D//2]
freqs_cis = reshape_for_broadcast(freqs_cis, xq_, head_first).to(xq.device) # [S, D//2] --> [1, S, 1, D//2]

View File

@@ -0,0 +1,321 @@
from typing import Any, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils import checkpoint
from comfy.ldm.modules.diffusionmodules.mmdit import (
Mlp,
TimestepEmbedder,
PatchEmbed,
RMSNorm,
)
from comfy.ldm.modules.diffusionmodules.util import timestep_embedding
from .poolers import AttentionPool
import comfy.latent_formats
from .models import HunYuanDiTBlock, calc_rope
from .posemb_layers import get_2d_rotary_pos_embed, get_fill_resize_and_crop
class HunYuanControlNet(nn.Module):
"""
HunYuanDiT: Diffusion model with a Transformer backbone.
Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers.
Inherit PeftAdapterMixin to be compatible with the PEFT training pipeline.
Parameters
----------
args: argparse.Namespace
The arguments parsed by argparse.
input_size: tuple
The size of the input image.
patch_size: int
The size of the patch.
in_channels: int
The number of input channels.
hidden_size: int
The hidden size of the transformer backbone.
depth: int
The number of transformer blocks.
num_heads: int
The number of attention heads.
mlp_ratio: float
The ratio of the hidden size of the MLP in the transformer block.
log_fn: callable
The logging function.
"""
def __init__(
self,
input_size: tuple = 128,
patch_size: int = 2,
in_channels: int = 4,
hidden_size: int = 1408,
depth: int = 40,
num_heads: int = 16,
mlp_ratio: float = 4.3637,
text_states_dim=1024,
text_states_dim_t5=2048,
text_len=77,
text_len_t5=256,
qk_norm=True, # See http://arxiv.org/abs/2302.05442 for details.
size_cond=False,
use_style_cond=False,
learn_sigma=True,
norm="layer",
log_fn: callable = print,
attn_precision=None,
dtype=None,
device=None,
operations=None,
**kwargs,
):
super().__init__()
self.log_fn = log_fn
self.depth = depth
self.learn_sigma = learn_sigma
self.in_channels = in_channels
self.out_channels = in_channels * 2 if learn_sigma else in_channels
self.patch_size = patch_size
self.num_heads = num_heads
self.hidden_size = hidden_size
self.text_states_dim = text_states_dim
self.text_states_dim_t5 = text_states_dim_t5
self.text_len = text_len
self.text_len_t5 = text_len_t5
self.size_cond = size_cond
self.use_style_cond = use_style_cond
self.norm = norm
self.dtype = dtype
self.latent_format = comfy.latent_formats.SDXL
self.mlp_t5 = nn.Sequential(
nn.Linear(
self.text_states_dim_t5,
self.text_states_dim_t5 * 4,
bias=True,
dtype=dtype,
device=device,
),
nn.SiLU(),
nn.Linear(
self.text_states_dim_t5 * 4,
self.text_states_dim,
bias=True,
dtype=dtype,
device=device,
),
)
# learnable replace
self.text_embedding_padding = nn.Parameter(
torch.randn(
self.text_len + self.text_len_t5,
self.text_states_dim,
dtype=dtype,
device=device,
)
)
# Attention pooling
pooler_out_dim = 1024
self.pooler = AttentionPool(
self.text_len_t5,
self.text_states_dim_t5,
num_heads=8,
output_dim=pooler_out_dim,
dtype=dtype,
device=device,
operations=operations,
)
# Dimension of the extra input vectors
self.extra_in_dim = pooler_out_dim
if self.size_cond:
# Image size and crop size conditions
self.extra_in_dim += 6 * 256
if self.use_style_cond:
# Here we use a default learned embedder layer for future extension.
self.style_embedder = nn.Embedding(
1, hidden_size, dtype=dtype, device=device
)
self.extra_in_dim += hidden_size
# Text embedding for `add`
self.x_embedder = PatchEmbed(
input_size,
patch_size,
in_channels,
hidden_size,
dtype=dtype,
device=device,
operations=operations,
)
self.t_embedder = TimestepEmbedder(
hidden_size, dtype=dtype, device=device, operations=operations
)
self.extra_embedder = nn.Sequential(
operations.Linear(
self.extra_in_dim, hidden_size * 4, dtype=dtype, device=device
),
nn.SiLU(),
operations.Linear(
hidden_size * 4, hidden_size, bias=True, dtype=dtype, device=device
),
)
# Image embedding
num_patches = self.x_embedder.num_patches
# HUnYuanDiT Blocks
self.blocks = nn.ModuleList(
[
HunYuanDiTBlock(
hidden_size=hidden_size,
c_emb_size=hidden_size,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
text_states_dim=self.text_states_dim,
qk_norm=qk_norm,
norm_type=self.norm,
skip=False,
attn_precision=attn_precision,
dtype=dtype,
device=device,
operations=operations,
)
for _ in range(19)
]
)
# Input zero linear for the first block
self.before_proj = operations.Linear(self.hidden_size, self.hidden_size, dtype=dtype, device=device)
# Output zero linear for the every block
self.after_proj_list = nn.ModuleList(
[
operations.Linear(
self.hidden_size, self.hidden_size, dtype=dtype, device=device
)
for _ in range(len(self.blocks))
]
)
def forward(
self,
x,
hint,
timesteps,
context,#encoder_hidden_states=None,
text_embedding_mask=None,
encoder_hidden_states_t5=None,
text_embedding_mask_t5=None,
image_meta_size=None,
style=None,
return_dict=False,
**kwarg,
):
"""
Forward pass of the encoder.
Parameters
----------
x: torch.Tensor
(B, D, H, W)
t: torch.Tensor
(B)
encoder_hidden_states: torch.Tensor
CLIP text embedding, (B, L_clip, D)
text_embedding_mask: torch.Tensor
CLIP text embedding mask, (B, L_clip)
encoder_hidden_states_t5: torch.Tensor
T5 text embedding, (B, L_t5, D)
text_embedding_mask_t5: torch.Tensor
T5 text embedding mask, (B, L_t5)
image_meta_size: torch.Tensor
(B, 6)
style: torch.Tensor
(B)
cos_cis_img: torch.Tensor
sin_cis_img: torch.Tensor
return_dict: bool
Whether to return a dictionary.
"""
condition = hint
if condition.shape[0] == 1:
condition = torch.repeat_interleave(condition, x.shape[0], dim=0)
text_states = context # 2,77,1024
text_states_t5 = encoder_hidden_states_t5 # 2,256,2048
text_states_mask = text_embedding_mask.bool() # 2,77
text_states_t5_mask = text_embedding_mask_t5.bool() # 2,256
b_t5, l_t5, c_t5 = text_states_t5.shape
text_states_t5 = self.mlp_t5(text_states_t5.view(-1, c_t5)).view(b_t5, l_t5, -1)
padding = comfy.ops.cast_to_input(self.text_embedding_padding, text_states)
text_states[:, -self.text_len :] = torch.where(
text_states_mask[:, -self.text_len :].unsqueeze(2),
text_states[:, -self.text_len :],
padding[: self.text_len],
)
text_states_t5[:, -self.text_len_t5 :] = torch.where(
text_states_t5_mask[:, -self.text_len_t5 :].unsqueeze(2),
text_states_t5[:, -self.text_len_t5 :],
padding[self.text_len :],
)
text_states = torch.cat([text_states, text_states_t5], dim=1) # 2,2051024
# _, _, oh, ow = x.shape
# th, tw = oh // self.patch_size, ow // self.patch_size
# Get image RoPE embedding according to `reso`lution.
freqs_cis_img = calc_rope(
x, self.patch_size, self.hidden_size // self.num_heads
) # (cos_cis_img, sin_cis_img)
# ========================= Build time and image embedding =========================
t = self.t_embedder(timesteps, dtype=self.dtype)
x = self.x_embedder(x)
# ========================= Concatenate all extra vectors =========================
# Build text tokens with pooling
extra_vec = self.pooler(encoder_hidden_states_t5)
# Build image meta size tokens if applicable
# if image_meta_size is not None:
# image_meta_size = timestep_embedding(image_meta_size.view(-1), 256) # [B * 6, 256]
# if image_meta_size.dtype != self.dtype:
# image_meta_size = image_meta_size.half()
# image_meta_size = image_meta_size.view(-1, 6 * 256)
# extra_vec = torch.cat([extra_vec, image_meta_size], dim=1) # [B, D + 6 * 256]
# Build style tokens
if style is not None:
style_embedding = self.style_embedder(style)
extra_vec = torch.cat([extra_vec, style_embedding], dim=1)
# Concatenate all extra vectors
c = t + self.extra_embedder(extra_vec) # [B, D]
# ========================= Deal with Condition =========================
condition = self.x_embedder(condition)
# ========================= Forward pass through HunYuanDiT blocks =========================
controls = []
x = x + self.before_proj(condition) # add condition
for layer, block in enumerate(self.blocks):
x = block(x, c, text_states, freqs_cis_img)
controls.append(self.after_proj_list[layer](x)) # zero linear for output
return {"output": controls}

View File

@@ -21,6 +21,7 @@ def calc_rope(x, patch_size, head_size):
sub_args = [start, stop, (th, tw)]
# head_size = HUNYUAN_DIT_CONFIG['DiT-g/2']['hidden_size'] // HUNYUAN_DIT_CONFIG['DiT-g/2']['num_heads']
rope = get_2d_rotary_pos_embed(head_size, *sub_args)
rope = (rope[0].to(x), rope[1].to(x))
return rope
@@ -91,6 +92,8 @@ class HunYuanDiTBlock(nn.Module):
# Long Skip Connection
if self.skip_linear is not None:
cat = torch.cat([x, skip], dim=-1)
if cat.dtype != x.dtype:
cat = cat.to(x.dtype)
cat = self.skip_norm(cat)
x = self.skip_linear(cat)
@@ -362,6 +365,8 @@ class HunYuanDiT(nn.Module):
c = t + self.extra_embedder(extra_vec) # [B, D]
controls = None
if control:
controls = control.get("output", None)
# ========================= Forward pass through HunYuanDiT blocks =========================
skips = []
for layer, block in enumerate(self.blocks):

View File

@@ -1,3 +1,21 @@
"""
This file is part of ComfyUI.
Copyright (C) 2024 Comfy
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
import comfy.utils
import logging
@@ -218,11 +236,17 @@ def model_lora_keys_clip(model, key_map={}):
lora_key = "lora_prior_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #cascade lora: TODO put lora key prefix in the model config
key_map[lora_key] = k
for k in sdk: #OneTrainer SD3 lora
if k.startswith("t5xxl.transformer.") and k.endswith(".weight"):
l_key = k[len("t5xxl.transformer."):-len(".weight")]
lora_key = "lora_te3_{}".format(l_key.replace(".", "_"))
key_map[lora_key] = k
for k in sdk:
if k.endswith(".weight"):
if k.startswith("t5xxl.transformer."):#OneTrainer SD3 lora
l_key = k[len("t5xxl.transformer."):-len(".weight")]
lora_key = "lora_te3_{}".format(l_key.replace(".", "_"))
key_map[lora_key] = k
elif k.startswith("hydit_clip.transformer.bert."): #HunyuanDiT Lora
l_key = k[len("hydit_clip.transformer.bert."):-len(".weight")]
lora_key = "lora_te1_{}".format(l_key.replace(".", "_"))
key_map[lora_key] = k
k = "clip_g.transformer.text_projection.weight"
if k in sdk:
@@ -245,6 +269,7 @@ def model_lora_keys_unet(model, key_map={}):
key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_")
key_map["lora_unet_{}".format(key_lora)] = k
key_map["lora_prior_unet_{}".format(key_lora)] = k #cascade lora: TODO put lora key prefix in the model config
key_map["{}".format(k[:-len(".weight")])] = k #generic lora format without any weird key names
diffusers_keys = comfy.utils.unet_to_diffusers(model.model_config.unet_config)
for k in diffusers_keys:

View File

@@ -137,8 +137,8 @@ def detect_unet_config(state_dict, key_prefix):
dit_config["hidden_size"] = 3072
dit_config["mlp_ratio"] = 4.0
dit_config["num_heads"] = 24
dit_config["depth"] = 19
dit_config["depth_single_blocks"] = 38
dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.')
dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.')
dit_config["axes_dim"] = [16, 56, 56]
dit_config["theta"] = 10000
dit_config["qkv_bias"] = True
@@ -495,7 +495,12 @@ def model_config_from_diffusers_unet(state_dict):
def convert_diffusers_mmdit(state_dict, output_prefix=""):
out_sd = {}
if 'transformer_blocks.0.attn.add_q_proj.weight' in state_dict: #SD3
if 'transformer_blocks.0.attn.norm_added_k.weight' in state_dict: #Flux
depth = count_blocks(state_dict, 'transformer_blocks.{}.')
depth_single_blocks = count_blocks(state_dict, 'single_transformer_blocks.{}.')
hidden_size = state_dict["x_embedder.bias"].shape[0]
sd_map = comfy.utils.flux_to_diffusers({"depth": depth, "depth_single_blocks": depth_single_blocks, "hidden_size": hidden_size}, output_prefix=output_prefix)
elif 'transformer_blocks.0.attn.add_q_proj.weight' in state_dict: #SD3
num_blocks = count_blocks(state_dict, 'transformer_blocks.{}.')
depth = state_dict["pos_embed.proj.weight"].shape[0] // 64
sd_map = comfy.utils.mmdit_to_diffusers({"depth": depth, "num_blocks": num_blocks}, output_prefix=output_prefix)
@@ -521,7 +526,12 @@ def convert_diffusers_mmdit(state_dict, output_prefix=""):
old_weight = out_sd.get(t[0], None)
if old_weight is None:
old_weight = torch.empty_like(weight)
old_weight = old_weight.repeat([3] + [1] * (len(old_weight.shape) - 1))
if old_weight.shape[offset[0]] < offset[1] + offset[2]:
exp = list(weight.shape)
exp[offset[0]] = offset[1] + offset[2]
new = torch.empty(exp, device=weight.device, dtype=weight.dtype)
new[:old_weight.shape[0]] = old_weight
old_weight = new
w = old_weight.narrow(offset[0], offset[1], offset[2])
else:

View File

@@ -1,3 +1,21 @@
"""
This file is part of ComfyUI.
Copyright (C) 2024 Comfy
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
import psutil
import logging
from enum import Enum
@@ -273,9 +291,12 @@ class LoadedModel:
def model_memory(self):
return self.model.model_size()
def model_offloaded_memory(self):
return self.model.model_size() - self.model.loaded_size()
def model_memory_required(self, device):
if device == self.model.current_loaded_device():
return 0
return self.model_offloaded_memory()
else:
return self.model_memory()
@@ -287,15 +308,21 @@ class LoadedModel:
load_weights = not self.weights_loaded
try:
if lowvram_model_memory > 0 and load_weights:
self.real_model = self.model.patch_model_lowvram(device_to=patch_model_to, lowvram_model_memory=lowvram_model_memory, force_patch_weights=force_patch_weights)
else:
self.real_model = self.model.patch_model(device_to=patch_model_to, patch_weights=load_weights)
except Exception as e:
self.model.unpatch_model(self.model.offload_device)
self.model_unload()
raise e
if self.model.loaded_size() > 0:
use_more_vram = lowvram_model_memory
if use_more_vram == 0:
use_more_vram = 1e32
self.model_use_more_vram(use_more_vram)
else:
try:
if lowvram_model_memory > 0 and load_weights:
self.real_model = self.model.patch_model_lowvram(device_to=patch_model_to, lowvram_model_memory=lowvram_model_memory, force_patch_weights=force_patch_weights)
else:
self.real_model = self.model.patch_model(device_to=patch_model_to, patch_weights=load_weights)
except Exception as e:
self.model.unpatch_model(self.model.offload_device)
self.model_unload()
raise e
if is_intel_xpu() and not args.disable_ipex_optimize:
self.real_model = ipex.optimize(self.real_model.eval(), graph_mode=True, concat_linear=True)
@@ -304,19 +331,41 @@ class LoadedModel:
return self.real_model
def should_reload_model(self, force_patch_weights=False):
if force_patch_weights and self.model.lowvram_patch_counter > 0:
if force_patch_weights and self.model.lowvram_patch_counter() > 0:
return True
return False
def model_unload(self, unpatch_weights=True):
def model_unload(self, memory_to_free=None, unpatch_weights=True):
if memory_to_free is not None:
if memory_to_free < self.model.loaded_size():
self.model.partially_unload(self.model.offload_device, memory_to_free)
return False
self.model.unpatch_model(self.model.offload_device, unpatch_weights=unpatch_weights)
self.model.model_patches_to(self.model.offload_device)
self.weights_loaded = self.weights_loaded and not unpatch_weights
self.real_model = None
return True
def model_use_more_vram(self, extra_memory):
return self.model.partially_load(self.device, extra_memory)
def __eq__(self, other):
return self.model is other.model
def use_more_memory(extra_memory, loaded_models, device):
for m in loaded_models:
if m.device == device:
extra_memory -= m.model_use_more_vram(extra_memory)
if extra_memory <= 0:
break
def offloaded_memory(loaded_models, device):
offloaded_mem = 0
for m in loaded_models:
if m.device == device:
offloaded_mem += m.model_offloaded_memory()
return offloaded_mem
def minimum_inference_memory():
return (1024 * 1024 * 1024) * 1.2
@@ -363,11 +412,15 @@ def free_memory(memory_required, device, keep_loaded=[]):
for x in sorted(can_unload):
i = x[-1]
memory_to_free = None
if not DISABLE_SMART_MEMORY:
if get_free_memory(device) > memory_required:
free_mem = get_free_memory(device)
if free_mem > memory_required:
break
current_loaded_models[i].model_unload()
unloaded_model.append(i)
memory_to_free = memory_required - free_mem
logging.debug(f"Unloading {current_loaded_models[i].model.model.__class__.__name__}")
if current_loaded_models[i].model_unload(memory_to_free):
unloaded_model.append(i)
for i in sorted(unloaded_model, reverse=True):
unloaded_models.append(current_loaded_models.pop(i))
@@ -385,11 +438,11 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu
global vram_state
inference_memory = minimum_inference_memory()
extra_mem = max(inference_memory, memory_required)
extra_mem = max(inference_memory, memory_required) + 100 * 1024 * 1024
if minimum_memory_required is None:
minimum_memory_required = extra_mem
else:
minimum_memory_required = max(inference_memory, minimum_memory_required)
minimum_memory_required = max(inference_memory, minimum_memory_required) + 100 * 1024 * 1024
models = set(models)
@@ -422,12 +475,14 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu
devs = set(map(lambda a: a.device, models_already_loaded))
for d in devs:
if d != torch.device("cpu"):
free_memory(extra_mem, d, models_already_loaded)
free_memory(extra_mem + offloaded_memory(models_already_loaded, d), d, models_already_loaded)
free_mem = get_free_memory(d)
if free_mem < minimum_memory_required:
logging.info("Unloading models for lowram load.") #TODO: partial model unloading when this case happens, also handle the opposite case where models can be unlowvramed.
models_to_load = free_memory(minimum_memory_required, d)
logging.info("{} models unloaded.".format(len(models_to_load)))
else:
use_more_memory(free_mem - minimum_memory_required, models_already_loaded, d)
if len(models_to_load) == 0:
return
@@ -435,18 +490,21 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu
total_memory_required = {}
for loaded_model in models_to_load:
if unload_model_clones(loaded_model.model, unload_weights_only=True, force_unload=False) == True:#unload clones where the weights are different
total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
unload_model_clones(loaded_model.model, unload_weights_only=True, force_unload=False) #unload clones where the weights are different
total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
for device in total_memory_required:
if device != torch.device("cpu"):
free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded)
for loaded_model in models_already_loaded:
total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
for loaded_model in models_to_load:
weights_unloaded = unload_model_clones(loaded_model.model, unload_weights_only=False, force_unload=False) #unload the rest of the clones where the weights can stay loaded
if weights_unloaded is not None:
loaded_model.weights_loaded = not weights_unloaded
for device in total_memory_required:
if device != torch.device("cpu"):
free_memory(total_memory_required[device] * 1.1 + extra_mem, device, models_already_loaded)
for loaded_model in models_to_load:
model = loaded_model.model
torch_dev = model.load_device
@@ -467,6 +525,14 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu
cur_loaded_model = loaded_model.model_load(lowvram_model_memory, force_patch_weights=force_patch_weights)
current_loaded_models.insert(0, loaded_model)
devs = set(map(lambda a: a.device, models_already_loaded))
for d in devs:
if d != torch.device("cpu"):
free_mem = get_free_memory(d)
if free_mem > minimum_memory_required:
use_more_memory(free_mem - minimum_memory_required, models_already_loaded, d)
return
@@ -562,12 +628,22 @@ def unet_dtype(device=None, model_params=0, supported_dtypes=[torch.float16, tor
if model_params * 2 > free_model_memory:
return fp8_dtype
if should_use_fp16(device=device, model_params=model_params, manual_cast=True):
if torch.float16 in supported_dtypes:
return torch.float16
if should_use_bf16(device, model_params=model_params, manual_cast=True):
if torch.bfloat16 in supported_dtypes:
return torch.bfloat16
for dt in supported_dtypes:
if dt == torch.float16 and should_use_fp16(device=device, model_params=model_params):
if torch.float16 in supported_dtypes:
return torch.float16
if dt == torch.bfloat16 and should_use_bf16(device, model_params=model_params):
if torch.bfloat16 in supported_dtypes:
return torch.bfloat16
for dt in supported_dtypes:
if dt == torch.float16 and should_use_fp16(device=device, model_params=model_params, manual_cast=True):
if torch.float16 in supported_dtypes:
return torch.float16
if dt == torch.bfloat16 and should_use_bf16(device, model_params=model_params, manual_cast=True):
if torch.bfloat16 in supported_dtypes:
return torch.bfloat16
return torch.float32
# None means no manual cast
@@ -583,13 +659,13 @@ def unet_manual_cast(weight_dtype, inference_device, supported_dtypes=[torch.flo
if bf16_supported and weight_dtype == torch.bfloat16:
return None
if fp16_supported and torch.float16 in supported_dtypes:
return torch.float16
for dt in supported_dtypes:
if dt == torch.float16 and fp16_supported:
return torch.float16
if dt == torch.bfloat16 and bf16_supported:
return torch.bfloat16
elif bf16_supported and torch.bfloat16 in supported_dtypes:
return torch.bfloat16
else:
return torch.float32
return torch.float32
def text_encoder_offload_device():
if args.gpu_only:

View File

@@ -1,8 +1,27 @@
"""
This file is part of ComfyUI.
Copyright (C) 2024 Comfy
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
import torch
import copy
import inspect
import logging
import uuid
import collections
import comfy.utils
import comfy.model_management
@@ -63,12 +82,27 @@ def set_model_options_pre_cfg_function(model_options, pre_cfg_function, disable_
model_options["disable_cfg1_optimization"] = True
return model_options
def wipe_lowvram_weight(m):
if hasattr(m, "prev_comfy_cast_weights"):
m.comfy_cast_weights = m.prev_comfy_cast_weights
del m.prev_comfy_cast_weights
m.weight_function = None
m.bias_function = None
class LowVramPatch:
def __init__(self, key, model_patcher):
self.key = key
self.model_patcher = model_patcher
def __call__(self, weight):
return self.model_patcher.calculate_weight(self.model_patcher.patches[self.key], weight, self.key)
class ModelPatcher:
def __init__(self, model, load_device, offload_device, size=0, weight_inplace_update=False):
self.size = size
self.model = model
if not hasattr(self.model, 'device'):
logging.info("Model doesn't have a device attribute.")
logging.debug("Model doesn't have a device attribute.")
self.model.device = offload_device
elif self.model.device is None:
self.model.device = offload_device
@@ -82,16 +116,29 @@ class ModelPatcher:
self.load_device = load_device
self.offload_device = offload_device
self.weight_inplace_update = weight_inplace_update
self.model_lowvram = False
self.lowvram_patch_counter = 0
self.patches_uuid = uuid.uuid4()
if not hasattr(self.model, 'model_loaded_weight_memory'):
self.model.model_loaded_weight_memory = 0
if not hasattr(self.model, 'lowvram_patch_counter'):
self.model.lowvram_patch_counter = 0
if not hasattr(self.model, 'model_lowvram'):
self.model.model_lowvram = False
def model_size(self):
if self.size > 0:
return self.size
self.size = comfy.model_management.module_size(self.model)
return self.size
def loaded_size(self):
return self.model.model_loaded_weight_memory
def lowvram_patch_counter(self):
return self.model.lowvram_patch_counter
def clone(self):
n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size, weight_inplace_update=self.weight_inplace_update)
n.patches = {}
@@ -265,16 +312,16 @@ class ModelPatcher:
sd.pop(k)
return sd
def patch_weight_to_device(self, key, device_to=None):
def patch_weight_to_device(self, key, device_to=None, inplace_update=False):
if key not in self.patches:
return
weight = comfy.utils.get_attr(self.model, key)
inplace_update = self.weight_inplace_update
inplace_update = self.weight_inplace_update or inplace_update
if key not in self.backup:
self.backup[key] = weight.to(device=self.offload_device, copy=inplace_update)
self.backup[key] = collections.namedtuple('Dimension', ['weight', 'inplace_update'])(weight.to(device=self.offload_device, copy=inplace_update), inplace_update)
if device_to is not None:
temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True)
@@ -304,28 +351,23 @@ class ModelPatcher:
if device_to is not None:
self.model.to(device_to)
self.model.device = device_to
self.model.model_loaded_weight_memory = self.model_size()
return self.model
def patch_model_lowvram(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False):
self.patch_model(device_to, patch_weights=False)
logging.info("loading in lowvram mode {}".format(lowvram_model_memory/(1024 * 1024)))
class LowVramPatch:
def __init__(self, key, model_patcher):
self.key = key
self.model_patcher = model_patcher
def __call__(self, weight):
return self.model_patcher.calculate_weight(self.model_patcher.patches[self.key], weight, self.key)
def lowvram_load(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False):
mem_counter = 0
patch_counter = 0
lowvram_counter = 0
for n, m in self.model.named_modules():
lowvram_weight = False
if hasattr(m, "comfy_cast_weights"):
module_mem = comfy.model_management.module_size(m)
if mem_counter + module_mem >= lowvram_model_memory:
lowvram_weight = True
lowvram_counter += 1
if m.comfy_cast_weights:
continue
weight_key = "{}.weight".format(n)
bias_key = "{}.bias".format(n)
@@ -347,16 +389,37 @@ class ModelPatcher:
m.prev_comfy_cast_weights = m.comfy_cast_weights
m.comfy_cast_weights = True
else:
if hasattr(m, "comfy_cast_weights"):
if m.comfy_cast_weights:
wipe_lowvram_weight(m)
if hasattr(m, "weight"):
self.patch_weight_to_device(weight_key, device_to)
self.patch_weight_to_device(bias_key, device_to)
m.to(device_to)
mem_counter += comfy.model_management.module_size(m)
param = list(m.parameters())
if len(param) > 0:
weight = param[0]
if weight.device == device_to:
continue
self.patch_weight_to_device(weight_key) #TODO: speed this up without OOM
self.patch_weight_to_device(bias_key)
m.to(device_to)
logging.debug("lowvram: loaded module regularly {} {}".format(n, m))
self.model_lowvram = True
self.lowvram_patch_counter = patch_counter
if lowvram_counter > 0:
logging.info("loaded in lowvram mode {}".format(lowvram_model_memory / (1024 * 1024)))
self.model.model_lowvram = True
else:
logging.info("loaded completely {} {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024)))
self.model.model_lowvram = False
self.model.lowvram_patch_counter += patch_counter
self.model.device = device_to
self.model.model_loaded_weight_memory = mem_counter
def patch_model_lowvram(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False):
self.patch_model(device_to, patch_weights=False)
self.lowvram_load(device_to, lowvram_model_memory=lowvram_model_memory, force_patch_weights=force_patch_weights)
return self.model
def calculate_weight(self, patches, weight, key):
@@ -529,31 +592,28 @@ class ModelPatcher:
def unpatch_model(self, device_to=None, unpatch_weights=True):
if unpatch_weights:
if self.model_lowvram:
if self.model.model_lowvram:
for m in self.model.modules():
if hasattr(m, "prev_comfy_cast_weights"):
m.comfy_cast_weights = m.prev_comfy_cast_weights
del m.prev_comfy_cast_weights
m.weight_function = None
m.bias_function = None
wipe_lowvram_weight(m)
self.model_lowvram = False
self.lowvram_patch_counter = 0
self.model.model_lowvram = False
self.model.lowvram_patch_counter = 0
keys = list(self.backup.keys())
if self.weight_inplace_update:
for k in keys:
comfy.utils.copy_to_param(self.model, k, self.backup[k])
else:
for k in keys:
comfy.utils.set_attr_param(self.model, k, self.backup[k])
for k in keys:
bk = self.backup[k]
if bk.inplace_update:
comfy.utils.copy_to_param(self.model, k, bk.weight)
else:
comfy.utils.set_attr_param(self.model, k, bk.weight)
self.backup.clear()
if device_to is not None:
self.model.to(device_to)
self.model.device = device_to
self.model.model_loaded_weight_memory = 0
keys = list(self.object_patches_backup.keys())
for k in keys:
@@ -561,5 +621,57 @@ class ModelPatcher:
self.object_patches_backup.clear()
def partially_unload(self, device_to, memory_to_free=0):
memory_freed = 0
patch_counter = 0
for n, m in list(self.model.named_modules())[::-1]:
if memory_to_free < memory_freed:
break
shift_lowvram = False
if hasattr(m, "comfy_cast_weights"):
module_mem = comfy.model_management.module_size(m)
weight_key = "{}.weight".format(n)
bias_key = "{}.bias".format(n)
if m.weight is not None and m.weight.device != device_to:
for key in [weight_key, bias_key]:
bk = self.backup.get(key, None)
if bk is not None:
if bk.inplace_update:
comfy.utils.copy_to_param(self.model, key, bk.weight)
else:
comfy.utils.set_attr_param(self.model, key, bk.weight)
self.backup.pop(key)
m.to(device_to)
if weight_key in self.patches:
m.weight_function = LowVramPatch(weight_key, self)
patch_counter += 1
if bias_key in self.patches:
m.bias_function = LowVramPatch(bias_key, self)
patch_counter += 1
m.prev_comfy_cast_weights = m.comfy_cast_weights
m.comfy_cast_weights = True
memory_freed += module_mem
logging.debug("freed {}".format(n))
self.model.model_lowvram = True
self.model.lowvram_patch_counter += patch_counter
self.model.model_loaded_weight_memory -= memory_freed
return memory_freed
def partially_load(self, device_to, extra_memory=0):
if self.model.model_lowvram == False:
return 0
if self.model.model_loaded_weight_memory + extra_memory > self.model_size():
pass #TODO: Full load
current_used = self.model.model_loaded_weight_memory
self.lowvram_load(device_to, lowvram_model_memory=current_used + extra_memory)
return self.model.model_loaded_weight_memory - current_used
def current_loaded_device(self):
return self.model.device

View File

@@ -313,6 +313,17 @@ def expand_directory_list(directories):
dirs.add(root)
return list(dirs)
def bundled_embed(embed, prefix, suffix): #bundled embedding in lora format
i = 0
out_list = []
for k in embed:
if k.startswith(prefix) and k.endswith(suffix):
out_list.append(embed[k])
if len(out_list) == 0:
return None
return torch.cat(out_list, dim=0)
def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=None):
if isinstance(embedding_directory, str):
embedding_directory = [embedding_directory]
@@ -379,8 +390,12 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No
elif embed_key is not None and embed_key in embed:
embed_out = embed[embed_key]
else:
values = embed.values()
embed_out = next(iter(values))
embed_out = bundled_embed(embed, 'bundle_emb.', '.string_to_param.*')
if embed_out is None:
embed_out = bundled_embed(embed, 'bundle_emb.', '.{}'.format(embed_key))
if embed_out is None:
values = embed.values()
embed_out = next(iter(values))
return embed_out
class SDTokenizer:

View File

@@ -642,7 +642,7 @@ class Flux(supported_models_base.BASE):
memory_usage_factor = 2.8
supported_inference_dtypes = [torch.bfloat16, torch.float32]
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]

View File

@@ -1,3 +1,22 @@
"""
This file is part of ComfyUI.
Copyright (C) 2024 Comfy
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
import torch
import math
import struct
@@ -432,8 +451,33 @@ def flux_to_diffusers(mmdit_config, output_prefix=""):
key_map["{}to_k.{}".format(k, end)] = (qkv, (0, hidden_size, hidden_size))
key_map["{}to_v.{}".format(k, end)] = (qkv, (0, hidden_size * 2, hidden_size))
block_map = {"attn.to_out.0.weight": "img_attn.proj.weight",
"attn.to_out.0.bias": "img_attn.proj.bias",
k = "{}.attn.".format(prefix_from)
qkv = "{}.txt_attn.qkv.{}".format(prefix_to, end)
key_map["{}add_q_proj.{}".format(k, end)] = (qkv, (0, 0, hidden_size))
key_map["{}add_k_proj.{}".format(k, end)] = (qkv, (0, hidden_size, hidden_size))
key_map["{}add_v_proj.{}".format(k, end)] = (qkv, (0, hidden_size * 2, hidden_size))
block_map = {
"attn.to_out.0.weight": "img_attn.proj.weight",
"attn.to_out.0.bias": "img_attn.proj.bias",
"norm1.linear.weight": "img_mod.lin.weight",
"norm1.linear.bias": "img_mod.lin.bias",
"norm1_context.linear.weight": "txt_mod.lin.weight",
"norm1_context.linear.bias": "txt_mod.lin.bias",
"attn.to_add_out.weight": "txt_attn.proj.weight",
"attn.to_add_out.bias": "txt_attn.proj.bias",
"ff.net.0.proj.weight": "img_mlp.0.weight",
"ff.net.0.proj.bias": "img_mlp.0.bias",
"ff.net.2.weight": "img_mlp.2.weight",
"ff.net.2.bias": "img_mlp.2.bias",
"ff_context.net.0.proj.weight": "txt_mlp.0.weight",
"ff_context.net.0.proj.bias": "txt_mlp.0.bias",
"ff_context.net.2.weight": "txt_mlp.2.weight",
"ff_context.net.2.bias": "txt_mlp.2.bias",
"attn.norm_q.weight": "img_attn.norm.query_norm.scale",
"attn.norm_k.weight": "img_attn.norm.key_norm.scale",
"attn.norm_added_q.weight": "txt_attn.norm.query_norm.scale",
"attn.norm_added_k.weight": "txt_attn.norm.key_norm.scale",
}
for k in block_map:
@@ -449,15 +493,41 @@ def flux_to_diffusers(mmdit_config, output_prefix=""):
key_map["{}to_q.{}".format(k, end)] = (qkv, (0, 0, hidden_size))
key_map["{}to_k.{}".format(k, end)] = (qkv, (0, hidden_size, hidden_size))
key_map["{}to_v.{}".format(k, end)] = (qkv, (0, hidden_size * 2, hidden_size))
key_map["{}proj_mlp.{}".format(k, end)] = (qkv, (0, hidden_size * 3, hidden_size))
key_map["{}.proj_mlp.{}".format(prefix_from, end)] = (qkv, (0, hidden_size * 3, hidden_size * 4))
block_map = {#TODO
block_map = {
"norm.linear.weight": "modulation.lin.weight",
"norm.linear.bias": "modulation.lin.bias",
"proj_out.weight": "linear2.weight",
"proj_out.bias": "linear2.bias",
"attn.norm_q.weight": "norm.query_norm.scale",
"attn.norm_k.weight": "norm.key_norm.scale",
}
for k in block_map:
key_map["{}.{}".format(prefix_from, k)] = "{}.{}".format(prefix_to, block_map[k])
MAP_BASIC = { #TODO
MAP_BASIC = {
("final_layer.linear.bias", "proj_out.bias"),
("final_layer.linear.weight", "proj_out.weight"),
("img_in.bias", "x_embedder.bias"),
("img_in.weight", "x_embedder.weight"),
("time_in.in_layer.bias", "time_text_embed.timestep_embedder.linear_1.bias"),
("time_in.in_layer.weight", "time_text_embed.timestep_embedder.linear_1.weight"),
("time_in.out_layer.bias", "time_text_embed.timestep_embedder.linear_2.bias"),
("time_in.out_layer.weight", "time_text_embed.timestep_embedder.linear_2.weight"),
("txt_in.bias", "context_embedder.bias"),
("txt_in.weight", "context_embedder.weight"),
("vector_in.in_layer.bias", "time_text_embed.text_embedder.linear_1.bias"),
("vector_in.in_layer.weight", "time_text_embed.text_embedder.linear_1.weight"),
("vector_in.out_layer.bias", "time_text_embed.text_embedder.linear_2.bias"),
("vector_in.out_layer.weight", "time_text_embed.text_embedder.linear_2.weight"),
("guidance_in.in_layer.bias", "time_text_embed.guidance_embedder.linear_1.bias"),
("guidance_in.in_layer.weight", "time_text_embed.guidance_embedder.linear_1.weight"),
("guidance_in.out_layer.bias", "time_text_embed.guidance_embedder.linear_2.bias"),
("guidance_in.out_layer.weight", "time_text_embed.guidance_embedder.linear_2.weight"),
("final_layer.adaLN_modulation.1.bias", "norm_out.linear.bias", swap_scale_shift),
("final_layer.adaLN_modulation.1.weight", "norm_out.linear.weight", swap_scale_shift),
}
for k in MAP_BASIC:

View File

@@ -19,6 +19,7 @@ class CLIPTextEncodeHunyuanDiT:
cond = output.pop("cond")
return ([[cond, output]], )
NODE_CLASS_MAPPINGS = {
"CLIPTextEncodeHunyuanDiT": CLIPTextEncodeHunyuanDiT,
}

View File

@@ -100,3 +100,8 @@ NODE_CLASS_MAPPINGS = {
"CLIPTextEncodeSD3": CLIPTextEncodeSD3,
"ControlNetApplySD3": ControlNetApplySD3,
}
NODE_DISPLAY_NAME_MAPPINGS = {
# Sampling
"ControlNetApplySD3": "ControlNetApply SD3 and HunyuanDiT",
}

View File

@@ -1,13 +1,13 @@
from __future__ import annotations
import os
import time
import logging
from typing import Set, List, Dict, Tuple
from collections.abc import Collection
supported_pt_extensions: Set[str] = set(['.ckpt', '.pt', '.bin', '.pth', '.safetensors', '.pkl', '.sft'])
supported_pt_extensions: set[str] = {'.ckpt', '.pt', '.bin', '.pth', '.safetensors', '.pkl', '.sft'}
SupportedFileExtensionsType = Set[str]
ScanPathType = List[str]
folder_names_and_paths: Dict[str, Tuple[ScanPathType, SupportedFileExtensionsType]] = {}
folder_names_and_paths: dict[str, tuple[list[str], set[str]]] = {}
base_path = os.path.dirname(os.path.realpath(__file__))
models_dir = os.path.join(base_path, "models")
@@ -42,7 +42,7 @@ temp_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "temp
input_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input")
user_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "user")
filename_list_cache = {}
filename_list_cache: dict[str, tuple[list[str], dict[str, float], float]] = {}
if not os.path.exists(input_directory):
try:
@@ -50,33 +50,33 @@ if not os.path.exists(input_directory):
except:
logging.error("Failed to create input directory")
def set_output_directory(output_dir):
def set_output_directory(output_dir: str) -> None:
global output_directory
output_directory = output_dir
def set_temp_directory(temp_dir):
def set_temp_directory(temp_dir: str) -> None:
global temp_directory
temp_directory = temp_dir
def set_input_directory(input_dir):
def set_input_directory(input_dir: str) -> None:
global input_directory
input_directory = input_dir
def get_output_directory():
def get_output_directory() -> str:
global output_directory
return output_directory
def get_temp_directory():
def get_temp_directory() -> str:
global temp_directory
return temp_directory
def get_input_directory():
def get_input_directory() -> str:
global input_directory
return input_directory
#NOTE: used in http server so don't put folders that should not be accessed remotely
def get_directory_by_type(type_name):
def get_directory_by_type(type_name: str) -> str | None:
if type_name == "output":
return get_output_directory()
if type_name == "temp":
@@ -88,7 +88,7 @@ def get_directory_by_type(type_name):
# determine base_dir rely on annotation if name is 'filename.ext [annotation]' format
# otherwise use default_path as base_dir
def annotated_filepath(name):
def annotated_filepath(name: str) -> tuple[str, str | None]:
if name.endswith("[output]"):
base_dir = get_output_directory()
name = name[:-9]
@@ -104,7 +104,7 @@ def annotated_filepath(name):
return name, base_dir
def get_annotated_filepath(name, default_dir=None):
def get_annotated_filepath(name: str, default_dir: str | None=None) -> str:
name, base_dir = annotated_filepath(name)
if base_dir is None:
@@ -116,7 +116,7 @@ def get_annotated_filepath(name, default_dir=None):
return os.path.join(base_dir, name)
def exists_annotated_filepath(name):
def exists_annotated_filepath(name) -> bool:
name, base_dir = annotated_filepath(name)
if base_dir is None:
@@ -126,17 +126,17 @@ def exists_annotated_filepath(name):
return os.path.exists(filepath)
def add_model_folder_path(folder_name, full_folder_path):
def add_model_folder_path(folder_name: str, full_folder_path: str) -> None:
global folder_names_and_paths
if folder_name in folder_names_and_paths:
folder_names_and_paths[folder_name][0].append(full_folder_path)
else:
folder_names_and_paths[folder_name] = ([full_folder_path], set())
def get_folder_paths(folder_name):
def get_folder_paths(folder_name: str) -> list[str]:
return folder_names_and_paths[folder_name][0][:]
def recursive_search(directory, excluded_dir_names=None):
def recursive_search(directory: str, excluded_dir_names: list[str] | None=None) -> tuple[list[str], dict[str, float]]:
if not os.path.isdir(directory):
return [], {}
@@ -153,6 +153,10 @@ def recursive_search(directory, excluded_dir_names=None):
logging.warning(f"Warning: Unable to access {directory}. Skipping this path.")
logging.debug("recursive file list on directory {}".format(directory))
dirpath: str
subdirs: list[str]
filenames: list[str]
for dirpath, subdirs, filenames in os.walk(directory, followlinks=True, topdown=True):
subdirs[:] = [d for d in subdirs if d not in excluded_dir_names]
for file_name in filenames:
@@ -160,7 +164,7 @@ def recursive_search(directory, excluded_dir_names=None):
result.append(relative_path)
for d in subdirs:
path = os.path.join(dirpath, d)
path: str = os.path.join(dirpath, d)
try:
dirs[path] = os.path.getmtime(path)
except FileNotFoundError:
@@ -169,12 +173,12 @@ def recursive_search(directory, excluded_dir_names=None):
logging.debug("found {} files".format(len(result)))
return result, dirs
def filter_files_extensions(files, extensions):
def filter_files_extensions(files: Collection[str], extensions: Collection[str]) -> list[str]:
return sorted(list(filter(lambda a: os.path.splitext(a)[-1].lower() in extensions or len(extensions) == 0, files)))
def get_full_path(folder_name, filename):
def get_full_path(folder_name: str, filename: str) -> str | None:
global folder_names_and_paths
if folder_name not in folder_names_and_paths:
return None
@@ -189,7 +193,7 @@ def get_full_path(folder_name, filename):
return None
def get_filename_list_(folder_name):
def get_filename_list_(folder_name: str) -> tuple[list[str], dict[str, float], float]:
global folder_names_and_paths
output_list = set()
folders = folder_names_and_paths[folder_name]
@@ -199,9 +203,9 @@ def get_filename_list_(folder_name):
output_list.update(filter_files_extensions(files, folders[1]))
output_folders = {**output_folders, **folders_all}
return (sorted(list(output_list)), output_folders, time.perf_counter())
return sorted(list(output_list)), output_folders, time.perf_counter()
def cached_filename_list_(folder_name):
def cached_filename_list_(folder_name: str) -> tuple[list[str], dict[str, float], float] | None:
global filename_list_cache
global folder_names_and_paths
if folder_name not in filename_list_cache:
@@ -222,7 +226,7 @@ def cached_filename_list_(folder_name):
return out
def get_filename_list(folder_name):
def get_filename_list(folder_name: str) -> list[str]:
out = cached_filename_list_(folder_name)
if out is None:
out = get_filename_list_(folder_name)
@@ -230,17 +234,17 @@ def get_filename_list(folder_name):
filename_list_cache[folder_name] = out
return list(out[0])
def get_save_image_path(filename_prefix, output_dir, image_width=0, image_height=0):
def map_filename(filename):
def get_save_image_path(filename_prefix: str, output_dir: str, image_width=0, image_height=0) -> tuple[str, str, int, str, str]:
def map_filename(filename: str) -> tuple[int, str]:
prefix_len = len(os.path.basename(filename_prefix))
prefix = filename[:prefix_len + 1]
try:
digits = int(filename[prefix_len + 1:].split('_')[0])
except:
digits = 0
return (digits, prefix)
return digits, prefix
def compute_vars(input, image_width, image_height):
def compute_vars(input: str, image_width: int, image_height: int) -> str:
input = input.replace("%width%", str(image_width))
input = input.replace("%height%", str(image_height))
return input