1
mirror of https://github.com/comfyanonymous/ComfyUI.git synced 2025-08-02 23:14:49 +08:00

Compare commits

...

2693 Commits

Author SHA1 Message Date
Jacob Segal
1316e608c9 Add the websocket library for automated tests 2025-06-13 21:51:32 -07:00
Jacob Segal
8d28c17369 Add a missing file
It looks like this got caught by .gitignore? There's probably a better
place to put it, but I'm not sure what that is.
2025-06-13 21:45:21 -07:00
Jacob Segal
6df907c413 Add the execution model tests to CI 2025-06-13 21:39:26 -07:00
Jacob Segal
f1dc13037e Support for async execution functions
This commit adds support for node execution functions defined as async. When
a node's execution function is defined as async, we can continue
executing other nodes while it is processing.

Standard uses of `await` should "just work", but people will still have
to be careful if they spawn actual threads. Because torch doesn't really
have async/await versions of functions, this won't particularly help
with most locally-executing nodes, but it does work for e.g. web
requests to other machines.

In addition to the execute function, the `VALIDATE_INPUTS` and
`check_lazy_status` functions can also be defined as async, though we'll
only resolve one node at a time right now for those.
2025-06-13 21:39:26 -07:00
Terry Jia
803af1e0c3 allow extra settings from pyproject.toml (#8526) 2025-06-13 23:11:55 -04:00
ComfyUI Wiki
6673939e76 Bump template to 0.1.28 (#8510) 2025-06-13 23:11:00 -04:00
ComfyUI Wiki
f74778e75d Bump embedded docs to 0.2.2 (#8512) 2025-06-13 23:06:28 -04:00
Kohaku-Blueleaf
520eb77b72 LoRA Trainer: LoRA training node in weight adapter scheme (#8446) 2025-06-13 19:25:59 -04:00
comfyanonymous
5bf69bde35 Add cosmos_rflow option to ModelSamplingContinuousEDM node. (#8523)
This is for the cosmos predict2 model.
2025-06-13 17:47:52 -04:00
comfyanonymous
c69af655aa Uncap cosmos predict2 res and fix mem estimation. (#8518) 2025-06-13 07:30:18 -04:00
comfyanonymous
251f54a2ad Basic initial support for cosmos predict2 text to image 2B and 14B models. (#8517) 2025-06-13 07:05:23 -04:00
Christian Byrne
c6529c0d77 don't validate string inputs with VALIDATE_INPUTS (#8508) 2025-06-12 20:17:10 -04:00
filtered
baa8c8cdd3 Add '@prerelease' to use latest test frontend (#8501)
* Add '@prerelease' to use latest test frontend

Allows download of pre-release versions.

Will always get the latest pre-release version - even if it's older than the latest stable release.

* nit
2025-06-12 17:03:27 -07:00
comfyanonymous
40fd39c7cb debug -> warning (#8506) 2025-06-12 17:14:59 -04:00
Terry Jia
4d1c4b9797 Auto register web folder (#8505)
* auto register web folder from pyproject

* need pydantic-settings as dependency

* wrapped try/except for config_parser

* sf
2025-06-12 16:24:39 -04:00
comfyanonymous
d2566eb4b2 Add a warning for old python versions. (#8504) 2025-06-12 15:38:33 -04:00
filtered
ef7e885fe4 Revert "Update requirements.txt (#8487)" (#8502)
This reverts commit 373a9386a4.
2025-06-12 14:10:48 -04:00
filtered
ecb8d15e7a Allow specifying any frontend semver suffixes (#8498) 2025-06-11 21:41:30 -04:00
comfyanonymous
365f9ed157 Revert "auto register web folder from pyproject (#8478)" (#8497)
This reverts commit 9685d4f3c3.
2025-06-11 17:28:04 -04:00
pythongosssss
50c605e957 Add support for sqlite database (#8444)
* Add support for sqlite database

* fix
2025-06-11 16:43:39 -04:00
Terry Jia
9685d4f3c3 auto register web folder from pyproject (#8478)
* auto register web folder from pyproject

* need pydantic-settings as dependency
2025-06-11 16:21:28 -04:00
comfyanonymous
8a4ff747bd Fix mistake in last commit. (#8496)
* Move to right place.
2025-06-11 15:13:29 -04:00
comfyanonymous
af1eb58be8 Fix black images on some flux models in fp16. (#8495) 2025-06-11 15:09:11 -04:00
ComfyUI Wiki
373a9386a4 Update requirements.txt (#8487) 2025-06-11 05:10:46 -04:00
comfyanonymous
6e28a46454 Apple most likely is never fixing the fp16 attention bug. (#8485) 2025-06-10 13:06:24 -04:00
Kent Mewhort
c7b25784b1 Fix WebcamCapture IS_CHANGED signature (#8413) 2025-06-09 13:05:54 -04:00
comfyanonymous
7f800d04fa Enable AMD fp8 and pytorch attention on some GPUs. (#8474)
Information is from the pytorch source code.
2025-06-09 12:50:39 -04:00
comfyanonymous
97755eed46 Enable fp8 ops by default on gfx1201 (#8464) 2025-06-08 14:15:34 -04:00
comfyanonymous
daf9d25ee2 Cleaner torch version comparisons. (#8453) 2025-06-07 10:01:15 -04:00
comfyanonymous
3b4b171e18 Alternate fix for #8435 (#8442) 2025-06-06 09:43:27 -04:00
Olexandr88
d8759c772b Update README.md (#8427) 2025-06-05 10:44:29 -07:00
comfyanonymous
4248b1618f Let chroma TE work on regular flux. (#8429) 2025-06-05 10:07:17 -04:00
comfyanonymous
866f6cdab4 ComfyUI version 0.3.40 2025-06-04 22:18:54 -04:00
Christian Byrne
3aa83feeec [refactor] remove version prefixes from Ideogram node categories (#8418)
Simplifies node organization by consolidating all Ideogram nodes under a single category instead of version-specific subcategories.
2025-06-04 21:56:38 -04:00
comfyanonymous
871749c208 Add batch to GetImageSize node. (#8419) 2025-06-04 09:40:21 -04:00
SD
fcc1643c52 Sub call to deprecated pillow API Image.ANTIALIAS (#8415)
ANTIALIAS was removed in Pillow 10.0.0
2025-06-04 09:03:42 -04:00
filtered
20687293fe Update frontend to 1.21.7 (#8410) 2025-06-04 08:57:13 -04:00
Terry Jia
47d55b8b45 add support to read pyproject.toml from custom node (#8357)
* add support to read pyproject.toml from custom node

* sf

* use pydantic instead

* sf

* use pydantic_settings

* remove unnecessary try/catch and handle single-file python node

* sf
2025-06-03 19:59:13 -04:00
comfyanonymous
310f4b6ef8 Add api nodes to readme. (#8402) 2025-06-03 04:26:44 -04:00
Christian Byrne
856448060c [feat] Add GetImageSize node (#8386)
* [feat] Add GetImageSize node to return image dimensions

Added a simple GetImageSize node in comfy_extras/nodes_images.py that returns width and height of input images. The node displays dimensions on the UI via PromptServer and provides width/height as outputs for further processing.

* add display name mapping

* [fix] Add server module mock to unit tests for PromptServer import

Updated test to mock server module preventing import errors from the new PromptServer usage in GetImageSize node. Uses direct import pattern consistent with rest of codebase.
2025-06-02 21:57:50 -04:00
comfyanonymous
312d511630 Style fix. (#8390) 2025-06-02 07:22:02 -04:00
Jesse Gonyou
4f4f1c642a Update fix for potential XSS on /view (#8384)
* Update fix for potential XSS on /view

This commit uses mimetypes to add more restricted filetypes to prevent from being served, since mimetypes are what browsers use to determine how to serve files.

* Fix typo

Fixed a typo that prevented the program from running
2025-06-02 06:52:44 -04:00
filtered
010954d277 [BugFix] Update frontend to 1.21.6 (#8383) 2025-06-02 14:57:44 +10:00
filtered
6d46bb4b4c [BugFix] Update frontend to 1.21.5 (#8382) 2025-06-01 16:47:14 -04:00
Christian Byrne
67f57c5bcc [feat] add custom node testing requirement to issue templates (#8374)
Adds mandatory checkbox to bug report and user support templates requiring users to confirm they've tested with custom nodes disabled before submitting issues.
2025-06-01 15:47:07 -04:00
filtered
fd943c928f [BugFix] Update frontend to 1.21.4 (#8377) 2025-06-01 13:57:53 -04:00
ComfyUI Wiki
d3bd983b91 Bump template to 0.1.25 (#8372) 2025-06-01 05:41:17 -04:00
comfyanonymous
fb4754624d Make the casting in lists the same as regular inputs. (#8373) 2025-06-01 05:39:54 -04:00
Benjamin Lu
180db6753f Add Help Menu in NodeLibrarySidebarTab (#8179) 2025-06-01 04:32:32 -04:00
Christian Byrne
d062fcc5c0 [feat] Add ImageStitch node for concatenating images (#8369)
* [feat] Add ImageStitch node for concatenating images with borders

Add ImageStitch node that concatenates images in four directions with optional borders and intelligent size handling. Features include optional second image input, configurable borders with color selection, automatic batch size matching, and dimension alignment via padding or resizing.

Upstreamed from https://github.com/kijai/ComfyUI-KJNodes with enhancements for better error handling and comprehensive test coverage.

* [fix] Fix CI issues with CUDA dependencies and linting

- Mock CUDA-dependent modules in tests to avoid CI failures on CPU-only runners
- Fix ruff linting issues for code style compliance

* [fix] Improve CI compatibility by mocking nodes module import

Prevent CUDA initialization chain by mocking the nodes module at import time,
which is cleaner than deep mocking of CUDA-specific functions.

* [refactor] Clean up ImageStitch tests

- Remove unnecessary sys.path manipulation (pythonpath set in pytest.ini)
- Remove metadata tests that test framework internals rather than functionality
- Rename complex scenario test to be more descriptive of what it tests

* [refactor] Rename 'border' to 'spacing' for semantic accuracy

- Change border_width/border_color to spacing_width/spacing_color in API
- Update all tests to use spacing terminology
- Update comments and variable names throughout
- More accurately describes the gap/separator between images
2025-06-01 04:28:52 -04:00
filtered
456abad834 Update frontend to 1.21 (#8366) 2025-06-01 01:10:04 -04:00
comfyanonymous
19e45e9b0e Make it easier to pass lists of tensors to models. (#8358) 2025-05-31 20:00:20 -04:00
ComfyUI Wiki
97f23b81f3 Bump template to 0.1.23 (#8353)
Correct some error settings in VACE
2025-05-30 23:05:42 -07:00
drhead
08b7cc7506 use fused multiply-add pointwise ops in chroma (#8279) 2025-05-30 18:09:54 -04:00
BennyKok
6c319cbb4e fix: custom comfy-api-base works with subpath (#8332) 2025-05-30 17:51:28 -04:00
Chenlei Hu
df1aebe52e Remove huchenlei from CODEOWNERS (#8350) 2025-05-30 17:27:52 -04:00
comfyanonymous
704fc78854 Put ROCm version in tuple to make it easier to enable stuff based on it. (#8348) 2025-05-30 15:41:02 -04:00
JettHu
1d9fee79fd Add node for regex replace(sub) operation (#8340)
* Add node for regex replace(sub) operation

* Apply suggestions from code review

add tooltips

Co-authored-by: Christian Byrne <abolkonsky.rem@gmail.com>

* Fix indentation

---------

Co-authored-by: Christian Byrne <abolkonsky.rem@gmail.com>
2025-05-30 15:08:59 -04:00
Jedrzej Kosinski
aeba0b3a26 Reduce code duplication for [pro] and [max], rename Pro and Max to [pro] and [max] to be consistent with other BFL nodes, make default seed for Kontext nodes be 1234. since 0 is interpreted by API as 'choose random seed' (#8337) 2025-05-29 17:14:27 -04:00
comfyanonymous
094306b626 ComfyUI version 0.3.39 2025-05-29 14:26:39 -04:00
filtered
31260f0275 Update templates 0.1.22 (#8334) 2025-05-30 03:52:27 +10:00
Robin Huang
f1c9ca816a Add BFL Kontext API Nodes. (#8333)
* Added initial Flux.1 Kontext Pro Image node - recreated branch to save myself sanity from rebase crap after master got rebased

* Add safety filter to Kontext.

* Make safety = 2 and input image is optional.

* Add BFL kontext API nodes.

---------

Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>
2025-05-29 13:27:40 -04:00
comfyanonymous
f2289a1f59 Delete useless file. (#8327) 2025-05-29 08:29:37 -04:00
Robin Huang
fb83eda287 Revert "Add support for Veo3 API node." (#8322)
This reverts commit 592d056100.
2025-05-29 03:03:11 -04:00
comfyanonymous
5e5e46d40c Not really tested WAN Phantom Support. (#8321) 2025-05-28 23:46:15 -04:00
Yoland Yan
4eba3161cf Refactor Pika API node imports and fix unique_id issue. (#8319)
Added unique_id to hidden parameters and corrected description formatting in PikAdditionsNode.
2025-05-28 23:42:25 -04:00
Robin Huang
592d056100 Add support for Veo3 API node. (#8320) 2025-05-28 23:42:02 -04:00
comfyanonymous
1c1687ab1c Support HiDream SimpleTuner loras. (#8318) 2025-05-28 18:47:15 -04:00
comfyanonymous
e6609dacde ComfyUI version 0.3.38 2025-05-28 02:15:11 -04:00
Christian Byrne
ba37e67964 update frontend patch 1.20.7 (#8312) 2025-05-28 01:42:18 -04:00
comfyanonymous
06c661004e Memory estimation code can now take into account conds. (#8307) 2025-05-27 15:09:05 -04:00
comfyanonymous
c9e1821a7b ComfyUI version 0.3.37 2025-05-27 07:07:44 -04:00
Robin Huang
f58f0f5696 More API nodes: Gemini/Open AI Chat, Tripo, Rodin, Runway Image (#8295)
* Add Ideogram generate node.

* Add staging api.

* Add API_NODE and common error for missing auth token (#5)

* Add Minimax Video Generation + Async Task queue polling example (#6)

* [Minimax] Show video preview and embed workflow in ouput (#7)

* Remove uv.lock

* Remove polling operations.

* Revert "Remove polling operations."

This reverts commit 8415404ce8fbc0262b7de54fc700c5c8854a34fc.

* Update stubs.

* Added Ideogram and Minimax back in.

* Added initial BFL Flux 1.1 [pro] Ultra node (#11)

* Manually add BFL polling status response schema (#15)

* Add function for uploading files. (#18)

* Add Luma nodes (#16)

Co-authored-by: Robin Huang <robin.j.huang@gmail.com>

* Refactor util functions (#20)

* Add rest of Luma node functionality (#19)

Co-authored-by: Robin Huang <robin.j.huang@gmail.com>

* Fix image_luma_ref not working (#28)

Co-authored-by: Robin Huang <robin.j.huang@gmail.com>

* [Bug] Remove duplicated option T2V-01 in MinimaxTextToVideoNode (#31)

* add veo2, bump av req (#32)

* Add Recraft nodes (#29)

* Add Kling Nodes (#12)

* Add Camera Concepts (luma_concepts) to Luma Video nodes (#33)

Co-authored-by: Robin Huang <robin.j.huang@gmail.com>

* Add Runway nodes (#17)

* Convert Minimax node to use VIDEO output type (#34)

* Standard `CATEGORY` system for api nodes (#35)

* Set `Content-Type` header when uploading files (#36)

* add better error propagation to veo2 (#37)

* Add Realistic Image and Logo Raster styles for Recraft v3 (#38)

* Fix runway image upload and progress polling (#39)

* Fix image upload for Luma: only include `Content-Type` header field if it's set explicitly (#40)

* Moved Luma nodes to nodes_luma.py (#47)

* Moved Recraft nodes to nodes_recraft.py (#48)

* Move and fix BFL nodes to node_bfl.py (#49)

* Move and edit Minimax node to nodes_minimax.py (#50)

* Add Recraft Text to Vector node, add Save SVG node to handle its output (#53)

* Added pixverse_template support to Pixverse Text to Video node (#54)

* Added Recraft Controls + Recraft Color RGB nodes (#57)

* split remaining nodes out of nodes_api, make utility lib, refactor ideogram (#61)

* Set request type explicitly (#66)

* Add `control_after_generate` to all seed inputs (#69)

* Fix bug: deleting `Content-Type` when property does not exist (#73)

* Add Pixverse and updated Kling types (#75)

* Added Recraft Style - Infinite Style Library node (#82)

* add ideogram v3 (#83)

* [Kling] Split Camera Control config to its own node (#81)

* Add Pika i2v and t2v nodes (#52)

* Remove Runway nodes (#88)

* Fix: Prompt text can't be validated in Kling nodes when using primitive nodes (#90)

* Update Pika Duration and Resolution options (#94)

* Removed Infinite Style Library until later (#99)

* fix multi image return (#101)

close #96

* Serve SVG files directly (#107)

* Add a bunch of nodes, 3 ready to use, the rest waiting for endpoint support (#108)

* Revert "Serve SVG files directly" (#111)

* Expose 4 remaining Recraft nodes (#112)

* [Kling] Add `Duration` and `Video ID` outputs (#105)

* Add Kling nodes: camera control, start-end frame, lip-sync, video extend (#115)

* Fix error for Recraft ImageToImage error for nonexistent random_seed param (#118)

* Add remaining Pika nodes (#119)

* Make controls input work for Recraft Image to Image node (#120)

* Fix: Nested `AnyUrl` in request model cannot be serialized (Kling, Runway) (#129)

* Show errors and API output URLs to the user (change log levels) (#131)

* Apply small fixes and most prompt validation (if needed to avoid API error) (#135)

* Node name/category modifications (#140)

* Add back Recraft Style - Infinite Style Library node (#141)

* [Kling] Fix: Correct/verify supported subset of input combos in Kling nodes (#149)

* Remove pixverse_template from PixVerse Transition Video node (#155)

* Use 3.9 compat syntax (#164)

* Handle Comfy API key based authorizaton (#167)

Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>

* [BFL] Print download URL of successful task result directly on nodes (#175)

* Show output URL and progress text on Pika nodes (#168)

* [Ideogram] Print download URL of successful task result directly on nodes (#176)

* [Kling] Print download URL of successful task result directly on nodes (#181)

* Merge upstream may 14 25 (#186)

Co-authored-by: comfyanonymous <comfyanonymous@protonmail.com>
Co-authored-by: AustinMroz <austinmroz@utexas.edu>
Co-authored-by: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com>
Co-authored-by: Benjamin Lu <benceruleanlu@proton.me>
Co-authored-by: Andrew Kvochko <kvochko@users.noreply.github.com>
Co-authored-by: Pam <42671363+pamparamm@users.noreply.github.com>
Co-authored-by: chaObserv <154517000+chaObserv@users.noreply.github.com>
Co-authored-by: Yoland Yan <4950057+yoland68@users.noreply.github.com>
Co-authored-by: guill <guill@users.noreply.github.com>
Co-authored-by: Chenlei Hu <hcl@comfy.org>
Co-authored-by: Terry Jia <terryjia88@gmail.com>
Co-authored-by: Silver <65376327+silveroxides@users.noreply.github.com>
Co-authored-by: catboxanon <122327233+catboxanon@users.noreply.github.com>
Co-authored-by: liesen <liesen.dev@gmail.com>
Co-authored-by: Kohaku-Blueleaf <59680068+KohakuBlueleaf@users.noreply.github.com>
Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>
Co-authored-by: Robin Huang <robin.j.huang@gmail.com>
Co-authored-by: thot experiment <94414189+thot-experiment@users.noreply.github.com>
Co-authored-by: blepping <157360029+blepping@users.noreply.github.com>

* Update instructions on how to develop API Nodes. (#171)

* Add Runway FLF and I2V nodes (#187)

* Add OpenAI chat node (#188)

* Update README.

* Add Google Gemini API node (#191)

* Add Runway Gen 4 Text to Image Node (#193)

* [Runway, Gemini] Update node display names and attributes (#194)

* Update path from "image-to-video" to "image_to_video" (#197)

* [Runway] Split I2V nodes into separate gen3 and gen4 nodes (#198)

* Update runway i2v ratio enum (#201)

* Rodin3D: implement Rodin3D API Nodes (#190)

Co-authored-by: WhiteGiven <c15838568211@163.com>
Co-authored-by: Robin Huang <robin.j.huang@gmail.com>

* Add Tripo Nodes. (#189)

Co-authored-by: Robin Huang <robin.j.huang@gmail.com>

* Change casing of categories "3D"  => "3d" (#208)

* [tripo] fix negtive_prompt and mv2model (#212)

* [tripo] set default param to None (#215)

* Add description and tooltip to Tripo Refine model. (#218)

* Update.

* Fix rebase errors.

* Fix rebase errors.

* Update templates.

* Bump frontend.

* Add file type info for file inputs.

---------

Co-authored-by: Christian Byrne <cbyrne@comfy.org>
Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>
Co-authored-by: Chenlei Hu <hcl@comfy.org>
Co-authored-by: thot experiment <94414189+thot-experiment@users.noreply.github.com>
Co-authored-by: comfyanonymous <comfyanonymous@protonmail.com>
Co-authored-by: AustinMroz <austinmroz@utexas.edu>
Co-authored-by: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com>
Co-authored-by: Benjamin Lu <benceruleanlu@proton.me>
Co-authored-by: Andrew Kvochko <kvochko@users.noreply.github.com>
Co-authored-by: Pam <42671363+pamparamm@users.noreply.github.com>
Co-authored-by: chaObserv <154517000+chaObserv@users.noreply.github.com>
Co-authored-by: Yoland Yan <4950057+yoland68@users.noreply.github.com>
Co-authored-by: guill <guill@users.noreply.github.com>
Co-authored-by: Terry Jia <terryjia88@gmail.com>
Co-authored-by: Silver <65376327+silveroxides@users.noreply.github.com>
Co-authored-by: catboxanon <122327233+catboxanon@users.noreply.github.com>
Co-authored-by: liesen <liesen.dev@gmail.com>
Co-authored-by: Kohaku-Blueleaf <59680068+KohakuBlueleaf@users.noreply.github.com>
Co-authored-by: blepping <157360029+blepping@users.noreply.github.com>
Co-authored-by: Changrz <51637999+WhiteGiven@users.noreply.github.com>
Co-authored-by: WhiteGiven <c15838568211@163.com>
Co-authored-by: seed93 <liangding1990@163.com>
2025-05-27 03:00:58 -04:00
filtered
3a10b9641c [BugFix] Update frontend to 1.20.6 (#8296) 2025-05-27 02:47:06 -04:00
comfyanonymous
89a84e32d2 Disable initial GPU load when novram is used. (#8294) 2025-05-26 16:39:27 -04:00
comfyanonymous
e5799c4899 Enable pytorch attention by default on AMD gfx1151 (#8282) 2025-05-26 04:29:25 -04:00
comfyanonymous
a0651359d7 Return proper error if diffusion model not detected properly. (#8272) 2025-05-25 05:28:11 -04:00
comfyanonymous
ad3bd8aa49 ComfyUI version 0.3.36 2025-05-24 17:30:37 -04:00
comfyanonymous
5a87757ef9 Better error if sageattention is installed but a dependency is missing. (#8264) 2025-05-24 06:43:12 -04:00
Christian Byrne
464aece92b update frontend package to v1.20.5 (#8260) 2025-05-23 21:53:49 -07:00
comfyanonymous
0b50d4c0db Add argument to explicitly enable fp8 compute support. (#8257)
This can be used to test if your current GPU/pytorch version supports fp8 matrix mult in combination with --fast or the fp8_e4m3fn_fast dtype.
2025-05-23 17:43:50 -04:00
drhead
30b2eb8a93 create arange on-device (#8255) 2025-05-23 16:15:06 -04:00
comfyanonymous
f85c08df06 Make VACE conditionings stackable. (#8240) 2025-05-22 19:22:26 -04:00
comfyanonymous
4202e956a0 Add append feature to conditioning_set_values (#8239)
Refactor unclipconditioning node.
2025-05-22 08:11:13 -04:00
Terry Jia
b838c36720 remove mtl from 3d model file list (#8192) 2025-05-22 08:08:36 -04:00
Chenlei Hu
fc39184ea9 Update frontend to 1.20 (#8232) 2025-05-22 02:24:36 -04:00
ComfyUI Wiki
ded60c33a0 Update templates to 0.1.18 (#8224) 2025-05-21 11:40:08 -07:00
Michael Abrahams
8bb858e4d3 Improve performance with large number of queued prompts (#8176)
* get_current_queue_volatile

* restore get_current_queue method

* remove extra import
2025-05-21 05:14:17 -04:00
编程界的小学生
57893c843f Code Optimization and Issues Fixes in ComfyUI server (#8196)
* Update server.py

* Update server.py
2025-05-21 04:59:42 -04:00
Jedrzej Kosinski
65da29aaa9 Make torch.compile LoRA/key-compatible (#8213)
* Make torch compile node use wrapper instead of object_patch for the entire diffusion_models object, allowing key assotiations on diffusion_models to not break (loras, getting attributes, etc.)

* Moved torch compile code into comfy_api so it can be used by custom nodes with a degree of confidence

* Refactor set_torch_compile_wrapper to support a list of keys instead of just diffusion_model, as well as additional torch.compile args

* remove unused import

* Moved torch compile kwargs to be stored in model_options instead of attachments; attachments are more intended for things to be 'persisted', AKA not deepcopied

* Add some comments

* Remove random line of code, not sure how it got there
2025-05-21 04:56:56 -04:00
comfyanonymous
10024a38ea ComfyUI version v0.3.35 2025-05-21 04:50:37 -04:00
comfyanonymous
87f9130778 Revert "This doesn't seem to be needed on chroma. (#8209)" (#8210)
This reverts commit 7e84bf5373.
2025-05-20 05:39:55 -04:00
comfyanonymous
7e84bf5373 This doesn't seem to be needed on chroma. (#8209) 2025-05-20 05:29:23 -04:00
filtered
4f3b50ba51 Update README ROCm text to match link (#8199)
- Follow-up on #8198
2025-05-19 16:40:55 -04:00
comfyanonymous
e930a387d6 Update AMD instructions in README. (#8198) 2025-05-19 04:58:41 -04:00
comfyanonymous
d8e5662822 Remove default delimiter. (#8183) 2025-05-18 04:12:12 -04:00
LaVie024
3d44a09812 Update nodes_string.py (#8173) 2025-05-18 04:11:11 -04:00
comfyanonymous
62690eddec Node to add pixel space noise to an image. (#8182) 2025-05-18 04:09:56 -04:00
Christian Byrne
05eb10b43a Validate video inputs (#8133)
* validate kling lip sync input video

* add tooltips

* update duration estimates

* decrease epsilon

* fix rebase error
2025-05-18 04:08:47 -04:00
Silver
f5e4e976f4 Add missing category for T5TokenizerOption (#8177)
Change it if you need to but it should at least have a category.
2025-05-18 02:59:06 -04:00
comfyanonymous
aee2908d03 Remove useless log. (#8166) 2025-05-17 06:27:34 -04:00
comfyanonymous
dc46db7aa4 Make ImagePadForOutpaint return a 3 channel mask. (#8157) 2025-05-16 15:15:55 -04:00
filtered
7046983d95 Remove Desktop versioning claim from README (#8155) 2025-05-16 10:45:36 -07:00
comfyanonymous
1c2d45d2b5 Fix typo in last PR. (#8144)
More robust model detection for future proofing.
2025-05-15 19:02:19 -04:00
George0726
c820ef950d Add Wan-FUN Camera Control models and Add WanCameraImageToVideo node (#8013)
* support wan camera models

* fix by ruff check

* change camera_condition type; make camera_condition optional

* support camera trajectory nodes

* fix camera direction

---------

Co-authored-by: Qirui Sun <sunqr0667@126.com>
2025-05-15 19:00:43 -04:00
comfyanonymous
6a2e4bb9e0 Remove old hack used to fix windows pytorch 2.4 on the portable. (#8139)
Not necessary anymore.
2025-05-15 08:21:47 -04:00
Christian Byrne
f1f9763b4c Add get_duration method to Comfy VIDEO type (#8122)
* get duration from VIDEO type

* video get_duration unit test

* fix Windows unit test: can't delete opened temp file
2025-05-15 00:11:41 -04:00
comfyanonymous
08368f8e00 Update comment on ROCm pytorch attention in README. (#8123) 2025-05-14 17:54:50 -04:00
Christian Byrne
f3ff5c40db don't retry if API returns task failure (#8111) 2025-05-14 01:28:30 -04:00
Christian Byrne
98ff01e148 Display progress and result URL directly on API nodes (#8102)
* [Luma] Print download URL of successful task result directly on nodes (#177)

[Veo] Print download URL of successful task result directly on nodes (#184)

[Recraft] Print download URL of successful task result directly on nodes (#183)

[Pixverse] Print download URL of successful task result directly on nodes (#182)

[Kling] Print download URL of successful task result directly on nodes (#181)

[MiniMax] Print progress text and download URL of successful task result directly on nodes (#179)

[Docs] Link to docs in `API_NODE` class property type annotation comment (#178)

[Ideogram] Print download URL of successful task result directly on nodes (#176)

[Kling] Print download URL of successful task result directly on nodes (#181)

[Veo] Print download URL of successful task result directly on nodes (#184)

[Recraft] Print download URL of successful task result directly on nodes (#183)

[Pixverse] Print download URL of successful task result directly on nodes (#182)

[MiniMax] Print progress text and download URL of successful task result directly on nodes (#179)

[Docs] Link to docs in `API_NODE` class property type annotation comment (#178)

[Luma] Print download URL of successful task result directly on nodes (#177)

[Ideogram] Print download URL of successful task result directly on nodes (#176)

Show output URL and progress text on Pika nodes (#168)

[BFL] Print download URL of successful task result directly on nodes (#175)

[OpenAI ] Print download URL of successful task result directly on nodes (#174)

* fix ruff errors

* fix 3.10 syntax error
2025-05-14 00:33:18 -04:00
thot experiment
bab836d88d rework client.py to be more robust, add logging of api requests (#7988)
* rework how errors are handled on the client side

* add logging to /temp

* fix ruff

* fix rebase, stupid vscode gui
2025-05-13 20:42:29 -04:00
comfyanonymous
4a9014e201 Hunyuan Custom initial untested implementation. (#8101) 2025-05-13 15:53:47 -04:00
thot experiment
8a7c894d54 fix negative momentum (#8100) 2025-05-13 10:50:32 -07:00
comfyanonymous
a814f2e8cc Fix issue with old pytorch RMSNorm. (#8095) 2025-05-13 07:54:28 -04:00
comfyanonymous
481732a0ed Support official ACE Step loras. (#8094) 2025-05-13 07:32:16 -04:00
Christian Byrne
2156ce9453 add comment about using api key in headless (#8082) 2025-05-12 23:06:44 -04:00
thot experiment
4136502b7a implement APG guidance (#8081)
* first pass at impementing AGP

* rename, cleanup code

* fix ruff

* fix modified cond to match ref impl better, support different cond arity
2025-05-12 21:10:24 -04:00
Terry Jia
9ad287ff20 add support to record video as output for 3d node (#7927)
* add support to record video as output for 3d node

* source format

* add support to record video for load3d animation node
2025-05-12 16:47:14 -04:00
Chenlei Hu
f5cacaeb14 Update frontend to v1.19 (#8076)
* Update frontend to v1.19

* Update requirements.txt
2025-05-12 16:47:02 -04:00
Terry Jia
b7ed5f57bd string node (#7952) 2025-05-12 16:29:32 -04:00
thot experiment
b4abca828e add opus and mp3 to audio output node (#8019)
* first pass at opus and mp3 as well as migrating flac to pyav

* minor mp3 encoding fix

* fix ruff

* delete dead code

* split out save audio to separate nodes per filetype

* fix ruff
2025-05-12 16:00:01 -04:00
comfyanonymous
158419f3a0 ComfyUI version 0.3.34 2025-05-12 15:58:28 -04:00
comfyanonymous
640c47e7de Fix torch warning about deprecated function. (#8075)
Drop support for torch versions below 2.2 on the audio VAEs.
2025-05-12 14:32:01 -04:00
Christian Byrne
31e9e36c94 remove aspect ratio from kling request (#8062) 2025-05-12 13:32:24 -04:00
comfyanonymous
577de83ca9 ACE VAE works in fp16. (#8055) 2025-05-11 04:58:00 -04:00
Christian Byrne
3535909eb8 Add support for Comfy API keys (#8041)
* Handle Comfy API key based authorizaton (#167)

Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>

* Bump frontend version to include API key features (#170)

* bump templates version

---------

Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>
2025-05-10 22:10:58 -04:00
Christian Byrne
235d3901fc Add method to stream text to node UI (#8018)
* show text progress preview

* include node id in message
2025-05-10 20:40:02 -04:00
comfyanonymous
d42613686f Fix issue with fp8 ops on some models. (#8045)
_scaled_mm errors when an input is non contiguous.
2025-05-10 07:52:56 -04:00
Pam
1b3bf0a5da Fix res_multistep_ancestral sampler (#8030) 2025-05-09 20:14:13 -04:00
Christian Byrne
ae60b150e5 update node tooltips and validation (#8036) 2025-05-09 20:02:45 -04:00
blepping
42da274717 Use normal ComfyUI attention in ACE-Steps model (#8023)
* Use normal ComfyUI attention in ACE-Steps model

* Let optimized_attention handle output reshape for ACE
2025-05-09 13:51:02 -04:00
thot experiment
28f178a840 move SVG to core (#7982)
* move SVG to core

* fix workflow embedding w/ unicode characters
2025-05-09 13:46:34 -04:00
comfyanonymous
8ab15c863c Add --mmap-torch-files to enable use of mmap when loading ckpt/pt (#8021) 2025-05-09 04:52:47 -04:00
comfyanonymous
924d771e18 Add ACE Step to README. (#8005) 2025-05-08 08:40:57 -04:00
comfyanonymous
02a1b01aad ComfyUI version 0.3.33 2025-05-08 07:36:48 -04:00
comfyanonymous
a692c3cca4 Make ACE VAE tiling work. (#8004) 2025-05-08 07:25:45 -04:00
comfyanonymous
5d3cc85e13 Make japanese hiragana and katakana characters work with ACE. (#7997) 2025-05-08 03:32:36 -04:00
comfyanonymous
c7c025b8d1 Adjust memory estimation code for ACE VAE. (#7990) 2025-05-08 01:22:23 -04:00
comfyanonymous
fd08e39588 Make torchaudio not a hard requirement. (#7987)
Some platforms can't install it apparently so if it's not there it should
only break models that actually use it.
2025-05-07 21:37:12 -04:00
comfyanonymous
56b6ee6754 Detection code to make ltxv models without config work. (#7986) 2025-05-07 21:28:24 -04:00
comfyanonymous
cc33cd3422 Experimental lyrics strength for ACE. (#7984) 2025-05-07 19:22:07 -04:00
comfyanonymous
b9980592c4 Refuse to load api nodes on old pyav version. (#7981) 2025-05-07 17:27:16 -04:00
comfyanonymous
16417b40d9 Initial ACE-Step model implementation. (#7972) 2025-05-07 08:33:34 -04:00
comfyanonymous
271c9c5b9e Better mem estimation for the LTXV 13B model. (#7963) 2025-05-06 09:52:37 -04:00
comfyanonymous
a4e679765e Change chroma to use Flux shift. (#7961) 2025-05-06 09:00:01 -04:00
comfyanonymous
0cf2e46b17 ComfyUI version 0.3.32 2025-05-06 07:39:54 -04:00
comfyanonymous
094e9ef126 Add a way to disable api nodes: --disable-api-nodes (#7960) 2025-05-06 04:53:53 -04:00
Jedrzej Kosinski
1271c4ef9d More API Nodes (#7956)
* Add Ideogram generate node.

* Add staging api.

* Add API_NODE and common error for missing auth token (#5)

* Add Minimax Video Generation + Async Task queue polling example (#6)

* [Minimax] Show video preview and embed workflow in ouput (#7)

* Remove uv.lock

* Remove polling operations.

* Revert "Remove polling operations."

* Update stubs.

* Added Ideogram and Minimax back in.

* Added initial BFL Flux 1.1 [pro] Ultra node (#11)

* Add --comfy-api-base launch arg (#13)

* Add instructions for staging development. (#14)

* remove validation to make it easier to run against LAN copies of the API

* Manually add BFL polling status response schema (#15)

* Add function for uploading files. (#18)

* Add Luma nodes (#16)

* Refactor util functions (#20)

* Add VIDEO type (#21)

* Add rest of Luma node functionality (#19)

* Fix image_luma_ref not working (#28)

* [Bug] Remove duplicated option T2V-01 in MinimaxTextToVideoNode (#31)

* Add utils to map from pydantic model fields to comfy node inputs (#30)

* add veo2, bump av req (#32)

* Add Recraft nodes (#29)

* Add Kling Nodes (#12)

* Add Camera Concepts (luma_concepts) to Luma Video nodes (#33)

* Add Runway nodes (#17)

* Convert Minimax node to use VIDEO output type (#34)

* Standard `CATEGORY` system for api nodes (#35)

* Set `Content-Type` header when uploading files (#36)

* add better error propagation to veo2 (#37)

* Add Realistic Image and Logo Raster styles for Recraft v3 (#38)

* Fix runway image upload and progress polling (#39)

* Fix image upload for Luma: only include `Content-Type` header field if it's set explicitly (#40)

* Moved Luma nodes to nodes_luma.py (#47)

* Moved Recraft nodes to nodes_recraft.py (#48)

* Add Pixverse nodes (#46)

* Move and fix BFL nodes to node_bfl.py (#49)

* Move and edit Minimax node to nodes_minimax.py (#50)

* Add Minimax Image to Video node + Cleanup (#51)

* Add Recraft Text to Vector node, add Save SVG node to handle its output (#53)

* Added pixverse_template support to Pixverse Text to Video node (#54)

* Added Recraft Controls + Recraft Color RGB nodes (#57)

* split remaining nodes out of nodes_api, make utility lib, refactor ideogram (#61)

* Add types and doctstrings to utils file (#64)

* Fix: `PollingOperation` progress bar update progress by absolute value (#65)

* Use common download function in kling nodes module (#67)

* Fix: Luma video nodes in `api nodes/image` category (#68)

* Set request type explicitly (#66)

* Add `control_after_generate` to all seed inputs (#69)

* Fix bug: deleting `Content-Type` when property does not exist (#73)

* Add preview to Save SVG node (#74)

* change default poll interval (#76), rework veo2

* Add Pixverse and updated Kling types (#75)

* Added Pixverse Image to VIdeo node (#77)

* Add Pixverse Transition Video node (#79)

* Proper ray-1-6 support as fix has been applied in backend (#80)

* Added Recraft Style - Infinite Style Library node (#82)

* add ideogram v3 (#83)

* [Kling] Split Camera Control config to its own node (#81)

* Add Pika i2v and t2v nodes (#52)

* Temporary Fix for Runway (#87)

* Added Stability Stable Image Ultra node (#86)

* Remove Runway nodes (#88)

* Fix: Prompt text can't be validated in Kling nodes when using primitive nodes (#90)

* Fix: typo in node name "Stabiliy" => "Stability" (#91)

* Add String (Multiline) node (#93)

* Update Pika Duration and Resolution options (#94)

* Change base branch to master. Not main. (#95)

* Fix UploadRequest file_name param (#98)

* Removed Infinite Style Library until later (#99)

* fix ideogram style types (#100)

* fix multi image return (#101)

* add metadata saving to SVG (#102)

* Bump templates version to include API node template workflows (#104)

* Fix: `download_url_to_video_output` return type (#103)

* fix 4o generation bug (#106)

* Serve SVG files directly (#107)

* Add a bunch of nodes, 3 ready to use, the rest waiting for endpoint support (#108)

* Revert "Serve SVG files directly" (#111)

* Expose 4 remaining Recraft nodes (#112)

* [Kling] Add `Duration` and `Video ID` outputs (#105)

* Fix: datamodel-codegen sets string#binary type to non-existent `bytes_aliased` variable  (#114)

* Fix: Dall-e 2 not setting request content-type dynamically (#113)

* Default request timeout: one hour. (#116)

* Add Kling nodes: camera control, start-end frame, lip-sync, video extend (#115)

* Add 8 nodes - 4 BFL, 4 Stability (#117)

* Fix error for Recraft ImageToImage error for nonexistent random_seed param (#118)

* Add remaining Pika nodes (#119)

* Make controls input work for Recraft Image to Image node (#120)

* Use upstream PR: Support saving Comfy VIDEO type to buffer (#123)

* Use Upstream PR: "Fix: Error creating video when sliced audio tensor chunks are non-c-contiguous" (#127)

* Improve audio upload utils (#128)

* Fix: Nested `AnyUrl` in request model cannot be serialized (Kling, Runway) (#129)

* Show errors and API output URLs to the user (change log levels) (#131)

* Fix: Luma I2I fails when weight is <=0.01 (#132)

* Change category of `LumaConcepts` node from image to video (#133)

* Fix: `image.shape` accessed before `image` is null-checked (#134)

* Apply small fixes and most prompt validation (if needed to avoid API error) (#135)

* Node name/category modifications (#140)

* Add back Recraft Style - Infinite Style Library node (#141)

* Fixed Kling: Check attributes of pydantic types. (#144)

* Bump `comfyui-workflow-templates` version (#142)

* [Kling] Print response data when error validating response (#146)

* Fix: error validating Kling image response, trying to use `"key" in` on Pydantic class instance (#147)

* [Kling] Fix: Correct/verify supported subset of input combos in Kling nodes (#149)

* [Kling] Fix typo in node description (#150)

* [Kling] Fix: CFG min/max not being enforced (#151)

* Rebase launch-rebase (private) on prep-branch (public copy of master) (#153)

* Bump templates version (#154)

* Fix: Kling image gen nodes don't return entire batch when `n` > 1 (#152)

* Remove pixverse_template from PixVerse Transition Video node (#155)

* Invert image_weight value on Luma Image to Image node (#156)

* Invert and resize mask for Ideogram V3 node to match masking conventions (#158)

* [Kling] Fix: image generation nodes not returning Tuple (#159)

* [Bug] [Kling] Fix Kling camera control (#161)

* Kling Image Gen v2 + improve node descriptions for Flux/OpenAI (#160)

* [Kling] Don't return video_id from dual effect video (#162)

* Bump frontend to 1.18.8 (#163)

* Use 3.9 compat syntax (#164)

* Use Python 3.10

* add example env var

* Update templates to 0.1.11

* Bump frontend to 1.18.9

---------

Co-authored-by: Robin Huang <robin.j.huang@gmail.com>
Co-authored-by: Christian Byrne <cbyrne@comfy.org>
Co-authored-by: thot experiment <94414189+thot-experiment@users.noreply.github.com>
2025-05-06 04:23:00 -04:00
comfyanonymous
d9c80a85e5 This should not be a warning. (#7946) 2025-05-05 07:49:07 -04:00
Christian Byrne
3e62c5513a make audio chunks contiguous before encoding (#7942) 2025-05-04 23:27:23 -04:00
Christian Byrne
cd18582578 Support saving Comfy VIDEO type to buffer (#7939)
* get output format when saving to buffer

* add unit tests for writing to file or stream with correct fmt

* handle `to_format=None`

* fix formatting
2025-05-04 23:26:57 -04:00
comfyanonymous
80a44b97f5 Change lumina to native RMSNorm. (#7935) 2025-05-04 06:39:23 -04:00
comfyanonymous
9187a09483 Change cosmos and hydit models to use the native RMSNorm. (#7934) 2025-05-04 06:26:20 -04:00
comfyanonymous
3041e5c354 Switch mochi and wan modes to use pytorch RMSNorm. (#7925)
* Switch genmo model to native RMSNorm.

* Switch WAN to native RMSNorm.
2025-05-03 19:07:55 -04:00
comfyanonymous
7689917113 ComfyUI version 0.3.31 2025-05-03 00:34:01 -04:00
comfyanonymous
486ad8fdc5 Fix updater issue with newer portable. (#7917) 2025-05-03 00:28:10 -04:00
Terry Jia
065d855f14 upstream Preview Any from rgthree-comfy (#7815)
* upstream Preview Any from rgthree-comfy

* use IO.ANY
2025-05-02 13:15:54 -04:00
Chenlei Hu
530494588d [BugFix] Update frontend 1.18.6 (#7910) 2025-05-02 13:14:52 -04:00
Kohaku-Blueleaf
2ab9618732 Fix the bugs in OFT/BOFT moule (#7909)
* Correct calculate_weight and load for OFT

* Correct calculate_weight and loading for BOFT
2025-05-02 13:12:37 -04:00
catboxanon
d9a87c1e6a Fix outdated comment about Internet connectivity (#7827) 2025-05-02 05:28:27 -04:00
catboxanon
551fe8dcee Add node to extend sigmas (#7901)
* Add ExpandSigmas node

* Rename, add interpolation functions

Co-authored-by: liesen <liesen.dev@gmail.com>

* Move computed interpolation outside loop

* Add type hints

---------

Co-authored-by: liesen <liesen.dev@gmail.com>
2025-05-02 05:28:05 -04:00
comfyanonymous
ff99861650 Make clipsave work with more TE models. (#7908) 2025-05-02 05:15:32 -04:00
catboxanon
8d0661d0ba Lint instance methods (#7903) 2025-05-01 19:32:04 -04:00
Chenlei Hu
6d32dc049e Update frontend to v1.18 (#7898) 2025-05-01 10:57:54 -04:00
comfyanonymous
aa9d759df3 Switch ltxv to use the pytorch RMSNorm. (#7897) 2025-05-01 06:33:42 -04:00
Christian Byrne
c6c19e9980 fix bug (#7894) 2025-05-01 03:24:32 -04:00
comfyanonymous
08ff5fa08a Cleanup chroma PR. 2025-04-30 20:57:30 -04:00
Silver
4ca3d84277 Support for Chroma - Flux1 Schnell distilled with CFG (#7355)
* Upload files for Chroma Implementation

* Remove trailing whitespace

* trim more trailing whitespace..oops

* remove unused imports

* Add supported_inference_dtypes

* Set min_length to 0 and remove attention_mask=True

* Set min_length to 1

* get_mdulations added from blepping and minor changes

* Add lora conversion if statement in lora.py

* Update supported_models.py

* update model_base.py

* add uptream commits

* set modelType.FLOW, will cause beta scheduler to work properly

* Adjust memory usage factor and remove unnecessary code

* fix mistake

* reduce code duplication

* remove unused imports

* refactor for upstream sync

* sync chroma-support with upstream via syncbranch patch

* Update sd.py

* Add Chroma as option for the OptimalStepsScheduler node
2025-04-30 20:57:00 -04:00
comfyanonymous
39c27a3705 Add updater test to stable release workflow. (#7887) 2025-04-30 14:42:18 -04:00
comfyanonymous
b1c7291569 Test updater in the windows release workflow. (#7886) 2025-04-30 14:18:20 -04:00
comfyanonymous
dbc726f80c Better vace memory estimation. (#7875) 2025-04-29 20:42:00 -04:00
comfyanonymous
7ee96455e2 Bump minimum pyav version to 14.2.0 (#7874) 2025-04-29 20:38:45 -04:00
comfyanonymous
0a66d4b0af Per device stream counters for async offload. (#7873) 2025-04-29 20:28:52 -04:00
Terry Jia
5c5457a4ef support more example folders (#7836)
* support more example folders

* add warning message
2025-04-29 11:28:04 -04:00
Chenlei Hu
45503f6499 Add release process section to README (#7855)
* Add release process section to README

* move

* Update README.md
2025-04-29 06:32:34 -04:00
comfyanonymous
005a91ce2b Latest desktop and portable should work on blackwell. (#7861)
Removed the mention about the cards from the readme.
2025-04-29 06:29:38 -04:00
guill
68f0d35296 Add support for VIDEO as a built-in type (#7844)
* Add basic support for videos as types

This PR adds support for VIDEO as first-class types. In order to avoid
unnecessary costs, VIDEO outputs must implement the `VideoInput` ABC,
but their implementation details can vary. Included are two
implementations of this type which can be returned by other nodes:

* `VideoFromFile` - Created with either a path on disk (as a string) or
  a `io.BytesIO` containing the contents of a file in a supported format
  (like .mp4). This implementation won't actually load the video unless
  necessary. It will also avoid re-encoding when saving if possible.
* `VideoFromComponents` - Created from an image tensor and an optional
  audio tensor.

Currently, only h264 encoded videos in .mp4 containers are supported for
saving, but the plan is to add additional encodings/containers in the
near future (particularly .webm).

* Add optimization to avoid parsing entire video

* Improve type declarations to reduce warnings

* Make sure bytesIO objects can be read many times

* Fix a potential issue when saving long videos

* Fix incorrect type annotation

* Add a `LoadVideo` node to make testing easier

* Refactor new types out of the base comfy folder

I've created a new `comfy_api` top-level module. The intention is that
anything within this folder would be covered by semver-style versioning
that would allow custom nodes to rely on them not introducing breaking
changes.

* Fix linting issue
2025-04-29 05:58:00 -04:00
comfyanonymous
83d04717b6 Support HiDream E1 model. (#7857) 2025-04-28 15:01:15 -04:00
Yoland Yan
7d329771f9 Add moderation level option to OpenAIGPTImage1 node and update api_call method signature (#7804) 2025-04-28 13:59:22 -04:00
chaObserv
c15909bb62 CFG++ for gradient estimation sampler (#7809) 2025-04-28 13:51:35 -04:00
Andrew Kvochko
772b4c5945 ltxv: overwrite existing mask on conditioned frame. (#7845)
This commit overwrites the noise mask on the latent frame that is being
conditioned with keyframe conditioning, setting it to one.
2025-04-28 13:42:04 -04:00
comfyanonymous
5a50c3c7e5 Fix stream priority to support older pytorch. (#7856) 2025-04-28 13:07:21 -04:00
Pam
30159a7fe6 Save v pred zsnr metadata (#7840) 2025-04-28 13:03:21 -04:00
Andrew Kvochko
cb9ac3db58 ltxv: add strength parameter to conditioning. (#7849)
This commit adds strength parameter to the LTXVImgToVideo node.
2025-04-28 12:59:17 -04:00
Benjamin Lu
8115a7895b Add /api/v2/userdata endpoint (#7817)
* Add list_userdata_v2

* nit

* nit

* nit

* nit

* please set me free

* \\\\

* \\\\
2025-04-27 20:06:55 -04:00
comfyanonymous
c8cd7ad795 Use stream for casting if enabled. (#7833) 2025-04-27 05:38:11 -04:00
comfyanonymous
542b4b36b6 Prevent custom nodes from hooking certain functions. (#7825) 2025-04-26 20:52:56 -04:00
comfyanonymous
ac10a0d69e Make loras work with --async-offload (#7824) 2025-04-26 19:56:22 -04:00
comfyanonymous
0dcc75ca54 Add experimental --async-offload lowvram weight offloading. (#7820)
This should speed up the lowvram mode a bit. It currently is only enabled when --async-offload is used but it will be enabled by default in the future if there are no problems.
2025-04-26 16:11:21 -04:00
comfyanonymous
b685b8a4e0 Update portable package workflow to cu128 (#7812) 2025-04-26 04:43:12 -04:00
comfyanonymous
23e39f2ba7 Add a T5TokenizerOptions node to set options for the T5 tokenizer. (#7803) 2025-04-25 19:36:00 -04:00
AustinMroz
78992c4b25 [NodeDef] Add documentation on widgetType (#7768)
* [NodeDef] Add documentation on widgetType

* Document required version for widgetType
2025-04-25 13:35:07 -04:00
comfyanonymous
f935d42d8e Support SimpleTuner lycoris lora format for HiDream. 2025-04-25 03:11:14 -04:00
comfyanonymous
a97f2f850a ComfyUI version 0.3.30 2025-04-24 16:03:01 -04:00
comfyanonymous
5acb705857 Switch LTXVPreprocess to libx264 (#7776) 2025-04-24 13:58:31 -04:00
thot experiment
5c80da31db fix multiple image return from api nodes (#7772) 2025-04-24 03:29:05 -04:00
thot experiment
e2eed9eb9b throw away alpha channel in clip vision preprocessor (#7769)
saves users having to explicitly discard the channel
2025-04-23 21:28:36 -04:00
filtered
11b68ebd22 [BugFix] Update frontend to 1.17.11 (#7766) 2025-04-23 18:16:12 -04:00
thot experiment
188b383c35 change timeout to 7 days (#7765) 2025-04-23 17:53:34 -04:00
thot experiment
2c1d686ec6 implement multi image prompting for gpt-image-1 and fix transparency in outputs (#7763)
* implement multi image prompting for GPTI Image 1

* fix transparency not working

* fix ruff
2025-04-23 16:10:10 -04:00
filtered
e8ddc2be95 [BugFix] Update frontend to 1.17.10 (#7762) 2025-04-23 16:02:41 -04:00
Robin Huang
dea1c7474a Add support for API Nodes in ComfyUI. (#7726)
* Add Ideogram generate node.

* Add staging api.

* COMFY_API_NODE_NAME node property

* switch to boolean flag and use original node name for id

* add optional to type

* Add API_NODE and common error for missing auth token (#5)

* Add Minimax Video Generation + Async Task queue polling example (#6)

* [Minimax] Show video preview and embed workflow in ouput (#7)

* [API Nodes] Send empty request body instead of empty dictionary. (#8)

* Fixed: removed function from rebase.

* Add pydantic.

* Remove uv.lock

* Remove polling operations.

* Update stubs workflow.

* Remove polling comments.

* Update stubs.

* Use pydantic v2.

* Use pydantic v2.

* Add basic OpenAITextToImage node

* Add.

* convert image to tensor.

* Improve types.

* Ruff.

* Push tests.

* Handle multi-form data.

- Don't set content-type for multi-part/form
- Use data field instead of JSON

* Change to api.comfy.org

* Handle error code 409.

* separate out nodes per openai model

* Update error message.

* fix wrong output type

* re-categorize nodes, remove ideogram (for now)

* oops, fix mappings

* fix ruff

* Update frontend  to 1.17.9

* embargo lift rename nodes

* remove unused autogenerated model code

* fix API type error and add b64 support for 4o

* fix ruff

* oops forgot mask scaling code

* Remove unused types.

---------

Co-authored-by: bymyself <cbyrne@comfy.org>
Co-authored-by: Yoland Y <4950057+yoland68@users.noreply.github.com>
Co-authored-by: thot-experiment <thot@thiic.cc>
2025-04-23 15:38:34 -04:00
comfyanonymous
154f2911aa Lower size of release package more. (#7754) 2025-04-23 06:33:09 -04:00
comfyanonymous
3eaad0590e Lower size of release package. (#7751) 2025-04-23 05:47:09 -04:00
comfyanonymous
7eaff81be1 fp16 accumulation can now be enabled on the stable package. (#7750) 2025-04-23 05:28:24 -04:00
comfyanonymous
21a11ef817 Pytorch stable 2.7 is out and support cu128 (#7749) 2025-04-23 05:12:59 -04:00
comfyanonymous
552615235d Fix for dino lowvram. (#7748) 2025-04-23 04:12:52 -04:00
Robin Huang
0738e4ea5d [API nodes] Add backbone for supporting api nodes in ComfyUI (#7745)
* Add Ideogram generate node.

* Add staging api.

* COMFY_API_NODE_NAME node property

* switch to boolean flag and use original node name for id

* add optional to type

* Add API_NODE and common error for missing auth token (#5)

* Add Minimax Video Generation + Async Task queue polling example (#6)

* [Minimax] Show video preview and embed workflow in ouput (#7)

* [API Nodes] Send empty request body instead of empty dictionary. (#8)

* Fixed: removed function from rebase.

* Add pydantic.

* Remove uv.lock

* Remove polling operations.

* Update stubs workflow.

* Remove polling comments.

* Update stubs.

* Use pydantic v2.

* Use pydantic v2.

* Add basic OpenAITextToImage node

* Add.

* convert image to tensor.

* Improve types.

* Ruff.

* Push tests.

* Handle multi-form data.

- Don't set content-type for multi-part/form
- Use data field instead of JSON

* Change to api.comfy.org

* Handle error code 409.

* Remove nodes.

---------

Co-authored-by: bymyself <cbyrne@comfy.org>
Co-authored-by: Yoland Y <4950057+yoland68@users.noreply.github.com>
2025-04-23 02:18:08 -04:00
Alex Butler
92cdc692f4 Replace aom-av1 with svt-av1 for saving webm videos, use preset 6 + yuv420p10le pixel format (#7736)
* Add support for saving svt-av1 webm videos & yuv420p10le pixel format

* Replace aom-av1 with svt-av1

Use yuv420p10le for av1
2025-04-22 17:57:17 -04:00
comfyanonymous
2d6805ce57 Add option for using fp8_e8m0fnu for model weights. (#7733)
Seems to break every model I have tried but worth testing?
2025-04-22 06:17:38 -04:00
Kohaku-Blueleaf
a8f63c0d5b Support dora_scale on both axis (#7727) 2025-04-22 05:01:27 -04:00
Terry Jia
454a635c1b upstream MaskPreview from ComfyUI_essentials (#7719) 2025-04-22 05:00:28 -04:00
Kohaku-Blueleaf
966c43ce26 Add OFT/BOFT algorithm in weight adapter (#7725) 2025-04-22 04:59:47 -04:00
comfyanonymous
3ab231f01f Fix issue with WAN VACE implementation. (#7724) 2025-04-21 23:36:12 -04:00
Kohaku-Blueleaf
1f3fba2af5 Unified Weight Adapter system for better maintainability and future feature of Lora system (#7540) 2025-04-21 20:15:32 -04:00
comfyanonymous
5d0d4ee98a Add strength control for vace. (#7717) 2025-04-21 19:36:20 -04:00
Alexander G. Morano
9d57b8afd8 Update nodes_primitive.py (#7716)
Allow FLOAT and INT types to support negative numbers. 
Caps the numbers at the user's own system min and max.
2025-04-21 18:51:31 -04:00
filtered
5d51794607 Add node type hint for socketless option (#7714)
* Add node type hint for socketless option

* nit - Doc
2025-04-21 16:13:00 -04:00
comfyanonymous
ce22f687cc Support for WAN VACE preview model. (#7711)
* Support for WAN VACE preview model.

* Remove print.
2025-04-21 14:40:29 -04:00
Chenlei Hu
b6fd3ffd10 Populate AUTH_TOKEN_COMFY_ORG hidden input (#7709) 2025-04-21 14:39:45 -04:00
comfyanonymous
11b72c9c55 CLIPTextEncodeHiDream. (#7703) 2025-04-21 02:41:51 -04:00
comfyanonymous
2c735c13b4 Slightly better fix for #7687 2025-04-20 11:33:27 -04:00
comfyanonymous
fd27494441 Use empty t5 of size 128 for hidream, seems to give closer results. 2025-04-19 19:49:40 -04:00
power88
f43e1d7f41 Hidream: Allow loading hidream text encoders in CLIPLoader and DualCLIPLoader (#7676)
* Hidream: Allow partial loading text encoders

* reformat code for ruff check.
2025-04-19 19:47:30 -04:00
Yoland Yan
4486b0d0ff Update CODEOWNERS and add christian-byrne (#7663) 2025-04-19 17:23:31 -04:00
comfyanonymous
636d4bfb89 Fix hard crash when the spiece tokenizer path is bad. 2025-04-19 15:55:43 -04:00
Robin Huang
dc300a4569 Add wanfun template workflows. (#7678) 2025-04-19 15:21:46 -04:00
Chenlei Hu
f3b09b9f2d [BugFix] Update frontend to 1.16.9 (#7655)
Backport https://github.com/Comfy-Org/ComfyUI_frontend/pull/3505
2025-04-18 15:12:42 -04:00
comfyanonymous
7ecd5e9614 Increase freq_cutoff in FreSca node. 2025-04-18 03:16:16 -04:00
City
2383a39e3b Replace CLIPType if with getattr (#7589)
* Replace CLIPType if with getattr

* Forgot to remove breakpoint from testing
2025-04-18 02:53:36 -04:00
Terry Jia
34e06bf7ec add support to output camera state (#7582) 2025-04-18 02:52:18 -04:00
Chenlei Hu
55822faa05 [Type] Annotate graph.get_input_info (#7386)
* [Type] Annotate graph.get_input_info

* nit

* nit
2025-04-17 21:02:24 -04:00
comfyanonymous
880c205df1 Add hidream to readme. 2025-04-17 16:58:27 -04:00
comfyanonymous
3dc240d089 Make fresca work on multi dim. 2025-04-17 15:46:41 -04:00
BVH
19373aee75 Add FreSca node (#7631) 2025-04-17 15:24:33 -04:00
comfyanonymous
93292bc450 ComfyUI version 0.3.29 2025-04-17 14:45:01 -04:00
Christian Byrne
05d5a75cdc Update frontend to 1.16 (Install templates as pip package) (#7623)
* install templates as pip package

* Update requirements.txt

* bump templates version to include hidream

---------

Co-authored-by: Chenlei Hu <hcl@comfy.org>
2025-04-17 14:25:33 -04:00
comfyanonymous
eba7a25e7a Add WanFirstLastFrameToVideo node to use the new model. 2025-04-17 13:23:22 -04:00
comfyanonymous
dbcfd092a2 Set default context_img_len to 257 2025-04-17 12:42:34 -04:00
comfyanonymous
c14429940f Support loading WAN FLF model. 2025-04-17 12:04:48 -04:00
comfyanonymous
0d720e4367 Don't hardcode length of context_img in wan code. 2025-04-17 06:25:39 -04:00
comfyanonymous
1fc00ba4b6 Make hidream work with any latent resolution. 2025-04-16 18:34:14 -04:00
comfyanonymous
9899d187b1 Limit T5 to 128 tokens for HiDream: #7620 2025-04-16 18:07:55 -04:00
comfyanonymous
f00f340a56 Reuse code from flux model. 2025-04-16 17:43:55 -04:00
Chenlei Hu
cce1d9145e [Type] Mark input options NotRequired (#7614) 2025-04-16 15:41:00 -04:00
comfyanonymous
b4dc03ad76 Fix issue on old torch. 2025-04-16 04:53:56 -04:00
comfyanonymous
9ad792f927 Basic support for hidream i1 model. 2025-04-15 17:35:05 -04:00
comfyanonymous
6fc5dbd52a Cleanup. 2025-04-15 12:13:28 -04:00
comfyanonymous
3e8155f7a3 More flexible long clip support.
Add clip g long clip support.

Text encoder refactor.

Support llama models with different vocab sizes.
2025-04-15 10:32:21 -04:00
comfyanonymous
8a438115fb add RMSNorm to comfy.ops 2025-04-14 18:00:33 -04:00
comfyanonymous
a14c2fc356 ComfyUI version v0.3.28 2025-04-13 12:21:12 -07:00
JNP
9ee6ca99d8 add_optimalsteps (#7584)
Co-authored-by: bebebe666 <jianningpei@tencent.com>
2025-04-12 20:33:36 -04:00
comfyanonymous
bb495cc9b8 Print python version in log. 2025-04-12 18:58:34 -04:00
chaObserv
e51d9ba5fc Add SEEDS (stage 2 & 3 DP) sampler (#7580)
* Add seeds stage 2 & 3 (DP) sampler

* Change the name to SEEDS in comment
2025-04-12 18:36:08 -04:00
Christian Byrne
c87a06f934 Update filter_files_content_types to support filtering 3d models (#7572)
* support 3d model filtering

* fix lint error: blank line contains whitespace

* add model extensions to test runner mimetype cache manually

* use unittest.mock.patch

* remove mtl file from testcase (actually plaintext support file)
2025-04-12 18:30:39 -04:00
catboxanon
1714a4c158 Add CublasOps support (#7574)
* CublasOps support

* Guard CublasOps behind --fast arg
2025-04-12 18:29:15 -04:00
Christian Byrne
73ecb75a3d filter image files in load image dropdown (#7573) 2025-04-12 18:27:59 -04:00
comfyanonymous
22ad513c72 Refactor node cache code to more easily add other types of cache. 2025-04-11 07:16:52 -04:00
Chargeuk
ed945a1790 Dependency Aware Node Caching for low RAM/VRAM machines (#7509)
* add dependency aware cache that removed a cached node as soon as all of its decendents have executed. This allows users with lower RAM to run workflows they would otherwise not be able to run. The downside is that every workflow will fully run each time even if no nodes have changed.

* remove test code

* tidy code
2025-04-11 06:55:51 -04:00
Chenlei Hu
f9207c6936 Update frontend to 1.15 (#7564) 2025-04-11 06:46:20 -04:00
Christian Byrne
8ad7477647 dont cache templates index (#7569) 2025-04-11 06:06:53 -04:00
Chenlei Hu
98bdca4cb2 Deprecate InputTypeOptions.defaultInput (#7551)
* Deprecate InputTypeOptions.defaultInput

* nit

* nit
2025-04-10 06:57:06 -04:00
comfyanonymous
a26da20a76 Fix custom nodes not importing when path contains a dot. 2025-04-10 03:37:52 -04:00
Jedrzej Kosinski
e346d8584e Add prepare_sampling wrapper allowing custom nodes to more accurately report noise_shape (#7500) 2025-04-09 09:43:35 -04:00
comfyanonymous
ab31b64412 Make "surface net" the default in the VoxelToMesh node. 2025-04-09 09:42:08 -04:00
thot experiment
fe29739c68 add VoxelToMesh node w/ surfacenet meshing (#7446)
* add VoxelToMesh node w/ surfacenet meshing

could delete the VoxelToMeshBasic node now probably?

* fix ruff
2025-04-09 09:41:03 -04:00
Chenlei Hu
e8345a9b7b Align /prompt response schema (#7423) 2025-04-09 09:10:36 -04:00
comfyanonymous
8c6b9f4481 Prevent custom nodes from accidentally overwriting global modules. (#7167)
* Prevent custom nodes from accidentally overwriting global modules.

* Improve.
2025-04-09 09:08:57 -04:00
Christian Byrne
cc7e023a4a handle palette mode in loadimage node (#7539) 2025-04-09 09:07:07 -04:00
comfyanonymous
2f7d8159c3 Show the user an error when the controlnet file is invalid. 2025-04-08 08:11:59 -04:00
comfyanonymous
70d7242e57 Support the wan fun reward loras. 2025-04-07 05:01:47 -04:00
comfyanonymous
49b732afd5 Show a proper error to the user when a vision model file is invalid. 2025-04-06 22:43:56 -04:00
comfyanonymous
3bfe4e5276 Support 512 siglip model. 2025-04-05 07:01:01 -04:00
Raphael Walker
89e4ea0175 Add activations_shape info in UNet models (#7482)
* Add activations_shape info in UNet models

* activations_shape should be a list
2025-04-04 21:27:54 -04:00
comfyanonymous
3a100b9a55 Disable partial offloading of audio VAE. 2025-04-04 21:24:56 -04:00
comfyanonymous
721253cb05 Fix problem. 2025-04-03 20:57:59 -04:00
comfyanonymous
3d2e3a6f29 Fix alpha image issue in more nodes. 2025-04-02 19:32:49 -04:00
BiologicalExplosion
2222cf67fd MLU memory optimization (#7470)
Co-authored-by: huzhan <huzhan@cambricon.com>
2025-04-02 19:24:04 -04:00
comfyanonymous
ab5413351e Fix comment.
This function does not support quads.
2025-04-01 14:09:31 -04:00
Laurent Erignoux
2b71aab299 User missing (#7439)
* Ensuring a 401 error is returned when user data is not found in multi-user context.

* Returning a 401 error when provided comfy-user does not exists on server side.
2025-04-01 13:53:52 -04:00
BVH
301e26b131 Add option to store TE in bf16 (#7461) 2025-04-01 13:48:53 -04:00
comfyanonymous
548457bac4 Fix alpha channel mismatch on destination in ImageCompositeMasked 2025-03-31 20:59:12 -04:00
comfyanonymous
0b4584c741 Fix latent composite node not working when source has alpha. 2025-03-30 21:47:05 -04:00
comfyanonymous
a3100c8452 Remove useless code. 2025-03-29 20:12:56 -04:00
Michael Kupchick
832fc02330 ltxv: fix preprocessing exception when compression is 0. (#7431) 2025-03-29 20:03:02 -04:00
comfyanonymous
2d17d8910c Don't error if wan concat image has extra channels. 2025-03-28 08:49:29 -04:00
Chenlei Hu
a40fcfc2d5 Update frontend to 1.14.6 (#7416)
Cherry-pick the fix: https://github.com/Comfy-Org/ComfyUI_frontend/pull/3252
2025-03-28 02:27:01 -04:00
comfyanonymous
0a1f8869c9 Add WanFunInpaintToVideo node for the Wan fun inpaint models. 2025-03-27 11:13:27 -04:00
comfyanonymous
3661c833bc Support the WAN 2.1 fun control models.
Use the new WanFunControlToVideo node.
2025-03-26 19:54:54 -04:00
comfyanonymous
84fdaf7b0e Add CFGZeroStar node.
Works on all models that use a negative prompt but is meant for rectified
flow models.
2025-03-26 05:09:52 -04:00
comfyanonymous
8edc1f44c1 Support more float8 types. 2025-03-25 05:23:49 -04:00
comfyanonymous
eade1551bb Add Hunyuan3D to readme. 2025-03-24 07:14:32 -04:00
comfyanonymous
581a9991ff Add model merging node for WAN 2.1 2025-03-23 08:06:36 -04:00
comfyanonymous
e471c726e5 Fallback to pytorch attention if sage attention fails. 2025-03-22 15:45:56 -04:00
comfyanonymous
75c1c757d9 ComfyUI version v0.3.27 2025-03-21 20:09:54 -04:00
Chenlei Hu
ce9b084279 [nit] Format error strings (#7345) 2025-03-21 19:08:25 -04:00
Terry Jia
2206246055 support output normal and lineart once (#7290) 2025-03-21 16:24:13 -04:00
comfyanonymous
d9fa9d307f Automatically set the right sampling type for lotus. 2025-03-21 14:19:37 -04:00
thot experiment
83e839a89b Native LotusD Implementation (#7125)
* draft pass at a native comfy implementation of Lotus-D depth and normal est

* fix model_sampling kludges

* fix ruff

---------

Co-authored-by: comfyanonymous <121283862+comfyanonymous@users.noreply.github.com>
2025-03-21 14:04:15 -04:00
Chenlei Hu
0cf2274699 Update frontend to 1.14 (#7343) 2025-03-21 13:50:09 -04:00
comfyanonymous
0956107170 Nodes to convert images to YUV and back.
Can be used to convert an image to black and white.
2025-03-21 06:32:44 -04:00
Chenlei Hu
a4a956dbbd Add backend primitive nodes (#7328)
* Add backend primitive nodes

* Add control after generate to int primitive
2025-03-21 01:47:18 -04:00
Chenlei Hu
8b9ce4ed18 Update frontend to 1.13 (#7331) 2025-03-21 00:17:36 -04:00
comfyanonymous
3872b43d4b A few fixes for the hunyuan3d models. 2025-03-20 04:52:31 -04:00
comfyanonymous
32ca0805b7 Fix orientation of hunyuan 3d model. 2025-03-19 19:55:24 -04:00
comfyanonymous
11f1b41bab Initial Hunyuan3Dv2 implementation.
Supports the multiview, mini, turbo models and VAEs.
2025-03-19 16:52:58 -04:00
comfyanonymous
3b19fc76e3 Allow disabling pe in flux code for some other models. 2025-03-18 05:09:25 -04:00
comfyanonymous
50614f1b79 Fix regression with clip vision. 2025-03-17 13:56:11 -04:00
comfyanonymous
6dc7b0bfe3 Add support for giant dinov2 image encoder. 2025-03-17 05:53:54 -04:00
comfyanonymous
e8e990d6b8 Cleanup code. 2025-03-16 06:29:12 -04:00
Jedrzej Kosinski
2e24a15905 Call unpatch_hooks at the start of ModelPatcher.partially_unload (#7253)
* Call unpatch_hooks at the start of ModelPatcher.partially_unload

* Only call unpatch_hooks in partially_unload if lowvram is possible
2025-03-16 06:02:45 -04:00
chaObserv
fd5297131f Guard the edge cases of noise term in er_sde (#7265) 2025-03-16 06:02:25 -04:00
comfyanonymous
55a1b09ddc Allow loading diffusion model files with the "Load Checkpoint" node. 2025-03-15 08:27:49 -04:00
comfyanonymous
3c3988df45 Show a better error message if the VAE is invalid. 2025-03-15 08:26:36 -04:00
Christian Byrne
7ebd8087ff hotfix fe (#7244) 2025-03-15 01:38:10 -04:00
Chenlei Hu
c624c29d66 Update frontend to 1.12.9 (#7236)
* Update frontend to 1.12.9

* Update requirements.txt
2025-03-14 18:17:26 -04:00
comfyanonymous
a2448fc527 Remove useless code. 2025-03-14 18:10:37 -04:00
comfyanonymous
6a0daa79b6 Make the SkipLayerGuidanceDIT node work on WAN. 2025-03-14 10:55:19 -04:00
FeepingCreature
9c98c6358b Tolerate missing @torch.library.custom_op (#7234)
This can happen on Pytorch versions older than 2.4.
2025-03-14 09:51:26 -04:00
FeepingCreature
7aceb9f91c Add --use-flash-attention flag. (#7223)
* Add --use-flash-attention flag.
This is useful on AMD systems, as FA builds are still 10% faster than Pytorch cross-attention.
2025-03-14 03:22:41 -04:00
comfyanonymous
35504e2f93 Fix. 2025-03-13 15:03:18 -04:00
comfyanonymous
299436cfed Print mac version. 2025-03-13 10:05:40 -04:00
Chenlei Hu
52e566d2bc Add codeowner for comfy/comfy_types (#7213) 2025-03-12 17:30:00 -04:00
Chenlei Hu
9b6cd9b874 [NodeDef] Add documentation on multi_select input option (#7212) 2025-03-12 17:29:39 -04:00
chaObserv
3fc688aebd Ensure the extra_args in dpmpp sde series (#7204) 2025-03-12 17:28:59 -04:00
comfyanonymous
f4411250f3 Repeat frontend version warning at the end.
This way someone running ComfyUI with the command line is more likely to
actually see it.
2025-03-12 07:13:40 -04:00
Chenlei Hu
d2a0fb6bb0 Add unwrap widget value support (#7197)
* Add unwrap widget value support

* nit
2025-03-12 06:39:14 -04:00
chaObserv
01015bff16 Add er_sde sampler (#7187) 2025-03-12 02:42:37 -04:00
comfyanonymous
2330754b0e Fix error saving some latents. 2025-03-11 15:07:16 -04:00
comfyanonymous
bc219a6487 Merge pull request #7143 from christian-byrne/fix-remote-widget-node
Fix LoadImageOutput node
2025-03-11 04:30:25 -04:00
comfyanonymous
94689766ad Merge pull request #7179 from comfyanonymous/ignore_fe_package
Only check frontend package if using default frontend
2025-03-11 03:45:02 -04:00
huchenlei
cfbe4b49ca Access package version 2025-03-10 20:43:59 -04:00
comfyanonymous
ca8efab79f Support control loras on Wan. 2025-03-10 17:23:13 -04:00
Chenlei Hu
65ea778a5e nit 2025-03-10 15:19:59 -04:00
Chenlei Hu
db9f2a34fc Fix unit test 2025-03-10 15:19:52 -04:00
Chenlei Hu
7946049794 nit 2025-03-10 15:14:40 -04:00
Chenlei Hu
6f6349b6a7 nit 2025-03-10 15:10:40 -04:00
Chenlei Hu
1f138dd382 Only check frontend package if using default frontend 2025-03-10 15:07:44 -04:00
comfyanonymous
b779349b55 Temporarily revert fix to give time for people to update their nodes. 2025-03-10 06:30:17 -04:00
comfyanonymous
35e2dcf5d7 Hack to fix broken manager. 2025-03-10 06:15:17 -04:00
Andrew Kvochko
67c7184b74 ltxv: relax frame_idx divisibility for single frames. (#7146)
This commit relaxes divisibility constraint for single-frame
conditionings. For single frames, the index can be arbitrary, while
multi-frame conditionings (>= 9 frames) must still be aligned to 8
frames.

Co-authored-by: Andrew Kvochko <a.kvochko@lightricks.com>
2025-03-10 04:11:48 -04:00
comfyanonymous
6f8e766509 Prevent custom nodes from accidentally overwriting global modules. 2025-03-10 03:33:41 -04:00
Terry Jia
e1da98a14a remove unused params (#6931) 2025-03-09 14:07:09 -04:00
bymyself
a73410aafa remove overrides 2025-03-09 03:46:08 -07:00
comfyanonymous
9aac21f894 Fix issues with new hunyuan img2vid model and bumb version to v0.3.26 2025-03-09 05:07:22 -04:00
Jedrzej Kosinski
528d1b3563 When cached_hook_patches contain weights for hooks, only use hook_backup for unused keys (#7067) 2025-03-09 04:26:31 -04:00
comfyanonymous
2bc4b5968f ComfyUI version v0.3.25 2025-03-09 03:30:20 -04:00
comfyanonymous
7395b0c0d1 Support new hunyuan video i2v model.
Use the new "v2 (replace)" guidance type in HunyuanImageToVideo and set
image_interleave to 4 on the "Text Encode Hunyuan Video" node.
2025-03-08 20:34:47 -05:00
comfyanonymous
0952569493 Fix stable cascade VAE on some lowvram machines. 2025-03-08 20:24:04 -05:00
comfyanonymous
29832b3b61 Warn if frontend package is older than the one in requirements.txt 2025-03-08 03:51:36 -05:00
comfyanonymous
be4e760648 Add an image_interleave option to the Hunyuan image to video encode node.
See the tooltip for what it does.
2025-03-07 19:56:26 -05:00
comfyanonymous
c3d9cc4592 Print the frontend version in the log. 2025-03-07 19:56:26 -05:00
Chenlei Hu
84cc9cb528 Update frontend to 1.11.8 (#7119)
* Update frontend to 1.11.7

* Update requirements.txt
2025-03-07 19:02:13 -05:00
comfyanonymous
ebbb920163 Add back taesd to nightly package. 2025-03-07 14:56:09 -05:00
comfyanonymous
d60fe0af4a Reduce size of nightly package. 2025-03-07 08:30:01 -05:00
comfyanonymous
5dbd250965 Update nightly instructions in readme. 2025-03-07 07:57:59 -05:00
comfyanonymous
4ab1875283 Add .bat file to nightly package to run with fp16 accumulation. 2025-03-07 07:45:40 -05:00
comfyanonymous
11b1f27cb1 Set WAN default compute dtype to fp16. 2025-03-07 04:52:36 -05:00
comfyanonymous
70e15fd743 No need for scale_input when fp8 matrix mult is disabled. 2025-03-07 04:49:20 -05:00
comfyanonymous
e1474150de Support fp8_scaled diffusion models that don't use fp8 matrix mult. 2025-03-07 04:39:21 -05:00
JettHu
e62d72e8ca Typo in node_typing.py (#7092) 2025-03-06 15:24:04 -05:00
Dr.Lt.Data
1650cda030 Fixed: Incorrect guide message for missing frontend. (#7105)
`{sys.executable} -m pip` -> `{sys.executable} -s -m pip`

https://github.com/comfyanonymous/ComfyUI/pull/7047#issuecomment-2697876793
2025-03-06 15:23:23 -05:00
comfyanonymous
a13125840c ComfyUI version v0.3.24 2025-03-06 13:53:48 -05:00
comfyanonymous
dfa36e6855 Fix some things breaking when embeddings fail to apply. 2025-03-06 13:31:55 -05:00
comfyanonymous
0124be4d93 ComfyUI version v0.3.23 2025-03-06 04:10:12 -05:00
comfyanonymous
29a70ca101 Support HunyuanVideo image to video model. 2025-03-06 03:07:15 -05:00
comfyanonymous
0bef826a98 Support llava clip vision model. 2025-03-06 00:24:43 -05:00
comfyanonymous
85ef295069 Make applying embeddings more efficient.
Adding new tokens no longer makes a whole copy of the embeddings weight
which can be massive on certain models.
2025-03-05 17:34:38 -05:00
Chenlei Hu
5d84607bf3 Add type hint for FileLocator (#6968)
* Add type hint for FileLocator

* nit
2025-03-05 15:35:26 -05:00
Silver
c1909f350f Better argument handling of front-end-root (#7043)
* Better argument handling of front-end-root

Improves handling of front-end-root launch argument. Several instances where users have set it and ComfyUI launches as normal and completely disregards the launch arg which doesn't make sense. Better to indicate to user that something is incorrect.

* Removed unused import

There was no real reason to use "Optional" typing in ther front-end-root argument.
2025-03-05 15:34:22 -05:00
Chenlei Hu
52b3469606 [NodeDef] Explicitly add control_after_generate to seed/noise_seed (#7059)
* [NodeDef] Explicitly add control_after_generate to seed/noise_seed

* Update comfy/comfy_types/node_typing.py

Co-authored-by: filtered <176114999+webfiltered@users.noreply.github.com>

---------

Co-authored-by: filtered <176114999+webfiltered@users.noreply.github.com>
2025-03-05 15:33:23 -05:00
comfyanonymous
889519971f Bump ComfyUI version to v0.3.22 2025-03-05 10:06:37 -05:00
comfyanonymous
76739c23c3 Revert "Partially revert last commit."
This reverts commit a80bc822a2.
2025-03-05 09:57:40 -05:00
comfyanonymous
a80bc822a2 Partially revert last commit. 2025-03-05 08:58:44 -05:00
Andrew Kvochko
872780d236 fix: ltxv crop guides works with 0 keyframes (#7085)
This patch fixes a bug in LTXVCropGuides when the latent has no
keyframes. Additionally, the first frame is always added as a keyframe.

Co-authored-by: Andrew Kvochko <a.kvochko@lightricks.com>
2025-03-05 08:47:32 -05:00
comfyanonymous
6d45ffbe23 Bump ComfyUI version to v0.3.21 2025-03-05 08:05:22 -05:00
comfyanonymous
77633ba77d Remove unused variable. 2025-03-05 07:31:47 -05:00
comfyanonymous
30e6cfb1a0 Fix LTXVPreprocess on resolutions that are not multiples of 2. 2025-03-05 07:18:13 -05:00
comfyanonymous
dc134b2fdb Bump ComfyUI version to v0.3.20 2025-03-05 06:28:14 -05:00
comfyanonymous
369b079ff6 Fix lowvram issue with ltxv vae. 2025-03-05 05:26:08 -05:00
comfyanonymous
9c9a7f012a Adjust ltxv memory factor. 2025-03-05 05:16:05 -05:00
comfyanonymous
93fedd92fe Support LTXV 0.9.5.
Credits: Lightricks team.
2025-03-05 00:13:49 -05:00
comfyanonymous
745b13649b Add update instructions for the portable. 2025-03-04 23:34:36 -05:00
Dr.Lt.Data
2b140654c7 suggest absolute full path to the requirements.txt instead of just requirements.txt (#7079)
For users of the portable version, there are occasional instances where commands are misinterpreted.
2025-03-04 23:29:34 -05:00
comfyanonymous
65042f7d39 Make it easier to set a custom template for hunyuan video. 2025-03-04 09:26:05 -05:00
comfyanonymous
7c7c70c400 Refactor skyreels i2v code. 2025-03-04 00:15:45 -05:00
comfyanonymous
8362199ee7 Bump ComfyUI version to v0.3.19 2025-03-03 19:18:37 -05:00
comfyanonymous
f86c724ef2 Temporal area composition.
New ConditioningSetAreaPercentageVideo node.
2025-03-03 06:50:31 -05:00
Dr.Lt.Data
d6e5d487ad improved: better frontend package installation guide (#7047)
* improved: better installation guide
- change `pip` to `{sys.executable} -m pip`
modified: To prevent the guide message from being obscured by a complex error message, apply `exit` instead of `raise`.

* ruff fix
2025-03-03 04:40:23 -05:00
comfyanonymous
6752a826f6 Make the missing frontend package error more obvious. 2025-03-02 15:43:56 -05:00
Chenlei Hu
04cf0ccb51 Use comfyui_frontend_package pypi package to manage frontend dependency (Frontend v1.10.17) (#7021)
* Use frontend pypi package

* Remove web/

* nit

* nit

* Update importlib logic

* Remove unused gh action

* Update code owners

* Update codeowners

* error message
2025-03-02 14:18:33 -05:00
comfyanonymous
9af6320ec9 Make 2d area composition nodes work on video models. 2025-03-02 08:19:16 -05:00
comfyanonymous
6f81cd8973 Change defaults in WanImageToVideo node. 2025-03-01 19:26:48 -05:00
comfyanonymous
4dc6709307 Rename argument in last commit and document the options. 2025-03-01 02:43:49 -05:00
Chenlei Hu
4d55f16ae8 Use enum list for --fast options (#7024) 2025-03-01 02:37:35 -05:00
comfyanonymous
cf0b549d48 --fast now takes a number as argument to indicate how fast you want it.
The idea is that you can indicate how much quality vs speed you want.

At the moment:

--fast 2 enables fp16 accumulation if your pytorch supports it.
--fast 5 enables fp8 matrix mult on fp8 models and the optimization above.

--fast without a number enables all optimizations.
2025-02-28 02:48:20 -05:00
comfyanonymous
eb4543474b Use fp16 for intermediate for fp8 weights with --fast if supported. 2025-02-28 02:17:50 -05:00
comfyanonymous
1804397952 Use fp16 if checkpoint weights are fp16 and the model supports it. 2025-02-27 16:39:57 -05:00
comfyanonymous
f4dac8ab6f Wan code small cleanup. 2025-02-27 07:22:42 -05:00
comfyanonymous
b07f116dea Bump ComfyUI version to v0.3.18 2025-02-26 21:19:14 -05:00
comfyanonymous
714f728820 Add to README that the Wan model is supported. 2025-02-26 20:48:50 -05:00
comfyanonymous
92d8d15300 Readme changes.
Instructions shouldn't recommend to run comfyui with --listen
2025-02-26 20:47:08 -05:00
BiologicalExplosion
89253e9fe5 Support Cambricon MLU (#6964)
Co-authored-by: huzhan <huzhan@cambricon.com>
2025-02-26 20:45:13 -05:00
comfyanonymous
3ea3bc8546 Fix wan issues when prompt length is long. 2025-02-26 20:34:02 -05:00
comfyanonymous
8e69e2ddfd Bump ComfyUI version to v0.3.17 2025-02-26 17:59:10 -05:00
comfyanonymous
0270a0b41c Reduce artifacts on Wan by doing the patch embedding in fp32. 2025-02-26 16:59:26 -05:00
comfyanonymous
26c7baf789 Bump ComfyUI version to v0.3.16 2025-02-26 14:30:32 -05:00
comfyanonymous
c37f15f98e Add fast preview support for Wan models. 2025-02-26 08:56:23 -05:00
comfyanonymous
4bca7367f3 Don't try to use clip_fea on t2v model. 2025-02-26 08:38:09 -05:00
comfyanonymous
b6fefe686b Better wan memory estimation. 2025-02-26 07:51:22 -05:00
comfyanonymous
fa62287f1f More code reuse in wan.
Fix bug when changing the compute dtype on wan.
2025-02-26 05:22:29 -05:00
comfyanonymous
0844998db3 Slightly better wan i2v mask implementation. 2025-02-26 03:49:50 -05:00
comfyanonymous
4ced06b879 WIP support for Wan I2V model. 2025-02-26 01:49:43 -05:00
comfyanonymous
cb06e9669b Wan seems to work with fp16. 2025-02-25 21:37:12 -05:00
comfyanonymous
0c32f82298 Fix missing frames in SaveWEBM node. 2025-02-25 20:21:03 -05:00
Yoland Yan
189da3726d Update README.md (#6960) 2025-02-25 17:17:18 -08:00
comfyanonymous
9a66bb972d Make wan work with all latent resolutions.
Cleanup some code.
2025-02-25 19:56:04 -05:00
comfyanonymous
ea0f939df3 Fix issue with wan and other attention implementations. 2025-02-25 19:13:39 -05:00
comfyanonymous
f37551c1d2 Change wan rope implementation to the flux one.
Should be more compatible.
2025-02-25 19:11:14 -05:00
comfyanonymous
63023011b9 WIP support for Wan t2v model. 2025-02-25 17:20:35 -05:00
comfyanonymous
f40076096e Cleanup some lumina te code. 2025-02-25 04:10:26 -05:00
comfyanonymous
96d891cb94 Speedup on some models by not upcasting bfloat16 to float32 on mac. 2025-02-24 05:41:32 -05:00
Robin Huang
4553891bbd Update installation documentation to include desktop + cli. (#6899)
* Update installation documentation.

* Add portable to description.

* Move cli further down.
2025-02-23 19:13:39 -05:00
comfyanonymous
ace899e71a Prioritize fp16 compute when using allow_fp16_accumulation 2025-02-23 04:45:54 -05:00
comfyanonymous
aff16532d4 Remove some useless code. 2025-02-22 04:45:14 -05:00
comfyanonymous
b50ab153f9 Bump ComfyUI version to v0.3.15 2025-02-21 20:28:28 -05:00
comfyanonymous
072db3bea6 Assume the mac black image bug won't be fixed before v16. 2025-02-21 20:24:07 -05:00
comfyanonymous
a6deca6d9a Latest mac still has the black image bug. 2025-02-21 20:14:30 -05:00
comfyanonymous
41c30e92e7 Let all model memory be offloaded on nvidia. 2025-02-21 06:32:21 -05:00
filtered
f579a740dd Update frontend release schedule in README. (#6908)
Changes release schedule from weekly to fortnightly.
2025-02-21 05:58:12 -05:00
Robin Huang
d37272532c Add discord channel to support section. (#6900) 2025-02-20 18:26:16 -05:00
comfyanonymous
12da6ef581 Apparently directml supports fp16. 2025-02-20 09:30:24 -05:00
Robin Huang
29d4384a75 Normalize extra_model_config.yaml paths to prevent duplicates. (#6885)
* Normalize extra_model_config.yaml paths before adding.

* Fix tests.

* Fix tests.
2025-02-20 07:09:45 -05:00
Silver
c5be423d6b Fix link pointing to non-exisiting docs (#6891)
* Fix link pointing to non-exisiting docs

The current link is pointing to a path that does not exist any longer.
I changed it to point to the currect correct path for custom nodes datatypes.

* Update node_typing.py
2025-02-20 07:07:07 -05:00
Dr.Lt.Data
b4d3652d88 fixed: crash caused by outdated incompatible aiohttp dependency (#6841)
https://github.com/comfyanonymous/ComfyUI/issues/6038#issuecomment-2661776795
https://github.com/comfyanonymous/ComfyUI/issues/5814#issue-2700816845
2025-02-19 07:15:36 -05:00
maedtb
5715be2ca9 Fix Hunyuan unet config detection for some models. (#6877)
The change to support 32 channel hunyuan models is missing the `key_prefix` on the key.

This addresses a complain in the comments of acc152b674.
2025-02-19 07:14:45 -05:00
comfyanonymous
0d4d9222c6 Add early experimental SaveWEBM node to save .webm files.
The frontend part isn't done yet so there is no video preview on the node
or dragging the webm on the interface to load the workflow yet.

This uses a new dependency: PyAV.
2025-02-19 07:12:15 -05:00
bymyself
afc85cdeb6 Add Load Image Output node (#6790)
* add LoadImageOutput node

* add route for input/output/temp files

* update node_typing.py

* use literal type for image_folder field

* mark node as beta
2025-02-18 17:53:01 -05:00
Jukka Seppänen
acc152b674 Support loading and using SkyReels-V1-Hunyuan-I2V (#6862)
* Support SkyReels-V1-Hunyuan-I2V

* VAE scaling

* Fix T2V

oops

* Proper latent scaling
2025-02-18 17:06:54 -05:00
comfyanonymous
b07258cef2 Fix typo.
Let me know if this slows things down on 2000 series and below.
2025-02-18 07:28:33 -05:00
comfyanonymous
31e54b7052 Improve AMD arch detection. 2025-02-17 04:53:40 -05:00
comfyanonymous
8c0bae50c3 bf16 manual cast works on old AMD. 2025-02-17 04:42:40 -05:00
comfyanonymous
530412cb9d Refactor torch version checks to be more future proof. 2025-02-17 04:36:45 -05:00
Zhong-Yu Li
61c8c70c6e support system prompt and cfg renorm in Lumina2 (#6795)
* support system prompt and cfg renorm in Lumina2

* fix issues with the ruff style check
2025-02-16 18:15:43 -05:00
Comfy Org PR Bot
d0399f4343 Update frontend to v1.9.18 (#6828)
Co-authored-by: huchenlei <20929282+huchenlei@users.noreply.github.com>
2025-02-16 11:45:47 -05:00
comfyanonymous
e2919d38b4 Disable bf16 on AMD GPUs that don't support it. 2025-02-16 05:46:10 -05:00
Terry Jia
93c8607d51 remove light_intensity and fov from load3d (#6742) 2025-02-15 15:34:36 -05:00
Comfy Org PR Bot
b3d6ae15b3 Update frontend to v1.9.17 (#6814)
Co-authored-by: huchenlei <20929282+huchenlei@users.noreply.github.com>
2025-02-15 04:32:47 -05:00
comfyanonymous
2e21122aab Add a node to set the model compute dtype for debugging. 2025-02-15 04:15:37 -05:00
comfyanonymous
1cd6cd6080 Disable pytorch attention in VAE for AMD. 2025-02-14 05:42:14 -05:00
comfyanonymous
d7b4bf21a2 Auto enable mem efficient attention on gfx1100 on pytorch nightly 2.7
I'm not not sure which arches are supported yet. If you see improvements in
memory usage while using --use-pytorch-cross-attention on your AMD GPU let
me know and I will add it to the list.
2025-02-14 04:18:14 -05:00
Robin Huang
042a905c37 Open yaml files with utf-8 encoding for extra_model_paths.yaml (#6807)
* Using utf-8 encoding for yaml files.

* Fix test assertion.
2025-02-13 20:39:04 -05:00
comfyanonymous
019c7029ea Add a way to set a different compute dtype for the model at runtime.
Currently only works for diffusion models.
2025-02-13 20:34:03 -05:00
comfyanonymous
8773ccf74d Better memory estimation for ROCm that support mem efficient attention.
There is no way to check if the card actually supports it so it assumes
that it does if you use --use-pytorch-cross-attention with yours.
2025-02-13 08:32:36 -05:00
comfyanonymous
1d5d6586f3 Fix ruff. 2025-02-12 06:49:16 -05:00
zhoufan2956
35740259de mix_ascend_bf16_infer_err (#6794) 2025-02-12 06:48:11 -05:00
comfyanonymous
ab888e1e0b Add add_weight_wrapper function to model patcher.
Functions can now easily be added to wrap/modify model weights.
2025-02-12 05:55:35 -05:00
comfyanonymous
d9f0fcdb0c Cleanup. 2025-02-11 17:17:03 -05:00
HishamC
b124256817 Fix for running via DirectML (#6542)
* Fix for running via DirectML

Fix DirectML empty image generation issue with Flux1. add CPU fallback for unsupported path. Verified the model works on AMD GPUs

* fix formating

* update casual mask calculation
2025-02-11 17:11:32 -05:00
comfyanonymous
af4b7c91be Make --force-fp16 actually force the diffusion model to be fp16. 2025-02-11 08:33:09 -05:00
bananasss00
e57d2282d1 Fix incorrect Content-Type for WebP images (#6752) 2025-02-11 04:48:35 -05:00
comfyanonymous
4027466c80 Make lumina model work with any latent resolution. 2025-02-10 00:24:20 -05:00
comfyanonymous
095d867147 Remove useless function. 2025-02-09 07:02:57 -05:00
Pam
caeb27c3a5 res_multistep: Fix cfgpp and add ancestral samplers (#6731) 2025-02-08 19:39:58 -05:00
comfyanonymous
3d06e1c555 Make error more clear to user. 2025-02-08 18:57:24 -05:00
catboxanon
43a74c0de1 Allow FP16 accumulation with --fast (#6453)
Currently only applies to PyTorch nightly releases. (>=20250208)
2025-02-08 17:00:56 -05:00
comfyanonymous
af93c8d1ee Document which text encoder to use for lumina 2. 2025-02-08 06:57:25 -05:00
Raphael Walker
832e3f5ca3 Fix another small bug in attention_bias redux (#6737)
* fix a bug in the attn_masked redux code when using weight=1.0

* oh shit wait there was another bug
2025-02-07 14:44:43 -05:00
comfyanonymous
079eccc92a Don't compress http response by default.
Remove argument to disable it.

Add new --enable-compress-response-body argument to enable it.
2025-02-07 03:29:21 -05:00
Raphael Walker
b6951768c4 fix a bug in the attn_masked redux code when using weight=1.0 (#6721) 2025-02-06 16:51:16 -05:00
Comfy Org PR Bot
fca304debf Update frontend to v1.8.14 (#6724)
Co-authored-by: huchenlei <20929282+huchenlei@users.noreply.github.com>
2025-02-06 10:43:10 -05:00
comfyanonymous
14880e6dba Remove some useless code. 2025-02-06 05:00:37 -05:00
Chenlei Hu
f1059b0b82 Remove unused GET /files API endpoint (#6714) 2025-02-05 18:48:36 -05:00
comfyanonymous
debabccb84 Bump ComfyUI version to v0.3.14 2025-02-05 15:48:13 -05:00
comfyanonymous
37cd448529 Set the shift for Lumina back to 6. 2025-02-05 14:49:52 -05:00
comfyanonymous
94f21f9301 Upcasting rope to fp32 seems to make no difference in this model. 2025-02-05 04:32:47 -05:00
comfyanonymous
60653004e5 Use regular numbers for rope in lumina model. 2025-02-05 04:17:25 -05:00
comfyanonymous
a57d635c5f Fix lumina 2 batches. 2025-02-04 21:48:11 -05:00
comfyanonymous
016b219dcc Add Lumina Image 2.0 to Readme. 2025-02-04 08:08:36 -05:00
comfyanonymous
8ac2dddeed Lower the default shift of lumina to reduce artifacts. 2025-02-04 06:50:37 -05:00
comfyanonymous
3e880ac709 Fix on python 3.9 2025-02-04 04:20:56 -05:00
comfyanonymous
e5ea112a90 Support Lumina 2 model. 2025-02-04 04:16:30 -05:00
Raphael Walker
8d88bfaff9 allow searching for new .pt2 extension, which can contain AOTI compiled modules (#6689) 2025-02-03 17:07:35 -05:00
comfyanonymous
ed4d92b721 Model merging nodes for cosmos. 2025-02-03 03:31:39 -05:00
Comfy Org PR Bot
932ae8d9ca Update frontend to v1.8.13 (#6682)
Co-authored-by: huchenlei <20929282+huchenlei@users.noreply.github.com>
2025-02-02 17:54:44 -05:00
comfyanonymous
44e19a28d3 Use maximum negative value instead of -inf for masks in text encoders.
This is probably more correct.
2025-02-02 09:46:00 -05:00
Dr.Lt.Data
0a0df5f136 better guide message for sageattention (#6634) 2025-02-02 09:26:47 -05:00
KarryCharon
24d6871e47 add disable-compres-response-body cli args; add compress middleware; (#6672) 2025-02-02 09:24:55 -05:00
comfyanonymous
9e1d301129 Only use stable cascade lora format with cascade model. 2025-02-01 06:35:22 -05:00
Terry Jia
768e035868 Add node for preview 3d animation (#6594)
* Add node for preview 3d animation

* remove bg_color param

* remove animation_speed param
2025-01-31 10:09:07 -08:00
Comfy Org PR Bot
669e0497ea Update frontend to v1.8.12 (#6662)
Co-authored-by: huchenlei <20929282+huchenlei@users.noreply.github.com>
2025-01-31 10:07:37 -08:00
comfyanonymous
541dc08547 Update Readme. 2025-01-31 08:35:48 -05:00
comfyanonymous
8d8dc9a262 Allow batch of different sigmas when noise scaling. 2025-01-30 06:49:52 -05:00
comfyanonymous
2f98c24360 Update Readme with link to instruction for Nvidia 50 series. 2025-01-30 02:12:43 -05:00
comfyanonymous
ef85058e97 Bump ComfyUI version to v0.3.13 2025-01-29 16:07:12 -05:00
comfyanonymous
f9230bd357 Update the python version in some workflows. 2025-01-29 15:54:13 -05:00
comfyanonymous
537c27cbf3 Bump default cuda version in standalone package to 126. 2025-01-29 08:13:33 -05:00
comfyanonymous
6ff2e4d550 Remove logging call added in last commit.
This is called before the logging is set up so it messes up some things.
2025-01-29 08:08:01 -05:00
filtered
222f48c0f2 Allow changing folder_paths.base_path via command line argument. (#6600)
* Reimpl. CLI arg directly inside folder_paths.

* Update tests to use CLI arg mocking.

* Revert last-minute refactor.

* Fix test state polution.
2025-01-29 08:06:28 -05:00
comfyanonymous
13fd4d6e45 More friendly error messages for corrupted safetensors files. 2025-01-28 09:41:09 -05:00
Bradley Reynolds
1210d094c7 Convert latents_ubyte to 8-bit unsigned int before converting to CPU (#6300)
* Convert latents_ubyte to 8-bit unsigned int before converting to CPU

* Only convert to unint8 if directml_enabled
2025-01-28 08:22:54 -05:00
comfyanonymous
255edf2246 Lower minimum ratio of loaded weights on Nvidia. 2025-01-27 05:26:51 -05:00
comfyanonymous
4f011b9a00 Better CLIPTextEncode error when clip input is None. 2025-01-26 06:04:57 -05:00
comfyanonymous
67feb05299 Remove redundant code. 2025-01-25 19:04:53 -05:00
comfyanonymous
6d21740346 Print ComfyUI version. 2025-01-25 15:03:57 -05:00
comfyanonymous
7fbf4b72fe Update nightly pytorch ROCm command in Readme. 2025-01-24 06:15:54 -05:00
comfyanonymous
14ca5f5a10 Remove useless code. 2025-01-24 06:15:54 -05:00
filtered
ce557cfb88 Remove redundant code (#6576) 2025-01-23 05:57:41 -05:00
comfyanonymous
96e2a45193 Remove useless code. 2025-01-23 05:56:23 -05:00
Chenlei Hu
dfa2b6d129 Remove unused function lcm in conds.py (#6572) 2025-01-23 05:54:09 -05:00
Terry Jia
f3566f0894 remove some params from load 3d node (#6436) 2025-01-22 17:23:51 -05:00
Chenlei Hu
ca69b41cee Add utils/ to web server developer codeowner (#6570) 2025-01-22 17:16:54 -05:00
Chenlei Hu
a058f52090 [i18n] Add /i18n endpoint to provide all custom node translations (#6558)
* [i18n] Add /i18n endpoint to provide all custom node translations

* Sort glob result for deterministic ordering

* Update comment
2025-01-22 17:15:45 -05:00
comfyanonymous
d6bbe8c40f Remove support for python 3.8. 2025-01-22 17:04:30 -05:00
comfyanonymous
a7fe0a94de Refactor and fixes for video latents. 2025-01-22 06:37:46 -05:00
chaObserv
e857dd48b8 Add gradient estimation sampler (#6554) 2025-01-22 05:29:40 -05:00
comfyanonymous
d303cb5341 Add missing case to CLIPLoader. 2025-01-21 08:57:04 -05:00
comfyanonymous
fb2ad645a3 Add FluxDisableGuidance node to disable using the guidance embed. 2025-01-20 14:50:24 -05:00
comfyanonymous
d8a7a32779 Cleanup old TODO. 2025-01-20 03:44:13 -05:00
comfyanonymous
a00e1489d2 LatentBatch fix for video latents 2025-01-19 06:02:14 -05:00
Sergii Dymchenko
ebf038d4fa Use torch.special.expm1 (#6388)
* Use `torch.special.expm1`

This function provides greater precision than `exp(x) - 1` for small values of `x`.

Found with TorchFix https://github.com/pytorch-labs/torchfix/

* Use non-alias
2025-01-19 04:54:32 -05:00
Comfy Org PR Bot
b4de04a1c1 Update frontend to v1.7.14 (#6522)
Co-authored-by: huchenlei <20929282+huchenlei@users.noreply.github.com>
2025-01-18 21:43:37 -05:00
catboxanon
b1a02131c9 Remove comfy.samplers self-import (#6506) 2025-01-18 17:49:51 -05:00
catboxanon
3a3910f91d PromptServer: Return 400 for empty filename param (#6504) 2025-01-18 17:47:33 -05:00
comfyanonymous
507199d9a8 Uni pc sampler now works with audio and video models. 2025-01-18 05:27:58 -05:00
comfyanonymous
2f3ab40b62 Add warning when using old pytorch versions. 2025-01-17 18:47:27 -05:00
comfyanonymous
7fc3ccdcc2 Add that nvidia cosmos is supported to the README. 2025-01-16 21:17:18 -05:00
comfyanonymous
55add50220 Bump ComfyUI version to v0.3.12 2025-01-16 18:11:57 -05:00
comfyanonymous
0aa2368e46 Fix some cosmos fp8 issues. 2025-01-16 17:45:37 -05:00
comfyanonymous
cca96a85ae Fix cosmos VAE failing with videos longer than 121 frames. 2025-01-16 16:30:06 -05:00
comfyanonymous
619b8cde74 Bump ComfyUI version to 0.3.11 2025-01-16 14:54:48 -05:00
comfyanonymous
31831e6ef1 Code refactor. 2025-01-16 07:23:54 -05:00
comfyanonymous
88ceb28e20 Tweak hunyuan memory usage factor. 2025-01-16 06:31:03 -05:00
comfyanonymous
23289a6a5c Clean up some debug lines. 2025-01-16 04:24:39 -05:00
comfyanonymous
9d8b6c1f46 More accurate memory estimation for cosmos and hunyuan video. 2025-01-16 03:48:40 -05:00
comfyanonymous
6320d05696 Slightly lower hunyuan video memory usage. 2025-01-16 00:23:01 -05:00
comfyanonymous
25683b5b02 Lower cosmos diffusion model memory usage. 2025-01-15 23:46:42 -05:00
comfyanonymous
4758fb64b9 Lower cosmos VAE memory usage by a bit. 2025-01-15 22:57:52 -05:00
comfyanonymous
008761166f Optimize first attention block in cosmos VAE. 2025-01-15 21:48:46 -05:00
comfyanonymous
bfd5dfd611 3.13 doesn't work yet. 2025-01-15 20:32:44 -05:00
comfyanonymous
55ade36d01 Remove python 3.8 from test-build workflow. 2025-01-15 20:24:55 -05:00
comfyanonymous
2e20e399ea Add minimum numpy version to requirements.txt 2025-01-15 20:19:56 -05:00
comfyanonymous
3baf92d120 CosmosImageToVideoLatent batch_size now does something. 2025-01-15 17:19:59 -05:00
comfyanonymous
1709a8441e Use latest python 3.12.8 the portable release. 2025-01-15 14:50:40 -05:00
comfyanonymous
cba58fff0b Remove unsafe embedding load for very old pytorch. 2025-01-15 04:32:23 -05:00
comfyanonymous
2feb8d0b77 Force safe loading of files in torch format on pytorch 2.4+
If this breaks something for you make an issue.
2025-01-15 03:50:27 -05:00
comfyanonymous
5b657f8c15 Allow setting start and end image in CosmosImageToVideoLatent. 2025-01-15 00:41:35 -05:00
catboxanon
2cdbaf5169 Add SetFirstSigma node (#6459)
Useful for models utilizing ztSNR. See: https://arxiv.org/abs/2409.15997
2025-01-14 19:05:45 -05:00
Pam
c78a45685d Rewrite res_multistep sampler and implement res_multistep_cfg_pp sampler. (#6462) 2025-01-14 18:20:06 -05:00
comfyanonymous
3aaabb12d4 Implement Cosmos Image/Video to World (Video) diffusion models.
Use CosmosImageToVideoLatent to set the input image/video.
2025-01-14 05:14:10 -05:00
comfyanonymous
1f1c7b7b56 Remove useless code. 2025-01-13 03:52:37 -05:00
comfyanonymous
90f349f93d Add res_multistep sampler from the cosmos code.
This sampler should work with all models.
2025-01-12 03:10:07 -05:00
Alexander Piskun
b9d9bcba14 fixed a bug where a relative path was not converted to a full path (#6395)
Signed-off-by: bigcat88 <bigcat88@icloud.com>
2025-01-11 19:19:51 -05:00
Chenlei Hu
42086af123 Merge ruff.toml into pyproject.toml (#6431) 2025-01-11 12:52:46 -05:00
Jedrzej Kosinski
6c9bd11fa3 Hooks Part 2 - TransformerOptionsHook and AdditionalModelsHook (#6377)
* Add 'sigmas' to transformer_options so that downstream code can know about the full scope of current sampling run, fix Hook Keyframes' guarantee_steps=1 inconsistent behavior with sampling split across different Sampling nodes/sampling runs by referencing 'sigmas'

* Cleaned up hooks.py, refactored Hook.should_register and add_hook_patches to use target_dict instead of target so that more information can be provided about the current execution environment if needed

* Refactor WrapperHook into TransformerOptionsHook, as there is no need to separate out Wrappers/Callbacks/Patches into different hook types (all affect transformer_options)

* Refactored HookGroup to also store a dictionary of hooks separated by hook_type, modified necessary code to no longer need to manually separate out hooks by hook_type

* In inner_sample, change "sigmas" to "sampler_sigmas" in transformer_options to not conflict with the "sigmas" that will overwrite "sigmas" in _calc_cond_batch

* Refactored 'registered' to be HookGroup instead of a list of Hooks, made AddModelsHook operational and compliant with should_register result, moved TransformerOptionsHook handling out of ModelPatcher.register_all_hook_patches, support patches in TransformerOptionsHook properly by casting any patches/wrappers/hooks to proper device at sample time

* Made hook clone code sane, made clear ObjectPatchHook and SetInjectionsHook are not yet operational

* Fix performance of hooks when hooks are appended via Cond Pair Set Props nodes by properly caching between positive and negative conds, make hook_patches_backup behave as intended (in the case that something pre-registers WeightHooks on the ModelPatcher instead of registering it at sample time)

* Filter only registered hooks on self.conds in CFGGuider.sample

* Make hook_scope functional for TransformerOptionsHook

* removed 4 whitespace lines to satisfy Ruff,

* Add a get_injections function to ModelPatcher

* Made TransformerOptionsHook contribute to registered hooks properly, added some doc strings and removed a so-far unused variable

* Rename AddModelsHooks to AdditionalModelsHook, rename SetInjectionsHook to InjectionsHook (not yet implemented, but at least getting the naming figured out)

* Clean up a typehint
2025-01-11 12:20:23 -05:00
comfyanonymous
ee8a7ab69d Fast latent preview for Cosmos. 2025-01-11 04:41:24 -05:00
Chenlei Hu
9c773a241b Add pyproject.toml (#6386)
* Add pyproject.toml

* doc

* Static version file

* Add github action to sync version.py

* Change trigger to PR

* Fix commit

* Grant pr write permission

* nit

* nit

* Don't run on fork PRs

* Rename version.py to comfyui_version.py
2025-01-11 03:09:25 -05:00
comfyanonymous
adea2beb5c Add edm option to ModelSamplingContinuousEDM for Cosmos.
You can now use this node with "edm" selected to control the sigma_max and
sigma_min of the Cosmos model sampling.
2025-01-11 02:18:42 -05:00
comfyanonymous
2ff3104f70 WIP support for Nvidia Cosmos 7B and 14B text to world (video) models. 2025-01-10 09:14:16 -05:00
comfyanonymous
129d8908f7 Add argument to skip the output reshaping in the attention functions. 2025-01-10 06:27:37 -05:00
comfyanonymous
ff838657fa Cleaner handling of attention mask in ltxv model code. 2025-01-09 07:12:03 -05:00
comfyanonymous
2307ff6746 Improve some logging messages. 2025-01-08 19:05:22 -05:00
comfyanonymous
d0f3752e33 Properly calculate inner dim for t5 model.
This is required to support some different types of t5 models.
2025-01-07 17:33:03 -05:00
Dr.Lt.Data
c515bdf371 fixed: robust loading comfy.settings.json (#6383)
https://github.com/comfyanonymous/ComfyUI/issues/6371
2025-01-07 16:03:56 -05:00
comfyanonymous
4209edf48d Make a few more samplers deterministic. 2025-01-07 02:12:32 -05:00
Chenlei Hu
d055325783 Document get_attr and get_model_object (#6357)
* Document get_attr and get_model_object

* Update model_patcher.py

* Update model_patcher.py

* Update model_patcher.py
2025-01-06 20:12:22 -05:00
Chenlei Hu
eeab420c70 Update frontend to v1.6.18 (#6368) 2025-01-06 18:42:45 -05:00
comfyanonymous
916d1e14a9 Make ancestral samplers more deterministic. 2025-01-06 03:04:32 -05:00
Jedrzej Kosinski
c496e53519 In inner_sample, change "sigmas" to "sampler_sigmas" in transformer_options to not conflict with the "sigmas" that will overwrite "sigmas" in _calc_cond_batch (#6360) 2025-01-06 01:36:47 -05:00
Yoland Yan
7da85fac3f Update CODEOWNERS (#6338)
Adding yoland and robin to web dir
2025-01-05 04:33:49 -05:00
Chenlei Hu
b65b83af6f Add update-frontend github action (#6336)
* Add update-frontend github action

* Update secrets

* nit
2025-01-05 04:32:11 -05:00
comfyanonymous
c8a3492c22 Make the device an optional parameter in the clip loaders. 2025-01-05 04:29:36 -05:00
comfyanonymous
5cbf79787f Add advanced device option to clip loader nodes.
Right click the "Load CLIP" or DualCLIPLoader node and "Show Advanced".
2025-01-05 01:46:11 -05:00
comfyanonymous
d45ebb63f6 Remove old unused function. 2025-01-04 07:20:54 -05:00
Chenlei Hu
caa6476a69 Update web content to release v1.6.17 (#6337)
* Update web content to release v1.6.17

* Remove js maps
2025-01-03 16:22:08 -05:00
Chenlei Hu
45671cda0b Update web content to release v1.6.16 (#6335)
* Update web content to release v1.6.16
2025-01-03 13:56:46 -05:00
comfyanonymous
8f29664057 Change defaults in nightly package workflow. 2025-01-03 12:12:17 -05:00
Chenlei Hu
0b9839ef43 Update web content to release v1.6.15 (#6324) 2025-01-02 19:20:48 -05:00
Terry Jia
953693b137 add fov and mask for load 3d node (#6308)
* add fov and mask for load 3d node

* some comments
2025-01-02 19:20:34 -05:00
Chenlei Hu
a39ea87bca Update web content to release v1.6.14 (#6312) 2025-01-02 16:18:54 -05:00
comfyanonymous
9e9c8a1c64 Clear cache as often on AMD as Nvidia.
I think the issue this was working around has been solved.

If you notice that this change slows things down or causes stutters on
your AMD GPU with ROCm on Linux please report it.
2025-01-02 08:44:16 -05:00
Andrew Kvochko
0f11d60afb Fix temporal tiling for decoder, remove redundant tiles. (#6306)
This commit fixes the temporal tile size calculation, and removes
a redundant tile at the end of the range when its elements are
completely covered by the previous tile.

Co-authored-by: Andrew Kvochko <a.kvochko@lightricks.com>
2025-01-01 16:29:01 -05:00
comfyanonymous
79eea51a1d Fix and enforce all ruff W rules. 2025-01-01 03:08:33 -05:00
blepping
c0338a46a4 Fix unknown sampler error handling in calculate_sigmas function (#6280)
Modernize calculate_sigmas function
2024-12-31 17:33:50 -05:00
Jedrzej Kosinski
1c99734e5a Add missing model_options param (#6296) 2024-12-31 14:46:55 -05:00
filtered
67758f50f3 Fix custom node type-hinting examples (#6281)
* Fix import in comfy_types doc / sample

* Clarify docstring
2024-12-31 03:41:09 -05:00
Alexander Piskun
02eef72bf5 fixed "verbose" argument (#6289)
Signed-off-by: bigcat88 <bigcat88@icloud.com>
2024-12-31 03:27:09 -05:00
comfyanonymous
b7572b2f87 Fix and enforce no trailing whitespace. 2024-12-31 03:16:37 -05:00
blepping
a90aafafc1 Add kl_optimal scheduler (#6206)
* Add kl_optimal scheduler

* Rename kl_optimal_schedule to kl_optimal_scheduler to be more consistent
2024-12-30 05:09:38 -05:00
comfyanonymous
d9b7cfac7e Fix and enforce new lines at the end of files. 2024-12-30 04:14:59 -05:00
Jedrzej Kosinski
3507870535 Add 'sigmas' to transformer_options so that downstream code can know about the full scope of current sampling run, fix Hook Keyframes' guarantee_steps=1 inconsistent behavior with sampling split across different Sampling nodes/sampling runs by referencing 'sigmas' (#6273) 2024-12-30 03:42:49 -05:00
catboxanon
82ecb02c1e Remove duplicate calls to INPUT_TYPES (#6249) 2024-12-29 20:06:49 -05:00
comfyanonymous
a618f768e0 Auto reshape 2d to 3d latent for single image generation on video model. 2024-12-29 02:26:49 -05:00
comfyanonymous
e1dec3c792 Fix formatting. 2024-12-28 05:33:17 -05:00
Zoltán Dócs
96697c4bc5 serve workflow templates from custom_nodes (#6193)
* add GET /workflow_templates

* serve workflow templates from custom_nodes

* refactor into custom_node_manager, add test

* remove unused import

* revert changes in folder_paths

* Remove trailing whitespace.

* account for multiple custom_nodes paths
2024-12-28 05:30:04 -05:00
comfyanonymous
b504bd606d Add ruff rule for empty line with trailing whitespace. 2024-12-28 05:23:08 -05:00
comfyanonymous
d170292594 Remove some trailing white space. 2024-12-27 18:02:30 -05:00
filtered
9cfd185676 Add option to log non-error output to stdout (#6243)
* nit

* Add option to log non-error output to stdout

- No change to default behaviour
- Adds CLI argument: --log-stdout
- With this arg present, any logging of a level below logging.ERROR will be sent to stdout instead of stderr
2024-12-27 14:40:05 -05:00
comfyanonymous
4b5bcd8ac4 Closer memory estimation for hunyuan dit model. 2024-12-27 07:37:00 -05:00
comfyanonymous
ceb50b2cbf Closer memory estimation for pixart models. 2024-12-27 07:30:09 -05:00
comfyanonymous
160ca08138 Use python 3.9 in launch test instead of 3.8
Fix ruff check.
2024-12-26 20:05:54 -05:00
Huazhong Ji
c4bfdba330 Support ascend npu (#5436)
* support ascend npu

Co-authored-by: YukMingLaw <lymmm2@163.com>
Co-authored-by: starmountain1997 <guozr1997@hotmail.com>
Co-authored-by: Ginray <ginray0215@gmail.com>
2024-12-26 19:36:50 -05:00
comfyanonymous
ee9547ba31 Improve temporal VAE Encode (Tiled) math. 2024-12-26 07:18:49 -05:00
comfyanonymous
19a64d6291 Cleanup some mac related code. 2024-12-25 05:32:51 -05:00
comfyanonymous
b486885e08 Disable bfloat16 on older mac. 2024-12-25 05:18:50 -05:00
comfyanonymous
0229228f3f Clean up the VAE dtypes code. 2024-12-25 04:50:34 -05:00
comfyanonymous
1ed75ab30e Update nightly pytorch instructions in readme for nvidia. 2024-12-25 03:29:03 -05:00
comfyanonymous
99a1fb6027 Make fast fp8 take a bit less peak memory. 2024-12-24 18:05:19 -05:00
comfyanonymous
73e04987f7 Prevent black images in VAE Decode (Tiled) node.
Overlap should be minimum 1 with tiling 2 for tiled temporal VAE decoding.
2024-12-24 07:36:30 -05:00
comfyanonymous
5388df784a Add temporal tiling to VAE Encode (Tiled) node. 2024-12-24 07:10:09 -05:00
Alexander Piskun
26e0ba8f8c Enable External Event Loop Integration for ComfyUI [refactor] (#6114)
* Refactor main.py to support external event loop integration

* added optional "asyncio_loop" argument to allow using existing event loop

---------

Signed-off-by: bigcat88 <bigcat88@icloud.com>
2024-12-24 06:38:52 -05:00
comfyanonymous
bc6dac4327 Add temporal tiling to VAE Decode (Tiled) node.
You can now do tiled VAE decoding on the temporal direction for videos.
2024-12-23 20:03:37 -05:00
Chenlei Hu
f18ebbd316 Use raw dir name to serve static web content (#6107) 2024-12-23 03:29:42 -05:00
comfyanonymous
15564688ed Add a try except block so if torch version is weird it won't crash. 2024-12-23 03:22:48 -05:00
Simon Lui
c6b9c11ef6 Add oneAPI device selector for xpu and some other changes. (#6112)
* Add oneAPI device selector and some other minor changes.

* Fix device selector variable name.

* Flip minor version check sign.

* Undo changes to README.md.
2024-12-23 03:18:32 -05:00
comfyanonymous
e44d0ac7f7 Make --novram completely offload weights.
This flag is mainly used for testing the weight offloading, it shouldn't
actually be used in practice.

Remove useless import.
2024-12-23 01:51:08 -05:00
comfyanonymous
56bc64f351 Comment out some useless code. 2024-12-22 23:51:14 -05:00
zhangp365
f7d83b72e0 fixed a bug in ldm/pixart/blocks.py (#6158) 2024-12-22 23:44:20 -05:00
comfyanonymous
80f07952d2 Fix lowvram issue with ltxv vae. 2024-12-22 23:20:17 -05:00
comfyanonymous
57f330caf9 Relax minimum ratio of weights loaded in memory on nvidia.
This should make it possible to do higher res images/longer videos by
further offloading weights to CPU memory.

Please report an issue if this slows down things on your system.
2024-12-22 03:06:37 -05:00
comfyanonymous
601ff9e3db Add that Hunyuan Video and Pixart are supported to readme.
Clean up the supported models part of the readme.
2024-12-21 11:31:39 -05:00
TechnoByte
341667c4d5 remove minimum step count for AYS (#6137)
The 10 step minimum for the AYS scheduler is pointless, it works well at lower steps, like 8 steps, or even 4 steps.

For example with LCM or DMD2.

Example here: https://i.ibb.co/56CSPMj/image.png
2024-12-21 10:05:09 -05:00
Qiacheng Li
1419dee915 Update README.md for Intel GPUs (#6069) 2024-12-20 18:04:03 -05:00
comfyanonymous
da13b6b827 Get rid of meshgrid warning. 2024-12-20 18:02:12 -05:00
comfyanonymous
c86cd58573 Remove useless code. 2024-12-20 17:50:03 -05:00
comfyanonymous
b5fe39211a Remove some useless code. 2024-12-20 17:43:50 -05:00
comfyanonymous
e946667216 Some fixes/cleanups to pixart code.
Commented out the masking related code because it is never used in this
implementation.
2024-12-20 17:10:52 -05:00
Chenlei Hu
d7969cb070 Replace print with logging (#6138)
* Replace print with logging

* nit

* nit

* nit

* nit

* nit

* nit
2024-12-20 16:24:55 -05:00
City
bddb02660c Add PixArt model support (#6055)
* PixArt initial version

* PixArt Diffusers convert logic

* pos_emb and interpolation logic

* Reduce  duplicate code

* Formatting

* Use optimized attention

* Edit empty token logic

* Basic PixArt LoRA support

* Fix aspect ratio logic

* PixArtAlpha text encode with conds

* Use same detection key logic for PixArt diffusers
2024-12-20 15:25:00 -05:00
comfyanonymous
418eb7062d Support new LTXV VAE. 2024-12-20 04:38:29 -05:00
comfyanonymous
cac68ca813 Fix some more video tiled encode issues.
The downscale_ratio formula for the temporal had issues with some frame
numbers.
2024-12-19 23:14:03 -05:00
comfyanonymous
52c1d933b2 Fix tiled hunyuan video VAE encode issue.
Some shapes like 1024x1024 with tile_size 256 and overlap 64 had issues.
2024-12-19 22:55:15 -05:00
catboxanon
3cacd3fca5 Support preview images embedded in safetensors metadata (#6119)
* Support preview images embedded in safetensors metadata

* Add unit test for safetensors embedded image previews
2024-12-19 14:01:56 -08:00
comfyanonymous
2dda7c11a3 More proper fix for the memory issue. 2024-12-19 16:21:56 -05:00
comfyanonymous
3ad3248ad7 Fix lowvram bug when using a model multiple times in a row.
The memory system would load an extra 64MB each time until either the
model was completely in memory or OOM.
2024-12-19 16:04:56 -05:00
comfyanonymous
c441048a4f Make VAE Encode tiled node work with video VAE. 2024-12-19 05:31:39 -05:00
comfyanonymous
9f4b181ab3 Add fast previews for hunyuan video. 2024-12-18 18:24:23 -05:00
comfyanonymous
cbbf077593 Small optimizations. 2024-12-18 18:23:28 -05:00
Chenlei Hu
0c04a6ae78 Add .github folder to maintainer owner list (#6027) 2024-12-18 15:06:53 -05:00
Chenlei Hu
416ccc9e45 Update web content to release v1.5.19 (#6105) 2024-12-18 15:06:20 -05:00
comfyanonymous
ff2ff02168 Support old diffusion-pipe hunyuan video loras. 2024-12-18 06:23:54 -05:00
comfyanonymous
4c5c4ddeda Fix regression in VAE code on old pytorch versions. 2024-12-18 03:08:28 -05:00
comfyanonymous
79badea452 Add ConditioningStableAudio.
This lets you control the seconds_start and seconds_total parameters for
the Stable Audio model.
2024-12-18 03:01:12 -05:00
comfyanonymous
37e5390f5f Add: --use-sage-attention to enable SageAttention.
You need to have the library installed first.
2024-12-18 01:56:10 -05:00
comfyanonymous
a4f59bc65e Pick attention implementation based on device in llama code. 2024-12-18 01:30:20 -05:00
comfyanonymous
ca457f7ba1 Properly tokenize the template for hunyuan video. 2024-12-17 16:22:02 -05:00
comfyanonymous
cd6f615038 Fix tiled vae not working with some shapes. 2024-12-17 16:22:02 -05:00
Terry Jia
517669aaa3 add preview 3d node (#6070)
* add preview 3d node

* mark 3d nodes as EXPERIMENTAL
2024-12-17 10:42:24 -08:00
comfyanonymous
e4e1bff605 Support diffusion-pipe hunyuan video lora format. 2024-12-17 07:14:21 -05:00
comfyanonymous
d6656b0c0c Support llama hunyuan video text encoder in scaled fp8 format. 2024-12-17 04:19:22 -05:00
comfyanonymous
f4cdedea62 Fix regression with ltxv VAE. 2024-12-17 02:17:31 -05:00
comfyanonymous
39b1fc4ccc Adjust used dtypes for hunyuan video VAE and diffusion model. 2024-12-16 23:31:10 -05:00
comfyanonymous
0b25f47bd9 Add some missing imports. 2024-12-16 19:42:01 -05:00
comfyanonymous
bda1482a27 Basic Hunyuan Video model support. 2024-12-16 19:35:40 -05:00
comfyanonymous
19ee5d9d8b Don't expand mask when not necessary.
Expanding seems to slow down inference.
2024-12-16 18:22:50 -05:00
Raphael Walker
61b50720d0 Add support for attention masking in Flux (#5942)
* fix attention OOM in xformers

* allow passing attention mask in flux attention

* allow an attn_mask in flux

* attn masks can be done using replace patches instead of a separate dict

* fix return types

* fix return order

* enumerate

* patch the right keys

* arg names

* fix a silly bug

* fix xformers masks

* replace match with if, elif, else

* mask with image_ref_size

* remove unused import

* remove unused import 2

* fix pytorch/xformers attention

This corrects a weird inconsistency with skip_reshape.
It also allows masks of various shapes to be passed, which will be
automtically expanded (in a memory-efficient way) to a size that is
compatible with xformers or pytorch sdpa respectively.

* fix mask shapes
2024-12-16 18:21:17 -05:00
Alexander Dyadyun
0f954f34af Update README.md (#6071)
The last ROCM 6.2 build was November 22nd, after that date new builds use ROCM 6.2.4.

The builds from the new URL have been tested and work without problems.
2024-12-16 15:24:54 -05:00
Chenlei Hu
5262901c5c Update web content to release v1.5.18 (#6075) 2024-12-16 11:38:24 -08:00
Terry Jia
cc550d5908 use String directly to set bg color for load 3d canvas (#6057) 2024-12-16 10:51:40 -08:00
comfyanonymous
6d1a3f7d00 Fix case of ExecutionBlocker not handled correctly with INPUT_IS_LIST. 2024-12-15 08:41:35 -05:00
Alexander Piskun
1b3a650f19 (fix): added "model_type" to photomaker node (#6047) 2024-12-15 00:18:02 -05:00
comfyanonymous
e83063bf24 Support conv3d in PatchEmbed. 2024-12-14 05:46:04 -05:00
Dr.Lt.Data
558b7d8b22 fix: prestartup script is not applied due to extra_model_paths.yaml and ensure custom paths are used during startup (#5872)
* fix: The custom nodes installed in the paths specified in `extra_model_paths.yaml` encounter a bug where the prestartup script is not imported.

* Ensure custom paths are used during startup
https://github.com/comfyanonymous/ComfyUI/pull/5794
2024-12-13 18:21:32 -05:00
Alexander Piskun
caf2074773 add_model_folder_path: ensure unique paths by removing duplicates (#5998)
* add_model_folder_path: ensure unique paths by removing duplicates

Signed-off-by: bigcat88 <bigcat88@icloud.com>

* refactored "add_model_folder_path" and added tests

---------

Signed-off-by: bigcat88 <bigcat88@icloud.com>
2024-12-13 18:19:22 -05:00
Terry Jia
bdf393792d add load 3d node support (#5564)
* add load 3d node support

* remove Preview3D from BE
2024-12-13 18:13:52 -05:00
comfyanonymous
4e14032c02 Make pad_to_patch_size function work on multi dim. 2024-12-13 07:22:05 -05:00
Chenlei Hu
59d58b1158 [Security] Fix potential XSS on /view (#6034) 2024-12-13 04:56:43 -05:00
Chenlei Hu
563291ee51 Enforce all pyflake lint rules (#6033)
* Enforce F821 undefined-name

* Enforce all pyflake lint rules
2024-12-12 19:29:37 -05:00
Chenlei Hu
6c0377f43e Enforce F821 undefined-name (#6032) 2024-12-12 19:24:41 -05:00
Chenlei Hu
2cddbf0821 Lint and fix undefined names (1/N) (#6028) 2024-12-12 18:55:26 -05:00
Chenlei Hu
60749f345d Lint and fix undefined names (3/N) (#6030) 2024-12-12 18:49:40 -05:00
Chenlei Hu
d4426dce7c Lint and fix undefined names (2/N) (#6029) 2024-12-12 18:48:21 -05:00
Chenlei Hu
d9d7f3c619 Lint all unused variables (#5989)
* Enable F841

* Autofix

* Remove all unused variable assignment
2024-12-12 17:59:16 -05:00
comfyanonymous
fd5dfb812c Set initial load devices for te and model to mps device on mac. 2024-12-12 06:00:31 -05:00
Chenlei Hu
3dfdddcc91 Update README (Add new keybinding entries) (#6020) 2024-12-11 15:55:38 -08:00
Hayden
5747bc6457 Optimize model library (#5841)
* Move model manager routes

* Add experiment model manager api

* Fix cache causing returns to be empty

* Fix unable to compare sub-dir caches

* Skip non-existent folders

* Add model preview

* Revert 'Move model manager routes'

* move model_filemanager.py to app/

* Update model_manager.py

3.8 compatibility

---------
2024-12-11 18:12:04 -05:00
yoinked
5bea1d2ec9 Add MaHiRo (improved/alternate CFG) (#5975)
* Add MaHiRo (improved CFG)

long explanation of what it is is [here](https://huggingface.co/spaces/yoinked/blue-arxiv) (2024-1208.1) 


note: if the node name has encoding issues (utf 8/whatever), id suggest to replace the face at the end with `(>w<)`

* add it to nodes.py, add description, and make it a post_cfg function

* fix

* revert the sampler_cfg_function thing

* switch cfg to args["denoised"]
2024-12-11 16:51:51 -05:00
Yoland Yan
5def9fbc83 Update CI workflow to remove Windows testing configuration (#6007)
- Commented out Windows OS from the CI matrix in test-ci.yml.
- Removed the test-win-nightly job to streamline testing on macOS and Linux only.
- Adjusted the matrix strategy to focus on Python versions and CUDA compatibility without Windows support.
2024-12-11 16:48:41 -05:00
comfyanonymous
7a7efe8424 Support loading some checkpoint files with nested dicts. 2024-12-11 08:04:54 -05:00
comfyanonymous
44db978531 Fix a few things in text enc code for models with no eos token. 2024-12-10 23:07:26 -05:00
comfyanonymous
1c8d11e48a Support different types of tokenizers.
Support tokenizers without an eos token.

Pass full sentences to tokenizer for more efficient tokenizing.
2024-12-10 15:03:39 -05:00
Chenlei Hu
a220d11e6b Replace pylint with ruff (#5987) 2024-12-09 22:04:23 -05:00
catboxanon
23827ca312 Add cond_scale to sampler_post_cfg_function (#5985) 2024-12-09 20:13:18 -05:00
Chenlei Hu
0fd4e6c778 Lint unused import (#5973)
* Lint unused import

* nit

* Remove unused imports

* revert fix_torch import

* nit
2024-12-09 15:24:39 -05:00
comfyanonymous
e2fafe0686 Make CLIP set last layer node work with t5 models. 2024-12-09 03:57:14 -05:00
comfyanonymous
6579632201 Remove unused imports and variables. 2024-12-08 08:08:12 -05:00
comfyanonymous
ac2f0523ca Set env vars to disable telemetry in libs used by some custom nodes. 2024-12-07 14:51:45 -05:00
Haoming
fbf68c4e52 clamp input (#5928) 2024-12-07 14:00:31 -05:00
Chenlei Hu
93477f8efe Add code owners (#5873)
* Add code owners

* Update owners

* nit

* Inline owners

* Remove team links

* Add Kosinkadink
2024-12-06 22:00:54 -05:00
comfyanonymous
8af9a91e0c A few improvements to #5937. 2024-12-06 05:49:15 -05:00
Michael Kupchick
005d2d3a13 ltxv: add noise to guidance image to ensure generated motion. (#5937) 2024-12-06 05:46:08 -05:00
comfyanonymous
1e21f4c14e Make timestep ranges more usable on rectified flow models.
This breaks some old workflows but should make the nodes actually useful.
2024-12-05 16:40:58 -05:00
comfyanonymous
9a616b81c1 Add rescaling_scale from STG to SkipLayerGuidanceDiT. 2024-12-04 19:25:50 -05:00
comfyanonymous
3bed56bb13 Add another ROCm tip. 2024-12-04 15:14:12 -05:00
filtered
4e402b11c6 Reland union type (#5900)
* Reapply "Add union link connection type support (#5806)" (#5889)

This reverts commit bf9a90a145.

* Fix union type breaks existing type workarounds

* Add non-string test

* Add tests for hacks and non-string types

* Support python versions lower than 3.11
2024-12-04 15:12:10 -05:00
Chenlei Hu
48272448ad [Developer Experience] Add node typing (#5676)
* [Developer Experience] Add node typing

* Shim StrEnum

* nit

* nit

* nit
2024-12-04 15:01:00 -05:00
Jedrzej Kosinski
f7695b5f9e Add Create Hook Keyframes Interp. node to simplify creating groups of keyframes without external nodes (#5896) 2024-12-03 21:03:09 -05:00
comfyanonymous
452179fe4f Make ModelPatcher class clone function work with inheritance. 2024-12-03 13:57:57 -05:00
Chenlei Hu
bf9a90a145 Revert "Add union link connection type support (#5806)" (#5889)
This reverts commit 8d4e06324f.
2024-12-03 13:06:34 -05:00
comfyanonymous
c1b92b719d Some optimizations to euler a. 2024-12-03 06:11:52 -05:00
Alexander Piskun
cdc3b97dd5 resolve relative paths in YAML configuration for extra model paths (#5847)
Signed-off-by: bigcat88 <bigcat88@icloud.com>
2024-12-03 06:02:01 -05:00
Chenlei Hu
8d4e06324f Add union link connection type support (#5806)
* Add union type support

* Move code

* nit
2024-12-03 05:46:00 -05:00
comfyanonymous
57e8bf6a9f Fix case where a memory leak could cause crash.
Now the only symptom of code messing up and keeping references to a model
object when it should not will be endless prints in the log instead of the
next workflow crashing ComfyUI.
2024-12-02 19:49:49 -05:00
Jedrzej Kosinski
0ee322ec5f ModelPatcher Overhaul and Hook Support (#5583)
* Added hook_patches to ModelPatcher for weights (model)

* Initial changes to calc_cond_batch to eventually support hook_patches

* Added current_patcher property to BaseModel

* Consolidated add_hook_patches_as_diffs into add_hook_patches func, fixed fp8 support for model-as-lora feature

* Added call to initialize_timesteps on hooks in process_conds func, and added call prepare current keyframe on hooks in calc_cond_batch

* Added default_conds support in calc_cond_batch func

* Added initial set of hook-related nodes, added code to register hooks for loras/model-as-loras, small renaming/refactoring

* Made CLIP work with hook patches

* Added initial hook scheduling nodes, small renaming/refactoring

* Fixed MaxSpeed and default conds implementations

* Added support for adding weight hooks that aren't registered on the ModelPatcher at sampling time

* Made Set Clip Hooks node work with hooks from Create Hook nodes, began work on better Create Hook Model As LoRA node

* Initial work on adding 'model_as_lora' lora type to calculate_weight

* Continued work on simpler Create Hook Model As LoRA node, started to implement ModelPatcher callbacks, attachments, and additional_models

* Fix incorrect ref to create_hook_patches_clone after moving function

* Added injections support to ModelPatcher + necessary bookkeeping, added additional_models support in ModelPatcher, conds, and hooks

* Added wrappers to ModelPatcher to facilitate standardized function wrapping

* Started scaffolding for other hook types, refactored get_hooks_from_cond to organize hooks by type

* Fix skip_until_exit logic bug breaking injection after first run of model

* Updated clone_has_same_weights function to account for new ModelPatcher properties, improved AutoPatcherEjector usage in partially_load

* Added WrapperExecutor for non-classbound functions, added calc_cond_batch wrappers

* Refactored callbacks+wrappers to allow storing lists by id

* Added forward_timestep_embed_patch type, added helper functions on ModelPatcher for emb_patch and forward_timestep_embed_patch, added helper functions for removing callbacks/wrappers/additional_models by key, added custom_should_register prop to hooks

* Added get_attachment func on ModelPatcher

* Implement basic MemoryCounter system for determing with cached weights due to hooks should be offloaded in hooks_backup

* Modified ControlNet/T2IAdapter get_control function to receive transformer_options as additional parameter, made the model_options stored in extra_args in inner_sample be a clone of the original model_options instead of same ref

* Added create_model_options_clone func, modified type annotations to use __future__ so that I can use the better type annotations

* Refactored WrapperExecutor code to remove need for WrapperClassExecutor (now gone), added sampler.sample wrapper (pending review, will likely keep but will see what hacks this could currently let me get rid of in ACN/ADE)

* Added Combine versions of Cond/Cond Pair Set Props nodes, renamed Pair Cond to Cond Pair, fixed default conds never applying hooks (due to hooks key typo)

* Renamed Create Hook Model As LoRA nodes to make the test node the main one (more changes pending)

* Added uuid to conds in CFGGuider and uuids to transformer_options to allow uniquely identifying conds in batches during sampling

* Fixed models not being unloaded properly due to current_patcher reference; the current ComfyUI model cleanup code requires that nothing else has a reference to the ModelPatcher instances

* Fixed default conds not respecting hook keyframes, made keyframes not reset cache when strength is unchanged, fixed Cond Set Default Combine throwing error, fixed model-as-lora throwing error during calculate_weight after a recent ComfyUI update, small refactoring/scaffolding changes for hooks

* Changed CreateHookModelAsLoraTest to be the new CreateHookModelAsLora, rename old ones as 'direct' and will be removed prior to merge

* Added initial support within CLIP Text Encode (Prompt) node for scheduling weight hook CLIP strength via clip_start_percent/clip_end_percent on conds, added schedule_clip toggle to Set CLIP Hooks node, small cleanup/fixes

* Fix range check in get_hooks_for_clip_schedule so that proper keyframes get assigned to corresponding ranges

* Optimized CLIP hook scheduling to treat same strength as same keyframe

* Less fragile memory management.

* Make encode_from_tokens_scheduled call cleaner, rollback change in model_patcher.py for hook_patches_backup dict

* Fix issue.

* Remove useless function.

* Prevent and detect some types of memory leaks.

* Run garbage collector when switching workflow if needed.

* Moved WrappersMP/CallbacksMP/WrapperExecutor to patcher_extension.py

* Refactored code to store wrappers and callbacks in transformer_options, added apply_model and diffusion_model.forward wrappers

* Fix issue.

* Refactored hooks in calc_cond_batch to be part of get_area_and_mult tuple, added extra_hooks to ControlBase to allow custom controlnets w/ hooks, small cleanup and renaming

* Fixed inconsistency of results when schedule_clip is set to False, small renaming/typo fixing, added initial support for ControlNet extra_hooks to work in tandem with normal cond hooks, initial work on calc_cond_batch merging all subdicts in returned transformer_options

* Modified callbacks and wrappers so that unregistered types can be used, allowing custom_nodes to have their own unique callbacks/wrappers if desired

* Updated different hook types to reflect actual progress of implementation, initial scaffolding for working WrapperHook functionality

* Fixed existing weight hook_patches (pre-registered) not working properly for CLIP

* Removed Register/Direct hook nodes since they were present only for testing, removed diff-related weight hook calculation as improved_memory removes unload_model_clones and using sample time registered hooks is less hacky

* Added clip scheduling support to all other native ComfyUI text encoding nodes (sdxl, flux, hunyuan, sd3)

* Made WrapperHook functional, added another wrapper/callback getter, added ON_DETACH callback to ModelPatcher

* Made opt_hooks append by default instead of replace, renamed comfy.hooks set functions to be more accurate

* Added apply_to_conds to Set CLIP Hooks, modified relevant code to allow text encoding to automatically apply hooks to output conds when apply_to_conds is set to True

* Fix cached_hook_patches not respecting target_device/memory_counter results

* Fixed issue with setting weights from hooks instead of copying them, added additional memory_counter check when caching hook patches

* Remove unnecessary torch.no_grad calls for hook patches

* Increased MemoryCounter minimum memory to leave free by *2 until a better way to get inference memory estimate of currently loaded models exists

* For encode_from_tokens_scheduled, allow start_percent and end_percent in add_dict to limit which scheduled conds get encoded for optimization purposes

* Removed a .to call on results of calculate_weight in patch_hook_weight_to_device that was screwing up the intermediate results for fp8 prior to being passed into stochastic_rounding call

* Made encode_from_tokens_scheduled work when no hooks are set on patcher

* Small cleanup of comments

* Turn off hook patch caching when only 1 hook present in sampling, replace some current_hook = None with calls to self.patch_hooks(None) instead to avoid a potential edge case

* On Cond/Cond Pair nodes, removed opt_ prefix from optional inputs

* Allow both FLOATS and FLOAT for floats_strength input

* Revert change, does not work

* Made patch_hook_weight_to_device respect set_func and convert_func

* Make discard_model_sampling True by default

* Add changes manually from 'master' so merge conflict resolution goes more smoothly

* Cleaned up text encode nodes with just a single clip.encode_from_tokens_scheduled call

* Make sure encode_from_tokens_scheduled will respect use_clip_schedule on clip

* Made nodes in nodes_hooks be marked as experimental (beta)

* Add get_nested_additional_models for cases where additional_models could have their own additional_models, and add robustness for circular additional_models references

* Made finalize_default_conds area math consistent with other sampling code

* Changed 'opt_hooks' input of Cond/Cond Pair Set Default Combine nodes to 'hooks'

* Remove a couple old TODO's and a no longer necessary workaround
2024-12-02 14:51:02 -05:00
comfyanonymous
79d5ceae6e Improved memory management. (#5450)
* Less fragile memory management.

* Fix issue.

* Remove useless function.

* Prevent and detect some types of memory leaks.

* Run garbage collector when switching workflow if needed.

* Fix issue.
2024-12-02 14:39:34 -05:00
comfyanonymous
2d5b3e0078 Remove useless code. 2024-12-02 06:49:55 -05:00
comfyanonymous
8e4118c0de make dpm_2_ancestral work with rectified flow. 2024-12-01 07:37:41 -05:00
comfyanonymous
3fc6ebcdd7 Add basic style model "multiply" strength. 2024-11-30 07:27:11 -05:00
comfyanonymous
20a560eb97 How to enable experimental memory efficient attention on ROCm RDNA3. 2024-11-29 06:19:49 -05:00
Dr.Lt.Data
82c5308561 Backward compatibility patch for changes in the method signature of InpaintModelConditioning. (#5825)
https://github.com/comfyanonymous/ComfyUI/issues/5813
2024-11-28 20:30:28 -05:00
comfyanonymous
26fb2c68e8 Add a way to disable cropping in the CLIPVisionEncode node. 2024-11-28 20:24:47 -05:00
comfyanonymous
bf2650a80e Fast previews for ltxv. 2024-11-28 06:46:15 -05:00
Chenlei Hu
53646e0f32 Update web content to release v1.4.13 (#5807) 2024-11-28 04:59:06 -05:00
Chenlei Hu
20879c78f9 Remove internal model download endpoint (#5432) 2024-11-28 04:57:06 -05:00
comfyanonymous
b666539595 Remove print. 2024-11-27 20:28:39 -05:00
comfyanonymous
95d8713482 Missing parentheses. 2024-11-27 13:45:32 -05:00
comfyanonymous
0d4e29f13f LTXV model merging node. 2024-11-27 01:43:31 -05:00
comfyanonymous
497db6212f Alternative fix for #5767 2024-11-26 17:53:04 -05:00
lky
24dc581dc3 fix multi add makedirs error (#5786)
try to start multiple comfyui server at the same time, and this got error
2024-11-26 15:34:19 -05:00
comfyanonymous
4c82741b54 Support official SD3.5 Controlnets. 2024-11-26 11:31:25 -05:00
comfyanonymous
15c39ea757 Support for the official mochi lora format. 2024-11-26 03:34:36 -05:00
comfyanonymous
b7143b74ce Flux inpaint model does not work in fp16. 2024-11-26 01:33:01 -05:00
comfyanonymous
61196d8857 Add option to inference the diffusion model in fp32 and fp64. 2024-11-25 05:00:23 -05:00
comfyanonymous
b4526d3fc3 Skip layer guidance now works on hydit model. 2024-11-24 05:54:30 -05:00
40476
3d802710e7 Update README.md (#5707) 2024-11-24 04:12:07 -05:00
spacepxl
7126ecffde set LTX min length to 1 for t2i (#5750)
At length=1, the LTX model can do txt2img and img2img with no other changes required.
2024-11-23 21:33:08 -05:00
comfyanonymous
ab885b33ba Skip layer guidance node now works on LTX-Video. 2024-11-23 10:33:05 -05:00
comfyanonymous
839ed3368e Some improvements to the lowvram unloading. 2024-11-22 20:59:15 -05:00
comfyanonymous
6e8cdcd3cb Fix some tiled VAE decoding issues with LTX-Video. 2024-11-22 18:00:34 -05:00
comfyanonymous
e5c3f4b87f LTXV lowvram fixes. 2024-11-22 17:17:11 -05:00
comfyanonymous
bc6be6c11e Some fixes to the lowvram system. 2024-11-22 16:40:04 -05:00
comfyanonymous
94323a26a7 Remove prints. 2024-11-22 10:51:31 -05:00
comfyanonymous
5818f6cf51 Remove print. 2024-11-22 10:49:15 -05:00
comfyanonymous
0b734de449 Add LTX-Video support to the Readme. 2024-11-22 09:24:20 -05:00
comfyanonymous
5e16f1d24b Support Lightricks LTX-Video model. 2024-11-22 08:46:39 -05:00
comfyanonymous
2fd9c1308a Fix mask issue in some attention functions. 2024-11-22 02:10:09 -05:00
comfyanonymous
8f0009aad0 Support new flux model variants. 2024-11-21 08:38:23 -05:00
comfyanonymous
41444b5236 Add some new weight patching functionality.
Add a way to reshape lora weights.

Allow weight patches to all weight not just .weight and .bias

Add a way for a lora to set a weight to a specific value.
2024-11-21 07:19:17 -05:00
comfyanonymous
772e620e32 Update readme. 2024-11-20 20:42:51 -05:00
comfyanonymous
07f6eeaa13 Fix mask issue with attention_xformers. 2024-11-20 17:07:46 -05:00
comfyanonymous
22535d0589 Skip layer guidance now works on stable audio model. 2024-11-20 07:33:06 -05:00
comfyanonymous
898615122f Rename add_noise_mask -> noise_mask. 2024-11-19 15:31:09 -05:00
comfyanonymous
156a28786b Add boolean to InpaintModelConditioning to disable the noise mask. 2024-11-19 07:31:29 -05:00
Yoland Yan
f498d855ba Add terminal size fallback (#5623) 2024-11-19 03:34:20 -05:00
comfyanonymous
b699a15062 Refactor inpaint/ip2p code. 2024-11-19 03:25:25 -05:00
Chenlei Hu
9cc90ee3eb Update UI screenshot in README (#5666)
* Update UI ScreenShot in README

* Remove legacy UI screenshot file

* nit

* nit
2024-11-18 16:50:34 -05:00
comfyanonymous
9a0a5d32ee Add a skip layer guidance node that can also skip single layers.
This one should work for skipping the single layers of models like Flux
and Auraflow.

If you want to see how these models work and how many double/single layers
they have see the "ModelMerge*" nodes for the specific model.
2024-11-18 02:20:43 -05:00
comfyanonymous
d9f90965c8 Support block replace patches in auraflow. 2024-11-17 08:19:59 -05:00
comfyanonymous
41886af138 Add transformer options blocks replace patch to mochi. 2024-11-16 20:48:14 -05:00
Chenlei Hu
22a1d7ce78 Fix 3.8 compatibility in user_manager.py (#5645) 2024-11-16 20:42:21 -05:00
Chenlei Hu
4ac401af2b Update web content to release v1.3.44 (#5620)
* Update web content to release v1.3.44

* nit
2024-11-15 20:17:15 -05:00
comfyanonymous
5fb59c8475 Add a node to block merge auraflow models. 2024-11-15 12:47:55 -05:00
comfyanonymous
122c9ca1ce Add advanced model merging node for mochi. 2024-11-14 07:51:20 -05:00
comfyanonymous
3b9a6cf2b1 Fix issue with 3d masks. 2024-11-13 07:18:30 -05:00
comfyanonymous
3748e7ef7a Fix regression. 2024-11-13 04:24:48 -05:00
comfyanonymous
8ebf2d8831 Add block replace transformer_options to flux. 2024-11-12 08:00:39 -05:00
Bratzmeister
a72d152b0c fix --cuda-device arg for AMD/HIP devices (#5586)
* fix --cuda-device arg for AMD/HIP devices

CUDA_VISIBLE_DEVICES is ignored for HIP devices/backend. Instead it uses HIP_VISIBLE_DEVICES. Setting this environment variable has no side effect for CUDA/NVIDIA so it can safely be set in any case and vice versa.

* deleted accidental if
2024-11-12 06:53:36 -05:00
comfyanonymous
eb476e6ea9 Allow 1D masks for 1D latents. 2024-11-11 14:44:52 -05:00
Dr.Lt.Data
2d28b0b479 improve: add descriptions for clip loaders (#5576) 2024-11-11 05:37:23 -05:00
comfyanonymous
8b275ce5be Support auto detecting some zsnr anime checkpoints. 2024-11-11 05:34:11 -05:00
comfyanonymous
2a18e98ccf Refactor so that zsnr can be set in the sampling_settings. 2024-11-11 04:55:56 -05:00
comfyanonymous
8a5281006f Fix some custom nodes. 2024-11-10 22:41:00 -05:00
comfyanonymous
bdeb1c171c Fast previews for mochi. 2024-11-10 03:39:35 -05:00
comfyanonymous
9c1ed58ef2 proper fix for sag. 2024-11-10 00:10:45 -05:00
comfyanonymous
8b90e50979 Properly handle and reshape masks when used on 3d latents. 2024-11-09 15:30:19 -05:00
pythongosssss
6ee066a14f Live terminal output (#5396)
* Add /logs/raw and /logs/subscribe for getting logs on frontend
Hijacks stderr/stdout to send all output data to the client on flush

* Use existing send sync method

* Fix get_logs should return string

* Fix bug

* pass no server

* fix tests

* Fix output flush on linux
2024-11-08 19:13:34 -05:00
DenOfEquity
dd5b57e3d7 fix for SAG with Kohya HRFix/ Deep Shrink (#5546)
now works with arbitrary downscale factors
2024-11-08 18:16:29 -05:00
comfyanonymous
75a818c720 Move mochi latent node to: latent/video. 2024-11-08 08:33:44 -05:00
comfyanonymous
2865f913f7 Free memory before doing tiled decode. 2024-11-07 04:01:24 -05:00
comfyanonymous
b49616f951 Make VAEDecodeTiled node work with video VAEs. 2024-11-07 03:47:12 -05:00
comfyanonymous
5e29e7a488 Remove scaled_fp8 key after reading it to silence warning. 2024-11-06 04:56:42 -05:00
comfyanonymous
8afb97cd3f Fix unknown VAE being detected as the mochi VAE. 2024-11-05 03:43:27 -05:00
contentis
69694f40b3 fix dynamic shape export (#5490) 2024-11-04 14:59:28 -05:00
Chenlei Hu
c49025f01b Allow POST /userdata/{file} endpoint to return full file info (#5446)
* Refactor listuserdata

* Full info param

* Add tests

* Fix mock

* Add full_info support for move user file
2024-11-04 13:57:21 -05:00
comfyanonymous
696672905f Add mochi support to readme. 2024-11-04 04:55:07 -05:00
comfyanonymous
6c9dbde7de Fix mochi all in one checkpoint t5xxl key names. 2024-11-03 01:40:42 -05:00
comfyanonymous
ee8abf0cff Update folder paths: "clip" -> "text_encoders"
You can still use models/clip but the folder might get removed eventually
on new installs of ComfyUI.
2024-11-02 15:35:38 -04:00
comfyanonymous
fabf449feb Mochi VAE encoder. 2024-11-01 17:33:09 -04:00
Uriel Deveaud
cc9cf6d1bd Rename some nodes in Display Name Mappings (nodes.py) (#5439)
* Update nodes_images.py

Nodes menu has inconsistency in names, some with spaces between words, other not.

* Update nodes.py

Include the node mapping name line for Image Crop Node

* Update nodes_images.py

* Rename image nodes

add space between words for consistency > Display name mappings
2024-10-31 15:18:05 -04:00
Aarni Koskela
1c8286a44b Avoid SyntaxWarning in UniPC docstring (#5442) 2024-10-31 15:17:26 -04:00
comfyanonymous
1af4a47fd1 Bump up mac version for attention upcast bug workaround. 2024-10-31 15:15:31 -04:00
Uriel Deveaud
f2aaa0a475 Rename ImageCrop to Image Crop (#5424)
* Update nodes_images.py

Nodes menu has inconsistency in names, some with spaces between words, other not.

* Update nodes.py

Include the node mapping name line for Image Crop Node

* Update nodes_images.py
2024-10-31 00:35:34 -04:00
comfyanonymous
daa1565b93 Fix diffusers flux controlnet regression. 2024-10-30 13:11:34 -04:00
comfyanonymous
09fdb2b269 Support SD3.5 medium diffusers format weights and loras. 2024-10-30 04:24:00 -04:00
Chenlei Hu
65a8659182 Update web content to release v1.3.26 (#5413)
* Update web content to release v1.3.26

* nit
2024-10-29 14:14:06 -04:00
comfyanonymous
770ab200f2 Cleanup SkipLayerGuidanceSD3 node. 2024-10-29 10:11:46 -04:00
Dango233
954683d0db SLG first implementation for SD3.5 (#5404)
* SLG first implementation for SD3.5

* * Simplify and align with comfy style
2024-10-29 09:59:21 -04:00
comfyanonymous
30c0c81351 Add a way to patch blocks in SD3. 2024-10-29 00:48:32 -04:00
comfyanonymous
13b0ff8a6f Update SD3 code. 2024-10-28 21:58:52 -04:00
comfyanonymous
c320801187 Remove useless line. 2024-10-28 17:41:12 -04:00
Chenlei Hu
c0b0cfaeec Update web content to release v1.3.21 (#5351)
* Update web content to release v1.3.21

* nit
2024-10-28 14:29:38 -04:00
comfyanonymous
669d9e4c67 Set default shift on mochi to 6.0 2024-10-27 22:21:04 -04:00
comfyanonymous
9ee0a6553a float16 inference is a bit broken on mochi. 2024-10-27 04:56:40 -04:00
comfyanonymous
5cbb01bc2f Basic Genmo Mochi video model support.
To use:
"Load CLIP" node with t5xxl + type mochi
"Load Diffusion Model" node with the mochi dit file.
"Load VAE" with the mochi vae file.

EmptyMochiLatentVideo node for the latent.
euler + linear_quadratic in the KSampler node.
2024-10-26 06:54:00 -04:00
comfyanonymous
c3ffbae067 Make LatentUpscale nodes work on 3d latents. 2024-10-26 01:50:51 -04:00
comfyanonymous
d605677b33 Make euler_ancestral work on flow models (credit: Ashen). 2024-10-25 19:53:44 -04:00
Chenlei Hu
ce759b7db6 Revert download to .tmp in frontend_management (#5369) 2024-10-25 19:26:13 -04:00
comfyanonymous
52810907e2 Add a model merge node for SD3.5 large. 2024-10-24 16:46:21 -04:00
PsychoLogicAu
af8cf79a2d support SimpleTuner lycoris lora for SD3 (#5340) 2024-10-24 01:18:32 -04:00
comfyanonymous
66b0961a46 Fix ControlLora issue with last commit. 2024-10-23 17:02:40 -04:00
comfyanonymous
754597c8a9 Clean up some controlnet code.
Remove self.device which was useless.
2024-10-23 14:19:05 -04:00
comfyanonymous
915fdb5745 Fix lowvram edge case. 2024-10-22 16:34:50 -04:00
contentis
5a8a48931a remove attention abstraction (#5324) 2024-10-22 14:02:38 -04:00
comfyanonymous
8ce2a1052c Optimizations to --fast and scaled fp8. 2024-10-22 02:12:28 -04:00
comfyanonymous
f82314fcfc Fix duplicate sigmas on beta scheduler. 2024-10-21 20:19:45 -04:00
comfyanonymous
0075c6d096 Mixed precision diffusion models with scaled fp8.
This change allows supports for diffusion models where all the linears are
scaled fp8 while the other weights are the original precision.
2024-10-21 18:12:51 -04:00
comfyanonymous
83ca891118 Support scaled fp8 t5xxl model. 2024-10-20 22:27:00 -04:00
comfyanonymous
f9f9faface Fixed model merging issue with scaled fp8. 2024-10-20 06:24:31 -04:00
comfyanonymous
471cd3eace fp8 casting is fast on GPUs that support fp8 compute. 2024-10-20 00:54:47 -04:00
comfyanonymous
a68bbafddb Support diffusion models with scaled fp8 weights. 2024-10-19 23:47:42 -04:00
comfyanonymous
73e3a9e676 Clamp output when rounding weight to prevent Nan. 2024-10-19 19:07:10 -04:00
comfyanonymous
518c0dc2fe Add tooltips to LoraSave node. 2024-10-18 06:01:09 -04:00
comfyanonymous
ce0542e10b Add a note that python 3.13 is not yet supported to the README. 2024-10-17 19:27:37 -04:00
comfyanonymous
8473019d40 Pytorch can be shipped with numpy 2 now. 2024-10-17 19:15:17 -04:00
Xiaodong Xie
89f15894dd Ignore more network related errors during websocket communication. (#5269)
Intermittent network issues during websocket communication should not crash ComfyUi process.

Co-authored-by: Xiaodong Xie <xie.xiaodong@frever.com>
2024-10-17 18:31:45 -04:00
comfyanonymous
67158994a4 Use the lowvram cast_to function for everything. 2024-10-17 17:25:56 -04:00
comfyanonymous
7390ff3b1e Add missing import. 2024-10-16 14:58:30 -04:00
comfyanonymous
0bedfb26af Revert "Fix Transformers FutureWarning (#5140)"
This reverts commit 95b7cf9bbe.
2024-10-16 12:36:19 -04:00
comfyanonymous
f71cfd2687 Add an experimental node to sharpen latents.
Can be used with LatentApplyOperationCFG for interesting results.
2024-10-16 05:25:31 -04:00
Alex "mcmonkey" Goodwin
c695c4af7f Frontend Manager: avoid redundant gh calls for static versions (#5152)
* Frontend Manager: avoid redundant gh calls for static versions

* actually, removing old tmpdir isn't needed

I tested - downloader code handles this case well already
(also rmdir was wrong func anyway, needed shutil.rmtree if it had content)

* add code comment
2024-10-16 03:35:37 -04:00
comfyanonymous
0dbba9f751 Add some latent operation nodes.
This is a port of the ModelSamplerTonemapNoiseTest from the experiments
repo.

To replicate that node use LatentOperationTonemapReinhard and
LatentApplyOperationCFG together.
2024-10-15 15:00:36 -04:00
comfyanonymous
f584758271 Cleanup some useless lines. 2024-10-14 21:02:39 -04:00
svdc
95b7cf9bbe Fix Transformers FutureWarning (#5140)
* Update sd1_clip.py

Fix Transformers FutureWarning

* Update sd1_clip.py

Fix comment
2024-10-14 20:12:20 -04:00
comfyanonymous
191a0d56b4 Switch default packaging workflows to python 3.12 2024-10-13 06:59:31 -04:00
comfyanonymous
3c60ecd7a8 Fix fp8 ops staying enabled. 2024-10-12 14:10:13 -04:00
comfyanonymous
7ae6626723 Remove useless argument. 2024-10-12 07:16:21 -04:00
comfyanonymous
6632365e16 model_options consistency between functions.
weight_dtype -> dtype
2024-10-11 20:51:19 -04:00
Kadir Nar
ad07796777 🐛 Add device to variable c (#5210) 2024-10-11 20:37:50 -04:00
comfyanonymous
1b80895285 Make clip loader nodes support loading sd3 t5xxl in lower precision.
Add attention mask support in the SD3 text encoder code.
2024-10-10 15:06:15 -04:00
Dr.Lt.Data
5f9d5a244b Hotfix for the div zero occurrence when memory_used_encode is 0 (#5121)
https://github.com/comfyanonymous/ComfyUI/issues/5069#issuecomment-2382656368
2024-10-09 23:34:34 -04:00
Chenlei Hu
14eba07acd Update web content to release v1.3.11 (#5189)
* Update web content to release v1.3.11

* nit
2024-10-09 22:37:04 -04:00
Jonathan Avila
4b2f0d9413 Increase maximum macOS version to 15.0.1 when forcing upcast attention (#5191) 2024-10-09 22:21:41 -04:00
Yoland Yan
25eac1d780 Change runner label for the new runners (#5197) 2024-10-09 20:08:57 -04:00
comfyanonymous
e38c94228b Add a weight_dtype fp8_e4m3fn_fast to the Diffusion Model Loader node.
This is used to load weights in fp8 and use fp8 matrix multiplication.
2024-10-09 19:43:17 -04:00
comfyanonymous
203942c8b2 Fix flux doras with diffusers keys. 2024-10-08 19:03:40 -04:00
Brendan Hoar
3c72c89a52 Update folder_paths.py - try/catch for special file_name values (#5187)
Somehow managed to drop a file called "nul" into a windows checkpoints subdirectory. This caused all sorts of havoc with many nodes that needed the list of checkpoints.
2024-10-08 15:04:32 -04:00
Chenlei Hu
614377abd6 Update web content to release v1.2.64 (#5124) 2024-10-07 17:15:29 -04:00
comfyanonymous
8dfa0cc552 Make SD3 fast previews a little better. 2024-10-07 09:19:59 -04:00
comfyanonymous
e5ecdfdd2d Make fast previews for SDXL a little better by adding a bias. 2024-10-06 19:27:04 -04:00
comfyanonymous
7d29fbf74b Slightly improve the fast previews for flux by adding a bias. 2024-10-06 17:55:46 -04:00
Lex
2c641e64ad IS_CHANGED should be a classmethod (#5159) 2024-10-06 05:47:51 -04:00
comfyanonymous
7d2467e830 Some minor cleanups. 2024-10-05 13:22:39 -04:00
comfyanonymous
6f021d8aa0 Let --verbose have an argument for the log level. 2024-10-04 10:05:34 -04:00
comfyanonymous
d854ed0bcf Allow using SD3 type te output on flux model. 2024-10-03 09:44:54 -04:00
comfyanonymous
abcd006b8c Allow more permutations of clip/t5 in dual clip loader. 2024-10-03 09:26:11 -04:00
comfyanonymous
d985d1d7dc CLIP Loader node now supports clip_l and clip_g only for SD3. 2024-10-02 04:25:17 -04:00
comfyanonymous
d1cdf51e1b Refactor some of the TE detection code. 2024-10-01 07:08:41 -04:00
comfyanonymous
b4626ab93e Add simpletuner lycoris format for SD unet. 2024-09-30 06:03:27 -04:00
comfyanonymous
a9e459c2a4 Use torch.nn.functional.linear in RGB preview code.
Add an optional bias to the latent RGB preview code.
2024-09-29 11:27:49 -04:00
comfyanonymous
3bb4dec720 Fix issue with loras, lowvram and --fast fp8. 2024-09-28 14:42:32 -04:00
City
8733191563 Flux torch.compile fix (#5082) 2024-09-27 22:07:51 -04:00
comfyanonymous
83b01f960a Add backend option to TorchCompileModel.
If you want to use the cudagraphs backend you need to: --disable-cuda-malloc

If you get other backends working feel free to make a PR to add them.
2024-09-27 02:12:37 -04:00
comfyanonymous
d72e871cfa Add a note that the experimental model downloader api will be removed. 2024-09-26 03:17:52 -04:00
comfyanonymous
037c3159b6 Move some nodes out of _for_testing. 2024-09-25 08:41:22 -04:00
comfyanonymous
bdd4a22a2e Fix flux TE not loading t5 embeddings. 2024-09-24 22:57:22 -04:00
comfyanonymous
fdf37566ef Add batch size to EmptyLatentAudio. 2024-09-24 04:32:55 -04:00
Alex "mcmonkey" Goodwin
08c8968482 Internal download API: Add proper validated directory input (#4981)
* add internal /folder_paths route

returns a json maps of folder paths

* (minor) format download_models.py

* initial folder path input on download api

* actually, require folder_path and clean up some code

* partial tests update

* fix & logging

* also download to a tmp file not the live file

to avoid compounding errors from network failure

* update tests again

* test tweaks

* workaround the first tests blocker

* fix file handling in tests

* rewrite test for create_model_path

* minor doc fix

* avoid 'mock_directory'

use temp dir to avoid accidental fs pollution from tests
2024-09-24 03:50:45 -04:00
chaObserv
479a427a48 Add dpmpp_2m_cfg_pp (#4992) 2024-09-24 02:42:56 -04:00
comfyanonymous
3a0eeee320 Make --listen listen on both ipv4 and ipv6 at the same time by default. 2024-09-23 04:38:19 -04:00
comfyanonymous
447da7ea86 Support listening on multiple addresses. 2024-09-23 04:36:59 -04:00
comfyanonymous
9c41bc8d10 Remove useless line. 2024-09-23 02:32:29 -04:00
Robin Huang
6ad0ddbae4 Run unit tests on Windows/MacOS as well. (#5018)
* Run unit tests on Windows as well.

* Test on mac.

* Continue running on error.

* Compared normalized paths to work cross platform.

* Only test common set of mimetypes across operating systems.
2024-09-22 05:01:39 -04:00
RandomGitUser321
a55142f904 Add ws.close() to the websocket examples (#5020)
* add ws.close() to websocket examples

* add and explain ws.close() in websocket examples
2024-09-22 04:59:10 -04:00
comfyanonymous
5718ef69bb Add total and free ram to /system_stats. 2024-09-22 03:42:11 -04:00
RandomGitUser321
13ecf10a92 Added to the websockets_api_example.py to show how to decode latent previews from the binary stream (#5016)
* Update websockets_api_example.py

* even more simplfied
2024-09-22 02:30:44 -04:00
comfyanonymous
7a415f47a9 Add an optional VAE input to the ControlNetApplyAdvanced node.
Deprecate the other controlnet nodes.
2024-09-22 01:24:52 -04:00
Chenlei Hu
89fa2fca24 Update web content to release v1.2.60 (#5017)
* Update web content to release v1.2.60

* Remove dist.zip
2024-09-21 23:28:54 -04:00
comfyanonymous
364b69e931 Make SD3 empty latent image zeros.
This shouldn't change anything. The reason it was not zeros is because it
did matter in early versions of the code.
2024-09-21 09:13:10 -04:00
comfyanonymous
dc96a1ae19 Load controlnet in fp8 if weights are in fp8. 2024-09-21 04:50:12 -04:00
comfyanonymous
2d810b081e Add load_controlnet_state_dict function. 2024-09-21 01:51:51 -04:00
comfyanonymous
9f7e9f0547 Add an error message when a controlnet needs a VAE but none is given. 2024-09-21 01:33:18 -04:00
comfyanonymous
a355f38ecc Make the SD3 controlnet node the default one. 2024-09-21 01:32:46 -04:00
huchenlei
38c69080c7 Add docstring 2024-09-20 03:16:23 -04:00
comfyanonymous
70a708d726 Fix model merging issue. 2024-09-20 02:31:44 -04:00
yoinked
e7d4782736 add laplace scheduler [2407.03297] (#4990)
* add laplace scheduler [2407.03297]

* should be here instead lol

* better settings
2024-09-19 23:23:09 -04:00
Alex "mcmonkey" Goodwin
3326bdfd4e add internal /folder_paths route (#4980)
returns a json maps of folder paths
2024-09-19 09:52:55 -04:00
Alex "mcmonkey" Goodwin
68bb885d22 add 'is_default' to model paths config (#4979)
* add 'is_default' to model paths config

including impl and doc in example file

* update weirdly overspecific test expectations

* oh there's two

* sigh
2024-09-19 08:59:55 -04:00
comfyanonymous
ad66f7c7d8 Add model_options to load_controlnet function. 2024-09-19 08:23:35 -04:00
Simon Lui
de8e8e3b0d Fix xpu Pytorch nightly build from calling optimize which doesn't exist. (#4978) 2024-09-19 05:11:42 -04:00
Alex "mcmonkey" Goodwin
a1e71cfad1 very simple strong-cache on model list (#4969)
* very simple strong-cache on model list

* store the cache after validation too

* only cache object_info for now

* use a 'with' context
2024-09-19 04:40:14 -04:00
comfyanonymous
0bfc7cc998 Create the temp directory on ComfyUI startup instead. 2024-09-18 09:55:57 -04:00
Tom
7183fd1665 Add route to list model types (#4846)
* Add list models route

* Better readable model types list
2024-09-17 04:22:05 -04:00
Alex "mcmonkey" Goodwin
254838f23c add simple error check to model loading (#4950) 2024-09-17 03:57:17 -04:00
pharmapsychotic
0b7dfa986d Improve tiling calculations to reduce number of tiles that need to be processed. (#4944) 2024-09-17 03:51:10 -04:00
comfyanonymous
d514bb38ee Add some option to model_options for the text encoder.
load_device, offload_device and the initial_device can now be set.
2024-09-17 03:49:54 -04:00
comfyanonymous
0849c80e2a get_key_patches now works without unloading the model. 2024-09-17 01:57:59 -04:00
comfyanonymous
56e8f5e4fd VAEDecodeAudio now does some normalization on the audio. 2024-09-16 00:30:36 -04:00
comfyanonymous
e813abbb2c Long CLIP L support for SDXL, SD3 and Flux.
Use the *CLIPLoader nodes.
2024-09-15 07:59:38 -04:00
JettHu
5e68a4ce67 Reduce repeated calls of INPUT_TYPES in cache (#4922) 2024-09-15 01:03:09 -04:00
comfyanonymous
ca08597670 Make the inpaint controlnet node work with non inpaint ones. 2024-09-14 09:17:13 -04:00
comfyanonymous
f48e390032 Support AliMama SD3 and Flux inpaint controlnets.
Use the ControlNetInpaintingAliMamaApply node.
2024-09-14 09:05:16 -04:00
Chenlei Hu
369a6dd2c4 Remove empty spaces in user_manager.py (#4917) 2024-09-13 23:30:44 -04:00
comfyanonymous
b3ce8fb9fd Revert "Reduce repeated calls of get_immediate_node_signature for ancestors in cache (#4871)"
This reverts commit f6b7194f64.
2024-09-13 23:24:47 -04:00
comfyanonymous
cf80d28689 Support loading controlnets with different input. 2024-09-13 09:54:37 -04:00
Acly
6fb44c4b7c Make adding links/nodes to ExecutionList non-recursive (#4886)
Graphs with 300+ chained nodes run into maximum recursion depth error (limit is 1000 in CPython)
2024-09-13 08:25:11 -04:00
Chenlei Hu
d2247c1e61 Normalize path returned by /userdata to always use / as separator (#4906) 2024-09-13 03:45:31 -04:00
Chenlei Hu
cb12ad7049 Add full_info flag in /userdata endpoint to list out file size and last modified timestamp (#4905)
* Add full_info flag in /userdata endpoint to list out file size and last modified timestamp

* nit
2024-09-13 02:40:59 -04:00
JettHu
f6b7194f64 Reduce repeated calls of get_immediate_node_signature for ancestors in cache (#4871) 2024-09-12 23:02:52 -04:00
comfyanonymous
7c6eb4fb29 Set some nodes as DEPRECATED. 2024-09-12 20:27:07 -04:00
Robin Huang
b962db9952 Add cli arg to override user directory (#4856)
* Override user directory.

* Use overridden user directory.

* Remove prints.

* Remove references to global user_files.

* Remove unused replace_folder function.

* Remove newline.

* Remove global during get_user_directory.

* Add validation.
2024-09-12 08:10:27 -04:00
comfyanonymous
d0b7ab88ba Add a simple experimental TorchCompileModel node.
It probably only works on Linux.

For maximum speed on Flux with Nvidia 40 series/ada and newer try using
this node with fp8_e4m3fn and the --fast argument.
2024-09-12 05:24:25 -04:00
Yoland Yan
405b529545 Minor: update tests-unit README.md (#4896) 2024-09-12 04:53:08 -04:00
comfyanonymous
9d720187f1 types -> comfy_types to fix import issue. 2024-09-12 03:57:46 -04:00
Robin Huang
d247bc5a9c Expand variables in base_path for extra_config_paths.yaml. (#4893)
* Expand variables in base_path for extra_config_paths.yaml.

* Fix comments.
2024-09-12 01:52:06 -04:00
comfyanonymous
9f4daca9d9 Doesn't really make sense for cfg_pp sampler to call regular one. 2024-09-11 02:51:36 -04:00
yoinked
b5d0f2a908 Add CFG++ to DPM++ 2S Ancestral (#3871)
* Update sampling.py

* Update samplers.py

* my bad

* "fix" the sampler

* Update samplers.py

* i named it wrong

* minor sampling improvements

mainly using a dynamic rho value (hey this sounds a lot like smea!!!)

* revert rho change

rho? r? its just 1/2
2024-09-11 02:49:44 -04:00
bymyself
e760bf5c40 Add content-type filter method to folder_paths (#4054)
* Add content-type filter method to folder_paths

* Add unit tests

* Hardcode webp content-type

* Annotate content_types as Literal["image", "video", "audio"]
2024-09-11 02:00:07 -04:00
comfyanonymous
36c83cdbba Limit origin check to when host is loopback.
This should still prevent the exploit without breaking things for people
who use reverse proxies.
2024-09-11 01:06:37 -04:00
Yoland Yan
81778a7feb [🗻 Mount Fuji Commit] Add unit tests for folder path utilities (#4869)
All past 30 min of comtts are done on the top of Mt Fuji
By Comfy, Robin, and Yoland
All other comfy org members died on the way

Introduced unit tests to verify the correctness of various folder path
utility functions such as `get_directory_by_type`, `annotated_filepath`,
and `recursive_search` among others. These tests cover scenarios
including directory retrieval, filepath annotation, recursive file
searches, and filtering files by extensions, enhancing the robustness
and reliability of the codebase.
2024-09-10 00:44:49 -04:00
comfyanonymous
bc94662b31 Cleanup. 2024-09-10 00:43:37 -04:00
Robin Huang
9fa8faa44a Expand user directory for basepath in extra_models_paths.yaml (#4857)
* Expand user path.

* Add test.

* Add unit test for expanding base path.

* Simplify unit test.

* Remove comment.

* Remove comment.

* Checkpoints.

* Refactor.
2024-09-10 00:33:44 -04:00
comfyanonymous
9a7444e39f Add diffusion_models to the extra_model_paths.yaml.example 2024-09-10 00:21:33 -04:00
comfyanonymous
54fca4a218 If host does not contain a port only compare the hostnames. 2024-09-09 16:28:23 -04:00
Chenlei Hu
cd4955367e Add back CI action for tests-ui (#4859) 2024-09-09 04:32:55 -04:00
david02871
8354203d95 Add .venv to gitignore (#4756) 2024-09-09 04:31:18 -04:00
comfyanonymous
e0b41243b4 Fix issue where sometimes origin doesn't contain the port. 2024-09-09 03:18:17 -04:00
Alex "mcmonkey" Goodwin
619263d4a6 allow current timestamp in save image prefix (#4030) 2024-09-09 02:55:51 -04:00
comfyanonymous
e3b0402bb7 Ignore origin domain when it's empty. 2024-09-09 01:04:56 -04:00
Darion
967867d48c fix: url decode filename from API (#4801) 2024-09-08 21:02:32 -04:00
comfyanonymous
cbaac71bf5 Fix issue with last commit. 2024-09-08 19:35:23 -04:00
comfyanonymous
3ab3516e46 By default only accept requests where origin header matches the host.
Browsers are dumb and let any website do requests to localhost this should
prevent this without breaking things. CORS prevents the javascript from
reading the response but they can still write it.

At the moment this is only enabled when the --enable-cors-header argument
is not used.
2024-09-08 18:17:29 -04:00
comfyanonymous
9c5fca75f4 Fix lora issue. 2024-09-08 10:10:47 -04:00
guill
a5da4d0b3e Fix error with ExecutionBlocker and OUTPUT_IS_LIST (#4836)
This change resolves an error when a node with OUTPUT_IS_LIST=(True,)
receives an ExecutionBlocker. I've also added a unit test for this case.
2024-09-08 09:48:47 -04:00
comfyanonymous
32a60a7bac Support onetrainer text encoder Flux lora. 2024-09-08 09:31:41 -04:00
Jim Winkens
bb52934ba4 Fix import issue (#4815) 2024-09-07 05:28:32 -04:00
comfyanonymous
8aabd7c8c0 SaveLora node can now save "full diff" lora format.
This isn't actually a lora format and is saving the full diff of the
weights in a format that can be used in the lora loader nodes.
2024-09-07 03:21:02 -04:00
comfyanonymous
a09b29ca11 Add an option to the SaveLora node to store the bias diff. 2024-09-07 03:03:30 -04:00
comfyanonymous
9bfee68773 LoraSave node now supports generating text encoder loras.
text_encoder_diff should be connected to a CLIPMergeSubtract node.

model_diff and text_encoder_diff are optional inputs so you can create
model only loras, text encoder only loras or a lora that contains both.
2024-09-07 02:30:12 -04:00
comfyanonymous
ea77750759 Support a generic Comfy format for text encoder loras.
This is a format with keys like:
text_encoders.clip_l.transformer.text_model.encoder.layers.9.self_attn.v_proj.lora_up.weight

Instead of waiting for me to add support for specific lora formats you can
convert your text encoder loras to this format instead.

If you want to see an example save a text encoder lora with the SaveLora
node with the commit right after this one.
2024-09-07 02:20:39 -04:00
comfyanonymous
c27ebeb1c2 Fix onnx export not working on flux. 2024-09-06 03:21:52 -04:00
guill
0c7c98a965 Nodes using UNIQUE_ID as input are NOT_IDEMPOTENT (#4793)
As suggested by @ltdrdata, we can automatically consider nodes that take
the UNIQUE_ID hidden input to be NOT_IDEMPOTENT.
2024-09-05 19:33:02 -04:00
comfyanonymous
dc2eb75b85 Update stable release workflow to latest pytorch with cuda 12.4. 2024-09-05 19:21:52 -04:00
Chenlei Hu
fa34efe3bd Update frontend to v1.2.47 (#4798)
* Update web content to release v1.2.47

* Update shortcut list
2024-09-05 18:56:01 -04:00
comfyanonymous
5cbaa9e07c Mistoline flux controlnet support. 2024-09-05 00:05:17 -04:00
comfyanonymous
c7427375ee Prioritize freeing partially offloaded models first. 2024-09-04 19:47:32 -04:00
comfyanonymous
22d1241a50 Add an experimental LoraSave node to extract model loras.
The model_diff input should be connected to the output of a
ModelMergeSubtract node.
2024-09-04 16:38:38 -04:00
Jedrzej Kosinski
f04229b84d Add emb_patch support to UNetModel forward (#4779) 2024-09-04 14:35:15 -04:00
Silver
f067ad15d1 Make live preview size a configurable launch argument (#4649)
* Make live preview size a configurable launch argument

* Remove import from testing phase

* Update cli_args.py
2024-09-03 19:16:38 -04:00
comfyanonymous
483004dd1d Support newer glora format. 2024-09-03 17:02:19 -04:00
comfyanonymous
00a5d08103 Lower fp8 lora memory usage. 2024-09-03 01:25:05 -04:00
comfyanonymous
d043997d30 Flux onetrainer lora. 2024-09-02 08:22:15 -04:00
Alex "mcmonkey" Goodwin
f1c2301697 fix typo in stale-issues (#4735) 2024-09-01 17:44:49 -04:00
comfyanonymous
8d31a6632f Speed up inference on nvidia 10 series on Linux. 2024-09-01 17:29:31 -04:00
comfyanonymous
b643eae08b Make minimum_inference_memory() depend on --reserve-vram 2024-09-01 01:18:34 -04:00
comfyanonymous
baa6b4dc36 Update manual install instructions. 2024-08-31 04:37:23 -04:00
Alex "mcmonkey" Goodwin
d4aeefc297 add github action to automatically handle stale user support issues (#4683)
* add github action to automatically handle stale user support issues

* improve stale message

* remove token part
2024-08-31 01:57:18 -04:00
comfyanonymous
587e7ca654 Remove github buttons. 2024-08-31 01:53:10 -04:00
Chenlei Hu
c90459eba0 Update ComfyUI_frontend to 1.2.40 (#4691)
* Update ComfyUI_frontend to 1.2.40

* Add files
2024-08-30 19:32:10 -04:00
Vedat Baday
04278afb10 feat: return import_failed from init_extra_nodes function (#4694) 2024-08-30 19:26:47 -04:00
comfyanonymous
935ae153e1 Cleanup. 2024-08-30 12:53:59 -04:00
Chenlei Hu
e91662e784 Get logs endpoint & system_stats additions (#4690)
* Add route for getting output logs

* Include ComfyUI version

* Move to own function

* Changed to memory logger

* Unify logger setup logic

* Fix get version git fallback

---------

Co-authored-by: pythongosssss <125205205+pythongosssss@users.noreply.github.com>
2024-08-30 12:46:37 -04:00
comfyanonymous
63fafaef45 Fix potential issue with hydit controlnets. 2024-08-30 04:58:41 -04:00
Alex "mcmonkey" Goodwin
ec28cd9136 swap legacy sdv15 link (#4682)
* swap legacy sdv15 link

* swap v15 ckpt examples to safetensors

* link the fp16 copy of the model by default
2024-08-29 19:48:48 -04:00
comfyanonymous
6eb5d64522 Fix glora lowvram issue. 2024-08-29 19:07:23 -04:00
comfyanonymous
10a79e9898 Implement model part of flux union controlnet. 2024-08-29 18:41:22 -04:00
comfyanonymous
ea3f39bd69 InstantX depth flux controlnet. 2024-08-29 02:14:19 -04:00
comfyanonymous
b33cd61070 InstantX canny controlnet. 2024-08-28 19:02:50 -04:00
Dr.Lt.Data
34eda0f853 fix: remove redundant useless loop (#4656)
fix: potential error of undefined variable

https://github.com/comfyanonymous/ComfyUI/discussions/4650
2024-08-28 17:46:30 -04:00
comfyanonymous
d31e226650 Unify RMSNorm code. 2024-08-28 16:56:38 -04:00
comfyanonymous
b79fd7d92c ComfyUI supports more than just stable diffusion. 2024-08-28 16:12:24 -04:00
comfyanonymous
38c22e631a Fix case where model was not properly unloaded in merging workflows. 2024-08-27 19:03:51 -04:00
Chenlei Hu
6bbdcd28ae Support weight padding on diff weight patch (#4576) 2024-08-27 13:55:37 -04:00
comfyanonymous
ab130001a8 Do RMSNorm in native type. 2024-08-27 02:41:56 -04:00
Chenlei Hu
ca4b8f30e0 Cleanup empty dir if frontend zip download failed (#4574) 2024-08-27 02:07:25 -04:00
Robin Huang
70b84058c1 Add relative file path to the progress report. (#4621) 2024-08-27 02:06:12 -04:00
comfyanonymous
2ca8f6e23d Make the stochastic fp8 rounding reproducible. 2024-08-26 15:12:06 -04:00
comfyanonymous
7985ff88b9 Use less memory in float8 lora patching by doing calculations in fp16. 2024-08-26 14:45:58 -04:00
comfyanonymous
c6812947e9 Fix potential memory leak. 2024-08-26 02:07:32 -04:00
comfyanonymous
9230f65823 Fix some controlnets OOMing when loading. 2024-08-25 05:54:29 -04:00
guill
6ab1e6fd4a [Bug #4529] Fix graph partial validation failure (#4588)
Currently, if a graph partially fails validation (i.e. some outputs are
valid while others have links from missing nodes), the execution loop
could get an exception resulting in server lockup.

This isn't actually possible to reproduce via the default UI, but is a
potential issue for people using the API to construct invalid graphs.
2024-08-24 15:34:58 -04:00
comfyanonymous
07dcbc3a3e Clarify how to use high quality previews. 2024-08-24 02:31:03 -04:00
comfyanonymous
8ae23d8e80 Fix onnx export. 2024-08-23 17:52:47 -04:00
comfyanonymous
7df42b9a23 Fix dora. 2024-08-23 04:58:59 -04:00
comfyanonymous
5d8bbb7281 Cleanup. 2024-08-23 04:06:27 -04:00
comfyanonymous
2c1d2375d6 Fix. 2024-08-23 04:04:55 -04:00
Simon Lui
64ccb3c7e3 Rework IPEX check for future inclusion of XPU into Pytorch upstream and do a bit more optimization of ipex.optimize(). (#4562) 2024-08-23 03:59:57 -04:00
Scorpinaus
9465b23432 Added SD15_Inpaint_Diffusers model support for unet_config_from_diffusers_unet function (#4565) 2024-08-23 03:57:08 -04:00
Chenlei Hu
bb4416dd5b Fix task.status.status_str caused by #2666 (#4551)
* Fix task.status.status_str caused by 2666 regression

* fix

* fix
2024-08-22 17:38:30 -04:00
comfyanonymous
c0b0da264b Missing imports. 2024-08-22 17:20:51 -04:00
comfyanonymous
c26ca27207 Move calculate function to comfy.lora 2024-08-22 17:12:00 -04:00
comfyanonymous
7c6bb84016 Code cleanups. 2024-08-22 17:05:12 -04:00
comfyanonymous
c54d3ed5e6 Fix issue with models staying loaded in memory. 2024-08-22 15:58:20 -04:00
comfyanonymous
c7ee4b37a1 Try to fix some lora issues. 2024-08-22 15:32:18 -04:00
David
7b70b266d8 Generalize MacOS version check for force-upcast-attention (#4548)
This code automatically forces upcasting attention for MacOS versions 14.5 and 14.6. My computer returns the string "14.6.1" for `platform.mac_ver()[0]`, so this generalizes the comparison to catch more versions.

I am running MacOS Sonoma 14.6.1 (latest version) and was seeing black image generation on previously functional workflows after recent software updates. This PR solved the issue for me.

See comfyanonymous/ComfyUI#3521
2024-08-22 13:24:21 -04:00
comfyanonymous
8f60d093ba Fix issue. 2024-08-22 10:38:24 -04:00
guill
dafbe321d2 Fix a bug where cached outputs affected IS_CHANGED (#4535)
This change fixes a bug where non-constant values could be passed to the
IS_CHANGED function. This would result in workflows taking an extra
execution before they acted as if they were cached.

The actual change is like 4 characters -- the rest is adding unit tests.
2024-08-21 23:38:46 -04:00
comfyanonymous
5f84ea63e8 Add a shortcut to the nightly package to run with --fast. 2024-08-21 23:36:58 -04:00
comfyanonymous
843a7ff70c fp16 is actually faster than fp32 on a GTX 1080. 2024-08-21 23:23:50 -04:00
comfyanonymous
a60620dcea Fix slow performance on 10 series Nvidia GPUs. 2024-08-21 16:39:02 -04:00
comfyanonymous
015f73dc49 Try a different type of flux fp16 fix. 2024-08-21 16:17:15 -04:00
comfyanonymous
904bf58e7d Make --fast work on pytorch nightly. 2024-08-21 14:01:41 -04:00
Svein Ove Aas
5f50263088 Replace use of .view with .reshape (#4522)
When generating images with fp8_e4_m3 Flux and batch size >1, using --fast, ComfyUI throws a "view size is not compatible with input tensor's size and stride" error pointing at the first of these two calls to view.

As reshape is semantically equivalent to view except for working on a broader set of inputs, there should be no downside to changing this. The only difference is that it clones the underlying data in cases where .view would error out. I have confirmed that the output still looks as expected, but cannot confirm that no mutable use is made of the tensors anywhere.

Note that --fast is only marginally faster than the default.
2024-08-21 11:21:48 -04:00
Alex "mcmonkey" Goodwin
5e806f555d add a get models list api route (#4519)
* get models list api route

* remove copypasta
2024-08-21 02:04:42 -04:00
Robin Huang
f07e5bb522 Add GET /internal/files. (#4295)
* Create internal route table.

* List files.

* Add GET /internal/files.

Retrieves list of files in models, output, and user directories.

* Refactor file names.

* Use typing_extensions for Python 3.8

* Fix tests.

* Remove print statements.

* Update README.

* Add output and user to valid directory test.

* Add missing type hints.
2024-08-21 01:25:06 -04:00
comfyanonymous
03ec517afb Remove useless line, adjust windows default reserved vram. 2024-08-21 00:47:19 -04:00
Chenlei Hu
f257fc999f Add optional deprecated/experimental flag to node class (#4506)
* Add optional deprecated flag to node class

* nit

* Add experimental flag
2024-08-21 00:01:34 -04:00
Chenlei Hu
bb50e69839 Update frontend to 1.2.30 (#4513) 2024-08-21 00:00:49 -04:00
comfyanonymous
510f3438c1 Speed up fp8 matrix mult by using better code. 2024-08-20 22:53:26 -04:00
comfyanonymous
ea63b1c092 Simpletrainer lycoris format. 2024-08-20 12:05:13 -04:00
comfyanonymous
9953f22fce Add --fast argument to enable experimental optimizations.
Optimizations that might break things/lower quality will be put behind
this flag first and might be enabled by default in the future.

Currently the only optimization is float8_e4m3fn matrix multiplication on
4000/ADA series Nvidia cards or later. If you have one of these cards you
will see a speed boost when using fp8_e4m3fn flux for example.
2024-08-20 11:55:51 -04:00
comfyanonymous
d1a6bd6845 Support loading long clipl model with the CLIP loader node. 2024-08-20 10:46:36 -04:00
comfyanonymous
83dbac28eb Properly set if clip text pooled projection instead of using hack. 2024-08-20 10:46:36 -04:00
comfyanonymous
538cb068bc Make cast_to a nop if weight is already good. 2024-08-20 10:46:36 -04:00
comfyanonymous
1b3eee672c Fix potential issue with multi devices. 2024-08-20 10:46:36 -04:00
Chenlei Hu
5a69f84c3c Update README.md (Add shield badges) (#4490) 2024-08-19 18:25:20 -04:00
comfyanonymous
9eee470244 New load_text_encoder_state_dicts function.
Now you can load text encoders straight from a list of state dicts.
2024-08-19 17:36:35 -04:00
comfyanonymous
045377ea89 Add a --reserve-vram argument if you don't want comfy to use all of it.
--reserve-vram 1.0 for example will make ComfyUI try to keep 1GB vram free.

This can also be useful if workflows are failing because of OOM errors but
in that case please report it if --reserve-vram improves your situation.
2024-08-19 17:16:18 -04:00
comfyanonymous
4d341b78e8 Bug fixes. 2024-08-19 16:28:55 -04:00
comfyanonymous
6138f92084 Use better dtype for the lowvram lora system. 2024-08-19 15:35:25 -04:00
comfyanonymous
be0726c1ed Remove duplication. 2024-08-19 15:26:50 -04:00
comfyanonymous
766ae119a8 CheckpointSave node name. 2024-08-19 15:06:12 -04:00
Yoland Yan
fc90ceb6ba Update issue template config.yml to direct frontend issues to frontend repos (#4486)
* Update config.yml

* Typos
2024-08-19 13:41:30 -04:00
comfyanonymous
4506ddc86a Better subnormal fp8 stochastic rounding. Thanks Ashen. 2024-08-19 13:38:03 -04:00
comfyanonymous
20ace7c853 Code cleanup. 2024-08-19 12:48:59 -04:00
Chenlei Hu
b29b3b86c5 Update README to include frontend section (#4468)
* Update README to include frontend section

* nit
2024-08-19 07:12:32 -04:00
comfyanonymous
22ec02afc0 Handle subnormal numbers in float8 rounding. 2024-08-19 05:51:08 -04:00
comfyanonymous
39f114c44b Less broken non blocking? 2024-08-18 16:53:17 -04:00
comfyanonymous
6730f3e1a3 Disable non blocking.
It fixed some perf issues but caused other issues that need to be debugged.
2024-08-18 14:38:09 -04:00
comfyanonymous
73332160c8 Enable non blocking transfers in lowvram mode. 2024-08-18 10:29:33 -04:00
comfyanonymous
2622c55aff Automatically use RF variant of dpmpp_2s_ancestral if RF model. 2024-08-18 00:47:25 -04:00
Ashen
1beb348ee2 dpmpp_2s_ancestral_RF for rectified flow (Flux, SD3 and Auraflow). 2024-08-18 00:33:30 -04:00
bymyself
9aa39e743c Add new shortcuts to readme (#4442) 2024-08-17 23:52:56 -04:00
comfyanonymous
d31df04c8a Indentation. 2024-08-17 23:00:44 -04:00
Xrvk
e68763f40c Add Flux model support for InstantX style controlnet residuals (#4444)
* Add Flux model support for InstantX style controlnet residuals

* Refactor Flux controlnet residual step to a separate method

* Rollback minor change

* New format for applying controlnet residuals: input->double_blocks, output->single_blocks

* Adjust XLabs Flux controlnet to fit new syntax of applying Flux controlnet residuals

* Remove unnecessary import and minor style change
2024-08-17 22:58:23 -04:00
comfyanonymous
310ad09258 Add a ModelSave node. 2024-08-17 21:43:07 -04:00
comfyanonymous
4f7a3cb6fb unet -> diffusion_models. 2024-08-17 21:31:04 -04:00
comfyanonymous
bb222ceddb Fix loras having a weak effect when applied on fp8. 2024-08-17 15:20:17 -04:00
comfyanonymous
14af129c55 Improve execution UX.
Some branches with VAELoader -> VAEDecode -> Preview were being executed
last. With this change they will be executed earlier.
2024-08-17 11:37:21 -04:00
comfyanonymous
fca42836f2 Add model_options for text encoder. 2024-08-17 11:17:20 -04:00
comfyanonymous
858d51f91a Fix VAEDecode -> Preview not being executed first. 2024-08-17 04:08:54 -04:00
comfyanonymous
cd5017c1c9 calculate_weight function to use a different dtype. 2024-08-17 01:06:08 -04:00
comfyanonymous
83f343146a Fix potential lowvram issue. 2024-08-16 17:12:42 -04:00
Chenlei Hu
b021cf67c7 Update frontend to 1.2.26 (#4415) 2024-08-16 15:25:02 -04:00
Matthew Turnshek
1770fc77ed Implement support for taef1 latent previews (#4409)
* add taef1 handling to several places

* remove guess_latent_channels and add latent_channels info directly to flux model

* remove TODO

* fix numbers
2024-08-16 12:53:13 -04:00
comfyanonymous
05a9f3faa1 Log a warning when there's an issue with IS_CHANGED. 2024-08-16 08:50:17 -04:00
comfyanonymous
86c5970ac0 Fix custom nodes hooking the map_node_over_list and breaking things. 2024-08-16 08:40:31 -04:00
Chenlei Hu
bfc214f434 Use new TS frontend uncompressed (#4379)
* Swap frontend uncompressed

* Add uncompressed files
2024-08-15 16:50:25 -04:00
comfyanonymous
3f5939add6 Tell github not to count the web directory in language stats. 2024-08-15 13:48:56 -04:00
comfyanonymous
5960f946a9 Move a few files from comfy -> comfy_execution.
Python code in the comfy folder should not import things from outside it.
2024-08-15 11:21:14 -04:00
guill
5cfe38f41c Execution Model Inversion (#2666)
* Execution Model Inversion

This PR inverts the execution model -- from recursively calling nodes to
using a topological sort of the nodes. This change allows for
modification of the node graph during execution. This allows for two
major advantages:

    1. The implementation of lazy evaluation in nodes. For example, if a
    "Mix Images" node has a mix factor of exactly 0.0, the second image
    input doesn't even need to be evaluated (and visa-versa if the mix
    factor is 1.0).

    2. Dynamic expansion of nodes. This allows for the creation of dynamic
    "node groups". Specifically, custom nodes can return subgraphs that
    replace the original node in the graph. This is an incredibly
    powerful concept. Using this functionality, it was easy to
    implement:
        a. Components (a.k.a. node groups)
        b. Flow control (i.e. while loops) via tail recursion
        c. All-in-one nodes that replicate the WebUI functionality
        d. and more
    All of those were able to be implemented entirely via custom nodes,
    so those features are *not* a part of this PR. (There are some
    front-end changes that should occur before that functionality is
    made widely available, particularly around variant sockets.)

The custom nodes associated with this PR can be found at:
https://github.com/BadCafeCode/execution-inversion-demo-comfyui

Note that some of them require that variant socket types ("*") be
enabled.

* Allow `input_info` to be of type `None`

* Handle errors (like OOM) more gracefully

* Add a command-line argument to enable variants

This allows the use of nodes that have sockets of type '*' without
applying a patch to the code.

* Fix an overly aggressive assertion.

This could happen when attempting to evaluate `IS_CHANGED` for a node
during the creation of the cache (in order to create the cache key).

* Fix Pyright warnings

* Add execution model unit tests

* Fix issue with unused literals

Behavior should now match the master branch with regard to undeclared
inputs. Undeclared inputs that are socket connections will be used while
undeclared inputs that are literals will be ignored.

* Make custom VALIDATE_INPUTS skip normal validation

Additionally, if `VALIDATE_INPUTS` takes an argument named `input_types`,
that variable will be a dictionary of the socket type of all incoming
connections. If that argument exists, normal socket type validation will
not occur. This removes the last hurdle for enabling variant types
entirely from custom nodes, so I've removed that command-line option.

I've added appropriate unit tests for these changes.

* Fix example in unit test

This wouldn't have caused any issues in the unit test, but it would have
bugged the UI if someone copy+pasted it into their own node pack.

* Use fstrings instead of '%' formatting syntax

* Use custom exception types.

* Display an error for dependency cycles

Previously, dependency cycles that were created during node expansion
would cause the application to quit (due to an uncaught exception). Now,
we'll throw a proper error to the UI. We also make an attempt to 'blame'
the most relevant node in the UI.

* Add docs on when ExecutionBlocker should be used

* Remove unused functionality

* Rename ExecutionResult.SLEEPING to PENDING

* Remove superfluous function parameter

* Pass None for uneval inputs instead of default

This applies to `VALIDATE_INPUTS`, `check_lazy_status`, and lazy values
in evaluation functions.

* Add a test for mixed node expansion

This test ensures that a node that returns a combination of expanded
subgraphs and literal values functions correctly.

* Raise exception for bad get_node calls.

* Minor refactor of IsChangedCache.get

* Refactor `map_node_over_list` function

* Fix ui output for duplicated nodes

* Add documentation on `check_lazy_status`

* Add file for execution model unit tests

* Clean up Javascript code as per review

* Improve documentation

Converted some comments to docstrings as per review

* Add a new unit test for mixed lazy results

This test validates that when an output list is fed to a lazy node, the
node will properly evaluate previous nodes that are needed by any inputs
to the lazy node.

No code in the execution model has been changed. The test already
passes.

* Allow kwargs in VALIDATE_INPUTS functions

When kwargs are used, validation is skipped for all inputs as if they
had been mentioned explicitly.

* List cached nodes in `execution_cached` message

This was previously just bugged in this PR.
2024-08-15 11:21:11 -04:00
comfyanonymous
0f9c2a7822 Try to fix SDXL OOM issue on some configurations. 2024-08-14 23:08:54 -04:00
comfyanonymous
153d0a8142 Add a update/update_comfyui_stable.bat to the standalones. 2024-08-14 22:29:23 -04:00
Chenlei Hu
ab4dd19b91 Remove legacy ui test files (#4316) 2024-08-14 21:01:06 -04:00
comfyanonymous
f1d6cef71c Revert "Disable cuda malloc by default."
This reverts commit 50bf66e5c4.
2024-08-14 08:38:07 -04:00
comfyanonymous
33fb282d5c Fix issue. 2024-08-14 02:51:47 -04:00
comfyanonymous
50bf66e5c4 Disable cuda malloc by default. 2024-08-14 02:49:25 -04:00
pythongosssss
e60e19b175 Add support for simple tooltips (#3842)
* Add support for simple tooltips

* Fix overflow

* Add tooltips for nodes in the default workflow

* new line

* Prevent potential crash

* PR feedback

* Hide tooltip when clicking (e.g. combo widget)

* Refactor tooltips, add node level support

* Fix

* move

* Fix test (and undo last change)

* Fixed indent

* Fix dom widgets, dont show tooltip if not over canvas
2024-08-14 01:22:10 -04:00
comfyanonymous
a5af64d3ce Revert "Not sure if this actually changes anything but it can't hurt."
This reverts commit 34608de2e9.
2024-08-14 01:05:17 -04:00
Robin Huang
3e52e0364c Add model downloading endpoint. (#4248)
* Add model downloading endpoint.

* Move client session init to async function.

* Break up large function.

* Send "download_progress" as websocket event.

* Fixed

* Fixed.

* Use async mock.

* Move server set up to right before run call.

* Validate that model subdirectory cannot contain relative paths.

* Add download_model test checking for invalid paths.

* Remove DS_Store.

* Consolidate DownloadStatus and DownloadModelResult

* Add progress_interval as an optional parameter.

* Use tuple type from annotations.

* Use pydantic.

* Update comment.

* Revert "Use pydantic."

This reverts commit 7461e8eb00.

* Add new line.

* Add newline EOF.

* Validate model filename as well.

* Add comment to not reply on internal.

* Restrict downloading to safetensor files only.
2024-08-13 15:48:52 -04:00
comfyanonymous
34608de2e9 Not sure if this actually changes anything but it can't hurt. 2024-08-13 13:29:16 -04:00
comfyanonymous
39fb74c5bd Fix bug when model cannot be partially unloaded. 2024-08-13 03:57:55 -04:00
comfyanonymous
74e124f4d7 Fix some issues with TE being in lowvram mode. 2024-08-12 23:42:21 -04:00
comfyanonymous
a562c17e8a load_unet -> load_diffusion_model with a model_options argument. 2024-08-12 23:20:57 -04:00
comfyanonymous
5942c17d55 Order of operations matters. 2024-08-12 21:56:18 -04:00
comfyanonymous
c032b11e07 xlabs Flux controlnet implementation. (#4260)
* xlabs Flux controlnet.

* Fix not working on old python.

* Remove comment.
2024-08-12 21:22:22 -04:00
comfyanonymous
b8ffb2937f Memory tweaks. 2024-08-12 15:07:11 -04:00
Vladimir Semyonov
ce37c11164 add DS_Store to gitignore (#4324) 2024-08-12 12:32:34 -04:00
Alex "mcmonkey" Goodwin
b5c3906b38 Automatically link the Comfy CI page on PRs (#4326)
also use_prior_commit so it doesn't get a janked merge commit instead of the real one
2024-08-12 12:32:16 -04:00
comfyanonymous
5d43e75e5b Fix some issues with the model sometimes not getting patched. 2024-08-12 12:27:54 -04:00
comfyanonymous
517f4a94e4 Fix some lora loading slowdowns. 2024-08-12 11:50:32 -04:00
comfyanonymous
52a471c5c7 Change name of log. 2024-08-12 10:35:06 -04:00
comfyanonymous
ad76574cb8 Fix some potential issues with the previous commits. 2024-08-12 00:23:29 -04:00
comfyanonymous
9acfe4df41 Support loading directly to vram with CLIPLoader node. 2024-08-12 00:06:01 -04:00
comfyanonymous
9829b013ea Fix mistake in last commit. 2024-08-12 00:00:17 -04:00
comfyanonymous
5c69cde037 Load TE model straight to vram if certain conditions are met. 2024-08-11 23:52:43 -04:00
comfyanonymous
e9589d6d92 Add a way to set model dtype and ops from load_checkpoint_guess_config. 2024-08-11 08:50:34 -04:00
comfyanonymous
0d82a798a5 Remove the ckpt_path from load_state_dict_guess_config. 2024-08-11 08:37:35 -04:00
ljleb
925fff26fd alternative to load_checkpoint_guess_config that accepts a loaded state dict (#4249)
* make alternative fn

* add back ckpt path as 2nd argument?
2024-08-11 08:36:52 -04:00
comfyanonymous
75b9b55b22 Fix issues with #4302 and support loading diffusers format flux. 2024-08-10 21:28:24 -04:00
Jaret Burkett
1765f1c60c FLUX: Added full diffusers mapping for FLUX.1 schnell and dev. Adds full LoRA support from diffusers LoRAs. (#4302) 2024-08-10 21:26:41 -04:00
comfyanonymous
1de69fe4d5 Fix some issues with inference slowing down. 2024-08-10 16:21:25 -04:00
comfyanonymous
ae197f651b Speed up hunyuan dit inference a bit. 2024-08-10 07:36:27 -04:00
comfyanonymous
1b5b8ca81a Fix regression. 2024-08-09 21:45:21 -04:00
comfyanonymous
6678d5cf65 Fix regression. 2024-08-09 14:02:38 -04:00
TTPlanetPig
e172564eea Update controlnet.py to fix the default controlnet weight as constant (#4285) 2024-08-09 13:40:05 -04:00
comfyanonymous
a3cc326748 Better fix for lowvram issue. 2024-08-09 12:16:25 -04:00
comfyanonymous
86a97e91fc Fix controlnet regression. 2024-08-09 12:08:58 -04:00
comfyanonymous
5acdadc9f3 Fix issue with some lowvram weights. 2024-08-09 03:58:28 -04:00
comfyanonymous
55ad9d5f8c Fix regression. 2024-08-09 03:36:40 -04:00
comfyanonymous
a9f04edc58 Implement text encoder part of HunyuanDiT loras. 2024-08-09 03:21:10 -04:00
comfyanonymous
a475ec2300 Cleanup HunyuanDit controlnets.
Use the: ControlNetApply SD3 and HunyuanDiT node.
2024-08-09 02:59:34 -04:00
来新璐
06eb9fb426 feat: add support for HunYuanDit ControlNet (#4245)
* add support for HunYuanDit ControlNet

* fix hunyuandit controlnet

* fix typo in hunyuandit controlnet

* fix typo in hunyuandit controlnet

* fix code format style

* add control_weight support for HunyuanDit Controlnet

* use control_weights in HunyuanDit Controlnet

* fix typo
2024-08-09 02:59:24 -04:00
comfyanonymous
413322645e Raw torch is faster than einops? 2024-08-08 22:09:29 -04:00
comfyanonymous
11200de970 Cleaner code. 2024-08-08 20:07:09 -04:00
comfyanonymous
037c38eb0f Try to improve inference speed on some machines. 2024-08-08 17:29:27 -04:00
comfyanonymous
1e11d2d1f5 Better prints. 2024-08-08 17:29:27 -04:00
Alex "mcmonkey" Goodwin
65ea6be38f PullRequest CI Run: use pull_request_target to allow the CI Dashboard to work (#4277)
'_target' allows secrets to pass through, and we're just using the secret that allows uploading to the dashboard and are manually vetting PRs before running this workflow anyway
2024-08-08 17:20:48 -04:00
Alex "mcmonkey" Goodwin
5df6f57b5d minor fix on copypasta action name (#4276)
my bad sorry
2024-08-08 16:30:59 -04:00
Alex "mcmonkey" Goodwin
6588bfdef9 add GitHub workflow for CI tests of PRs (#4275)
When the 'Run-CI-Test' label is added to a PR, it will be tested by the CI, on a small matrix of stable versions.
2024-08-08 16:24:49 -04:00
Alex "mcmonkey" Goodwin
50ed2879ef Add full CI test matrix GitHub Workflow (#4274)
automatically runs a matrix of full GPU-enabled tests on all new commits to the ComfyUI master branch
2024-08-08 15:40:07 -04:00
comfyanonymous
66d4233210 Fix. 2024-08-08 15:16:51 -04:00
comfyanonymous
591010b7ef Support diffusers text attention flux loras. 2024-08-08 14:45:52 -04:00
comfyanonymous
08f92d55e9 Partial model shift support. 2024-08-08 14:45:06 -04:00
comfyanonymous
8115d8cce9 Add Flux fp16 support hack. 2024-08-07 15:08:39 -04:00
comfyanonymous
6969fc9ba4 Make supported_dtypes a priority list. 2024-08-07 15:00:06 -04:00
comfyanonymous
cb7c4b4be3 Workaround for lora OOM on lowvram mode. 2024-08-07 14:30:54 -04:00
comfyanonymous
1208863eca Fix "Comfy" lora keys.
They are in this format now:
diffusion_model.full.model.key.name.lora_up.weight
2024-08-07 13:49:31 -04:00
comfyanonymous
e1c528196e Fix bundled embed. 2024-08-07 13:30:45 -04:00
comfyanonymous
17030fd4c0 Support for "Comfy" lora format.
The keys are just: model.full.model.key.name.lora_up.weight

It is supported by all comfyui supported models.

Now people can just convert loras to this format instead of having to ask
for me to implement them.
2024-08-07 13:18:32 -04:00
comfyanonymous
c19dcd362f Controlnet code refactor. 2024-08-07 12:59:28 -04:00
comfyanonymous
1c08bf35b4 Support format for embeddings bundled in loras. 2024-08-07 03:45:25 -04:00
PhilWun
2a02546e20 Add type hints to folder_paths.py (#4191)
* add type hints to folder_paths.py

* replace deprecated standard collections type hints

* fix type error when using Python 3.8
2024-08-06 21:59:34 -04:00
comfyanonymous
b334605a66 Fix OOMs happening in some cases.
A cloned model patcher sometimes reported a model was loaded on a device
when it wasn't.
2024-08-06 13:36:04 -04:00
comfyanonymous
de17a9755e Unload all models if there's an OOM error. 2024-08-06 03:30:28 -04:00
comfyanonymous
c14ac98fed Unload models and load them back in lowvram mode no free vram. 2024-08-06 03:22:39 -04:00
Robin Huang
2894511893 Clone taesd with depth of 1 to reduce download size. (#4232) 2024-08-06 01:46:09 -04:00
Silver
f3bc40223a Add format metadata to CLIP save to make compatible with diffusers safetensors loading (#4233) 2024-08-06 01:45:24 -04:00
Chenlei Hu
841e74ac40 Change browser test CI python to 3.8 (#4234) 2024-08-06 01:27:28 -04:00
comfyanonymous
2d75df45e6 Flux tweak memory usage. 2024-08-05 21:58:28 -04:00
Robin Huang
1abc9c8703 Stable release uses cached dependencies (#4231)
* Release stable based on existing tag.

* Update default cuda to 12.1.
2024-08-05 20:07:16 -04:00
comfyanonymous
8edbcf5209 Improve performance on some lowend GPUs. 2024-08-05 16:24:04 -04:00
comfyanonymous
e545a636ba This probably doesn't work anymore. 2024-08-05 12:31:42 -04:00
bymyself
33e5203a2a Don't cache index.html (#4211) 2024-08-05 12:25:28 -04:00
a-One-Fan
a178e25912 Fix Flux FP64 math on XPU (#4210) 2024-08-05 01:26:20 -04:00
comfyanonymous
78e133d041 Support simple diffusers Flux loras. 2024-08-04 22:05:48 -04:00
Silver
7afa985fba Correct spelling 'token_weight_pars_t5' to 'token_weight_pairs_t5' (#4200) 2024-08-04 17:10:02 -04:00
comfyanonymous
ddb6a9f47c Set the step in EmptySD3LatentImage to 16.
These models work better when the res is a multiple of 16.
2024-08-04 15:59:02 -04:00
comfyanonymous
3b71f84b50 ONNX tracing fixes. 2024-08-04 15:45:43 -04:00
comfyanonymous
0a6b008117 Fix issue with some custom nodes. 2024-08-04 10:03:33 -04:00
comfyanonymous
56f3c660bf ModelSamplingFlux now takes a resolution and adjusts the shift with it.
If you want to sample Flux dev exactly how the reference code does use
the same resolution as your image in this node.
2024-08-04 04:06:00 -04:00
comfyanonymous
f7a5107784 Fix crash. 2024-08-03 16:55:38 -04:00
comfyanonymous
91be9c2867 Tweak lowvram memory formula. 2024-08-03 16:44:50 -04:00
comfyanonymous
03c5018c98 Lower lowvram memory to 1/3 of free memory. 2024-08-03 15:14:07 -04:00
comfyanonymous
2ba5cc8b86 Fix some issues. 2024-08-03 15:06:40 -04:00
comfyanonymous
1e68002b87 Cap lowvram to half of free memory. 2024-08-03 14:50:20 -04:00
comfyanonymous
ba9095e5bd Automatically use fp8 for diffusion model weights if:
Checkpoint contains weights in fp8.

There isn't enough memory to load the diffusion model in GPU vram.
2024-08-03 13:45:19 -04:00
comfyanonymous
f123328b82 Load T5 in fp8 if it's in fp8 in the Flux checkpoint. 2024-08-03 12:39:33 -04:00
comfyanonymous
63a7e8edba More aggressive batch splitting. 2024-08-03 11:53:30 -04:00
comfyanonymous
0eea47d580 Add ModelSamplingFlux to experiment with the shift value.
Default shift on Flux Schnell is 0.0
2024-08-03 03:54:38 -04:00
comfyanonymous
7cd0cdfce6 Add advanced model merge node for Flux model. 2024-08-02 23:20:53 -04:00
comfyanonymous
ea03c9dcd2 Better per model memory usage estimations. 2024-08-02 18:09:24 -04:00
comfyanonymous
3a9ee995cf Tweak regular SD memory formula. 2024-08-02 17:34:30 -04:00
comfyanonymous
47da42d928 Better Flux vram estimation. 2024-08-02 17:02:35 -04:00
comfyanonymous
17bbd83176 Fix bug loading flac workflow when it contains = character. 2024-08-02 13:14:28 -04:00
fgdfgfthgr-fox
bfb52de866 Lower SAG scale step for finer control (#4158)
* Lower SAG step for finer control

Since the introduction of cfg++ which uses very low cfg value, a step of 0.1 in SAG might be too high for finer control. Even SAG of 0.1 can be too high when cfg is only 0.6, so I change the step to 0.01.

* Lower PAG step as well.

* Update nodes_sag.py
2024-08-02 10:29:03 -04:00
comfyanonymous
eca962c6da Add FluxGuidance node.
This lets you adjust the guidance on the dev model which is a parameter
that is passed to the diffusion model.
2024-08-02 10:25:49 -04:00
Jairo Correa
c1696cd1b5 Add missing import (#4174) 2024-08-02 09:34:12 -04:00
comfyanonymous
369f459b20 Fix no longer working on old pytorch. 2024-08-01 22:20:24 -04:00
Alexander Brown
ce9ac2fe05 Fix clip_g/clip_l mixup (#4168) 2024-08-01 21:40:56 -04:00
comfyanonymous
e638f2858a Hack to make all resolutions work on Flux models. 2024-08-01 21:39:18 -04:00
comfyanonymous
a531001cc7 Add CLIPTextEncodeFlux. 2024-08-01 18:53:25 -04:00
comfyanonymous
d420bc792a Tweak the memory usage formulas for Flux and SD. 2024-08-01 17:53:45 -04:00
comfyanonymous
d965474aaa Make ComfyUI split batches a higher priority than weight offload. 2024-08-01 16:39:59 -04:00
comfyanonymous
1c61361fd2 Fast preview support for Flux. 2024-08-01 16:28:11 -04:00
comfyanonymous
a6decf1e62 Fix bfloat16 potentially not being enabled on mps. 2024-08-01 16:18:44 -04:00
comfyanonymous
48eb1399c0 Try to fix mac issue. 2024-08-01 13:41:27 -04:00
comfyanonymous
b4f6ebb2e8 Rename UNETLoader node to "Load Diffusion Model". 2024-08-01 13:33:30 -04:00
comfyanonymous
d7430a1651 Add a way to load the diffusion model in fp8 with UNETLoader node. 2024-08-01 13:30:51 -04:00
comfyanonymous
f2b80f95d2 Better Mac support on flux model. 2024-08-01 13:10:50 -04:00
comfyanonymous
1aa9cf3292 Make lowvram more aggressive on low memory machines. 2024-08-01 12:11:57 -04:00
comfyanonymous
2f88d19ef3 Add link to Flux examples to readme. 2024-08-01 11:48:19 -04:00
comfyanonymous
eb96c3bd82 Fix .sft file loading (they are safetensors files). 2024-08-01 11:32:58 -04:00
comfyanonymous
5f98de7697 Load flux t5 in fp8 if weights are in fp8. 2024-08-01 11:05:56 -04:00
comfyanonymous
8d34211a7a Fix old python versions no longer working. 2024-08-01 09:57:20 -04:00
comfyanonymous
1589b58d3e Basic Flux Schnell and Flux Dev model implementation. 2024-08-01 09:49:29 -04:00
comfyanonymous
7ad574bffd Mac supports bf16 just make sure you are using the latest pytorch. 2024-08-01 09:42:17 -04:00
comfyanonymous
e2382b6adb Make lowvram less aggressive when there are large amounts of free memory. 2024-08-01 03:58:58 -04:00
comfyanonymous
c24f897352 Fix to get fp8 working on T5 base. 2024-07-31 02:00:19 -04:00
comfyanonymous
a5991a7aa6 Fix hunyuan dit text encoder weights always being in fp32. 2024-07-31 01:34:57 -04:00
comfyanonymous
2c038ccef0 Lower CLIP memory usage by a bit. 2024-07-31 01:32:35 -04:00
comfyanonymous
b85216a3c0 Lower T5 memory usage by a few hundred MB. 2024-07-31 00:52:34 -04:00
comfyanonymous
82cae45d44 Fix potential issue with non clip text embeddings. 2024-07-30 14:41:13 -04:00
comfyanonymous
25853d0be8 Use common function for casting weights to input. 2024-07-30 10:49:14 -04:00
comfyanonymous
79040635da Remove unnecessary code. 2024-07-30 05:01:34 -04:00
comfyanonymous
66d35c07ce Improve artifacts on hydit, auraflow and SD3 on specific resolutions.
This breaks seeds for resolutions that are not a multiple of 16 in pixel
resolution by using circular padding instead of reflection padding but
should lower the amount of artifacts when doing img2img at those
resolutions.
2024-07-29 20:48:50 -04:00
comfyanonymous
c75b50607b Less confusing exception if pillow() function fails. 2024-07-29 11:15:37 -04:00
comfyanonymous
4ba7fa0244 Refactor: Move sd2_clip.py to text_encoders folder. 2024-07-28 01:19:20 -04:00
bymyself
ab76abc767 Active workflow use primary fg color (#4090) 2024-07-27 23:34:19 -04:00
Silver
9300058026 Add dpmpp_2s_ancestral as custom sampler (#4101)
Adding dpmpp_2s_ancestral as custom sampler node to enable its use with eta and s_noise when using custom sampling.
2024-07-27 16:19:50 -04:00
comfyanonymous
f82d09c9b4 Update packaging workflow. 2024-07-27 04:48:19 -04:00
comfyanonymous
e6829e7ac5 Add a way to set custom dependencies in the release workflow. 2024-07-27 04:41:46 -04:00
comfyanonymous
07f6a1a685 Handle case in the updater when master branch is not in local repo. 2024-07-27 03:15:22 -04:00
comfyanonymous
e746965c50 Update nightly package workflow. 2024-07-27 01:20:18 -04:00
comfyanonymous
45a2842d7f Set stable releases as a prerelease initially.
This should give time to test the standalone package before making it live.
2024-07-26 14:52:20 -04:00
Robin Huang
17b41f622e Change windows standalone URL to stable release. (#4065) 2024-07-26 14:37:40 -04:00
comfyanonymous
cf4418b806 Don't treat Bert model like CLIP.
Bert can accept up to 512 tokens so any prompt with more than 77 should
just be passed to it as is instead of splitting it up like CLIP.
2024-07-26 13:08:12 -04:00
comfyanonymous
6225a7827c Add CLIPTextEncodeHunyuanDiT.
Useful for testing what each text encoder does.
2024-07-26 13:08:06 -04:00
filtered
b6779d8df3 Fix undo incorrectly undoing text input (#4114)
Fixes an issue where under certain conditions, the ComfyUI custom undo / redo functions would not run when intended to.

When trying to undo an action like deleting several nodes, instead the native browser undo runs - e.g. a textarea gets focus and the last typed text is undone.  Clicking outside the text area and typing again just keeps doing the same thing.
2024-07-26 12:25:42 -04:00
comfyanonymous
8328a2d8cd Let hunyuan dit work with all prompt lengths. 2024-07-26 12:11:32 -04:00
comfyanonymous
afe732bef9 Hunyuan dit can now accept longer prompts. 2024-07-26 11:52:58 -04:00
comfyanonymous
a9ac56fc0d Own BertModel implementation that works with lowvram. 2024-07-26 04:47:17 -04:00
comfyanonymous
25b51b1a8b Hunyuan DiT lora support. 2024-07-25 22:42:54 -04:00
comfyanonymous
61a2b00bc2 Add HunyuanDiT support to readme. 2024-07-25 19:06:43 -04:00
comfyanonymous
a5f4292f9f Basic hunyuan dit implementation. (#4102)
* Let tokenizers return weights to be stored in the saved checkpoint.

* Basic hunyuan dit implementation.

* Fix some resolutions not working.

* Support hydit checkpoint save.

* Init with right dtype.

* Switch to optimized attention in pooler.

* Fix black images on hunyuan dit.
2024-07-25 18:21:08 -04:00
comfyanonymous
f87810cd3e Let tokenizers return weights to be stored in the saved checkpoint. 2024-07-25 10:52:09 -04:00
comfyanonymous
10c919f4c7 Make it possible to load tokenizer data from checkpoints. 2024-07-24 16:43:53 -04:00
comfyanonymous
ce80e69fb8 Avoid loading the dll when it's not necessary. 2024-07-24 13:50:34 -04:00
comfyanonymous
19944ad252 Add code to fix issues with new pytorch version on the standalone. 2024-07-24 12:49:29 -04:00
comfyanonymous
10b43ceea5 Remove duplicate code. 2024-07-24 01:12:59 -04:00
comfyanonymous
0a4c49c57c Support MT5. 2024-07-23 15:35:28 -04:00
comfyanonymous
88ed893034 Allow SPieceTokenizer to load model from a byte string. 2024-07-23 14:17:42 -04:00
comfyanonymous
334ba48cea More generic unet prefix detection code. 2024-07-23 14:13:32 -04:00
comfyanonymous
14764aa2e2 Rename LLAMATokenizer to SPieceTokenizer. 2024-07-22 12:21:45 -04:00
comfyanonymous
b2c995f623 "auto" type is only relevant to the SetUnionControlNetType node. 2024-07-22 11:30:38 -04:00
Chenlei Hu
4151fbfa8a Add error message on union controlnet (#4081) 2024-07-22 11:27:32 -04:00
Chenlei Hu
6045ed31f8 Supress frontend exception on unhandled message type (#4078)
* Supress frontend exception on unhandled message type

* nit
2024-07-21 21:15:01 -04:00
comfyanonymous
f836e69346 Fix bug with SaveAudio node with --gpu-only 2024-07-21 16:16:45 -04:00
Chenlei Hu
5b69cfe7c3 Add timestamp to execution messages (#4076)
* Add timestamp to execution messages

* Add execution_end message

* Rename to execution_success
2024-07-21 15:29:10 -04:00
comfyanonymous
95fa9545f1 Only append zero to noise schedule if last sigma isn't zero. 2024-07-20 12:37:30 -04:00
Greg Wainer
11b74147ee Fix/webp exif little endian (#4061)
* Fix for isLittleEndian flag in parseExifData.

* Add break after reading first exif chunk in getWebpMetadata.
2024-07-19 18:39:04 -04:00
comfyanonymous
6ab8cad22e Implement beta sampling scheduler.
It is based on: https://arxiv.org/abs/2407.12173

Add "beta" to the list of schedulers and the BetaSamplingScheduler node.
2024-07-19 18:05:09 -04:00
bymyself
011b11d8d7 LoadAudio restores file value from workflow (#4043)
* LoadAudio restores file value from workflow

* use onAfterGraphConfigured

* Don't use anonnymous function
2024-07-18 21:59:18 -04:00
comfyanonymous
ff6ca2a892 Move PAG to model_patches/unet section.
Move other unet model_patches nodes to model_patches/unet section.
2024-07-18 17:22:51 -04:00
bymyself
374e093e09 Disable audio widget trying to get previews (#4044) 2024-07-17 16:11:10 -04:00
喵哩个咪
855789403b support clip-vit-large-patch14-336 (#4042)
* support clip-vit-large-patch14-336

* support clip-vit-large-patch14-336
2024-07-17 13:12:50 -04:00
comfyanonymous
6f7869f365 Get clip vision image size from config. 2024-07-17 13:05:38 -04:00
comfyanonymous
281ad42df4 Fix lowvram union controlnet bug. 2024-07-17 10:16:31 -04:00
Chenlei Hu
1cde6b2eff Disallow use of eval with pylint (#4033) 2024-07-16 21:15:08 -04:00
Thomas Ward
c5a48b15bd Make default hash lib configurable without code changes via CLI argument (#3947)
* cli_args: Add --duplicate-check-hash-function.

* server.py: compare_image_hash configurable hash function

Uses an argument added in cli_args to specify the type of hashing to default to for duplicate hash checking.  Uses an `eval()` to identify the specific hashlib class to utilize, but ultimately safely operates because we have specific options and only those options/choices in the arg parser.  So we don't have any unsafe input there.

* Add hasher() to node_helpers

* hashlib selection moved to node_helpers

* default-hashing-function instead of dupe checking hasher

This makes a default-hashing-function option instead of previous selected option.

* Use args.default_hashing_function

* Use safer handling for node_helpers.hasher()

Uses a safer handling method than `eval` to evaluate default hashing function.

* Stray parentheses are evil.

* Indentation fix.

Somehow when I hit save I didn't notice I missed a space to make indentation work proper.  Oops!
2024-07-16 18:27:09 -04:00
Chenlei Hu
f2298799ba Fix annotation (#4035) 2024-07-16 18:20:39 -04:00
comfyanonymous
60383f3b64 Move controlnet nodes to conditioning/controlnet. 2024-07-16 17:08:25 -04:00
comfyanonymous
8270c62530 Add SetUnionControlNetType to set the type of the union controlnet model. 2024-07-16 17:04:53 -04:00
comfyanonymous
821f93872e Allow model sampling to set number of timesteps. 2024-07-16 15:18:40 -04:00
comfyanonymous
e1630391d6 Allow version names like v0.0.1 for the FrontendManager. 2024-07-16 11:29:38 -04:00
Chenlei Hu
99458e8aca Add FrontendManager to manage non-default front-end impl (#3897)
* Add frontend manager

* Add tests

* nit

* Add unit test to github CI

* Fix path

* nit

* ignore

* Add logging

* Install test deps

* Remove 'stable' keyword support

* Update test

* Add web-root arg

* Rename web-root to front-end-root

* Add test on non-exist version number

* Use repo owner/name to replace hard coded provider list

* Inline cmd args

* nit

* Fix unit test
2024-07-16 11:26:11 -04:00
comfyanonymous
33346fd9b8 Fix bug with custom nodes on other drives. 2024-07-15 20:38:26 -04:00
comfyanonymous
136c93cb47 Fix bug with workflow not registering change.
There was an issue when only the class type of a node changed with all the
inputs staying the same.
2024-07-15 20:01:49 -04:00
comfyanonymous
1305fb294c Refactor: Move some code to the comfy/text_encoders folder. 2024-07-15 17:36:24 -04:00
comfyanonymous
7914c47d5a Quick fix for the promax controlnet. 2024-07-14 10:07:36 -04:00
pythongosssss
79547efb65 New menu fixes - fix send to workflow (#3909)
* Fix send to workflow
Fix center align of close workflow dialog
Better support for elements around canvas

* More resilent to extra elements added to body
2024-07-14 02:04:40 -04:00
comfyanonymous
a3dffc447a Support AuraFlow Lora and loading model weights in diffusers format.
You can load model weights in diffusers format using the UNETLoader node.
2024-07-13 13:51:40 -04:00
comfyanonymous
ce2473bb01 Add link to AuraFlow example in Readme. 2024-07-12 15:25:07 -04:00
Robin Huang
4ca9b9cc29 Add Github Workflow for releasing stable versions and standalone bundle. (#3949)
* Add stable release.

* Only build CUDA 12.1 + 3.11 Python.

* Upgrade checkout and setup-python to latest version.

* lzma2

* Update artifact name to be ComfyUI_windows_portable_nvidia.7z
2024-07-12 13:33:57 -04:00
comfyanonymous
29c2e26724 Better tokenizing code for AuraFlow. 2024-07-12 01:15:25 -04:00
comfyanonymous
b6f09cf649 Add sentencepiece dependency. 2024-07-11 22:58:03 -04:00
comfyanonymous
8e012043a9 Add a ModelSamplingAuraFlow node to change the shift value.
Set the default AuraFlow shift value to 1.73 (sqrt(3)).
2024-07-11 17:57:36 -04:00
comfyanonymous
9f291d75b3 AuraFlow model implementation. 2024-07-11 16:52:26 -04:00
comfyanonymous
f45157e3ac Fix error message never being shown. 2024-07-11 11:46:51 -04:00
comfyanonymous
5e1fced639 Cleaner support for loading different diffusion model types. 2024-07-11 11:37:31 -04:00
comfyanonymous
ffe0bb0a33 Remove useless code. 2024-07-10 20:33:12 -04:00
comfyanonymous
391c1046cf More flexibility with text encoder return values.
Text encoders can now return other values to the CONDITIONING than the cond
and pooled output.
2024-07-10 20:06:50 -04:00
comfyanonymous
e44fa5667f Support returning text encoder attention masks. 2024-07-10 19:31:22 -04:00
Chenlei Hu
90389b3b8a Update bug issue template (#3996)
* Update issue template

* nit
2024-07-10 11:28:15 -04:00
Chenlei Hu
8d3f979b63 Check unhandled exception in test log in test action (#3987)
* Upload console logs

* Check unhandled exception
2024-07-09 17:12:57 -04:00
Chenlei Hu
83f70a88fb Add __module__ to node info (#3936)
Use more explicit name 'python_module'

Parse abs ath

Move parse to nodes.py
2024-07-09 17:07:15 -04:00
Extraltodeus
f1a01c2c7e Add sampler_pre_cfg_function (#3979)
* Update samplers.py

* Update model_patcher.py
2024-07-09 16:20:49 -04:00
comfyanonymous
c3db344746 Fix ConditioningZeroOut when there is no pooled output. 2024-07-09 11:52:31 -04:00
bymyself
d160073829 Fix loadGraphData call during restore (#3976) 2024-07-09 11:23:26 -04:00
comfyanonymous
ade7aa1b0c Remove useless import. 2024-07-09 11:05:05 -04:00
comfyanonymous
faa57430b0 Controlnet union model basic implementation.
This is only the model code itself, it currently defaults to an empty
embedding [0] * 6 which seems to work better than treating it like a
regular controlnet.

TODO: Add nodes to select the image type.
2024-07-08 23:49:02 -04:00
comfyanonymous
bb663bcd6c Rename clip_t5base to t5base for stable audio text encoder. 2024-07-08 08:53:55 -04:00
comfyanonymous
628f0b8ebc Move audio nodes out of _for_testing. 2024-07-07 09:22:32 -04:00
comfyanonymous
2dc84d1444 Add a way to set the timestep multiplier in the flow sampling. 2024-07-06 04:06:03 -04:00
comfyanonymous
ff63893d10 Support other types of T5 models. 2024-07-06 02:42:53 -04:00
comfyanonymous
4040491149 Better T5xxl detection. 2024-07-06 00:53:33 -04:00
comfyanonymous
b8e58a9394 Cleanup T5 code a bit. 2024-07-06 00:36:49 -04:00
comfyanonymous
80c4590998 Allow specifying the padding token for the tokenizer. 2024-07-06 00:06:49 -04:00
comfyanonymous
ce649d61c0 Allow zeroing out of embeds with unused attention mask. 2024-07-05 23:48:17 -04:00
comfyanonymous
b4c2d03d47 Remove duplicate import. 2024-07-05 12:10:22 -04:00
comfyanonymous
1dc87df4c5 Readme changes. 2024-07-04 22:03:37 -04:00
comfyanonymous
cedbc94cc0 Forgot this in last commit. 2024-07-04 21:49:50 -04:00
comfyanonymous
bd2d3e27d7 Show comfy_extras warning at the end.
Remove code.
2024-07-04 21:44:27 -04:00
comfyanonymous
720b17442d Temporary revert. 2024-07-04 21:09:58 -04:00
Chenlei Hu
0e3dfd9e34 Use relative path for custom/extra node module name (#3944)
* Fix module name for comfy extra nodes

* Use module name relative to root dir
2024-07-04 20:49:07 -04:00
comfyanonymous
739b76630e Remove useless code. 2024-07-04 15:14:13 -04:00
bymyself
24b969d3da Skip state check hook on first load (#3915) 2024-07-03 20:30:07 -04:00
Chenlei Hu
086ac75228 3.8 Compatible type annotation (#3938) 2024-07-03 19:31:46 -04:00
comfyanonymous
d7484ef30c Support loading checkpoints with the UNETLoader node. 2024-07-03 11:34:32 -04:00
comfyanonymous
537f35c7bc Don't update dict if contiguous. 2024-07-02 20:21:51 -04:00
Alex "mcmonkey" Goodwin
3f46362d22 fix non-contiguous tensor saving (from channels-last) (#3932) 2024-07-02 20:16:33 -04:00
comfyanonymous
01991f72ce Fix SamplerEulerCFGpp node. 2024-07-02 12:21:08 -04:00
comfyanonymous
2f03201690 Remove some empty lines. 2024-07-02 01:32:23 -04:00
shawnington
52aaee251f Fix to #3465. Prevent, resaving of duplicate images if overwrite not specified (#3472)
* Fix to #3465. Prevent the, resaving of duplicate images if overwrite not specified

This is a fix to #3465 

Adds function compare_image_hash to do a sha256 hash comparison between an uploaded image and existing images with matching file names. 

This changes the behavior so that only images having the same filename that are actually different are saved to input, existing images are instead now opened instead of resaved with increment. 

Currently, exact duplicates with the same filename are resave saved with an incremented filename in the format:

<filename> (n).ext 

with the code: 

```
while os.path.exists(filepath): 
                        filename = f"{split[0]} ({i}){split[1]}"
                        filepath = os.path.join(full_output_folder, filename)
                        i += 1
```

This commit changes this to: 

```
while os.path.exists(filepath): 
                        if compare_image_hash(filepath, image):
                            image_is_duplicate = True
                            break
                        filename = f"{split[0]} ({i}){split[1]}"
                        filepath = os.path.join(full_output_folder, filename)
                        i += 1
```

a check for if image_is_duplicate = False is done before saving the file. 

Currently, if you load the same image of a cat named cat.jpg into the LoadImage node 3 times, you will get 3 new files in your input folder with incremented file names.

With this change, you will now only have the single copy of cat.jpg, that will be re-opened instead of re-saved. 

However if you load 3 different images of cats named cat.jpg, you will get the expected behavior of having:
cat.jpg
cat (1).jpg
cat (2).jpg

This saves space and clutter. After checking my own input folder, I have 800+ images that are duplicates that were resaved with incremented file names amounting to more than 5GB of duplicated data.

* fixed typo in expression
2024-07-02 01:30:33 -04:00
Bob Du
1ef66b0955 Add example for how to add custom API routes (#3597) 2024-07-01 18:02:42 -04:00
Chenlei Hu
9dd549e253 Add --no-custom-node cmd flag (#3903)
* Add --no-custom-node cmd flag

* nit
2024-07-01 17:54:03 -04:00
Peter Crabtree
b82d67d5bf Add SamplerEulerAncestralCFG++ custom sampler node (#3901)
(for eta and s_noise)
2024-07-01 17:42:17 -04:00
Hayden Reeve
755c48d78e Fix several typos in example_node.py.example (#3204)
This change includes corrections for several spelling errors in the
documentation of example_node.py.example file.

These were previously raised by #3157, but they missed a few.
2024-07-01 17:21:12 -04:00
comfyanonymous
5dccfefe8d Switch nightly pytorch standalone package to lzma2. 2024-07-01 17:17:25 -04:00
YAN Wenkun
0cd4a6a5e5 Fine-tuning GitHub Actions (#3169)
* Bumping GitHub Actions versions

* Using LZMA2 for 7zip compression in Windows packaging
2024-07-01 17:15:49 -04:00
Robin Huang
601b4b63e1 Add CONTRIBUTING.md (#3910)
* Create CONTRIBUTING.md

* Add feature-request channel link.

* Remove discord links for channels.
2024-07-01 13:51:00 -04:00
ruucm
e53b1592ba enable cmd shortcuts for mac (mute & bypass) (#3792) 2024-07-01 13:45:34 -04:00
Chenlei Hu
7c5fa7f4a2 Fix loadGraphData func call (#3918) 2024-07-01 12:10:44 -04:00
comfyanonymous
521421f53e Fix workflow not importing from flac files on some systems. 2024-06-30 15:51:54 -04:00
comfyanonymous
dbb7dd3b5e Add to readme that Stable Audio is supported. 2024-06-30 00:15:49 -04:00
comfyanonymous
05e831697a Switch to the real cfg++ method in the samplers.
The old _pp ones will be updated automatically to the regular ones with 2x
the cfg.

My fault for not checking what the "_pp" samplers actually did.
2024-06-29 11:59:48 -04:00
comfyanonymous
fbb7a1f1b6 PreviewAudio node. 2024-06-29 01:33:22 -04:00
Robin Huang
c39cf7fff0 Revert "Add integration test for Linux with Nvidia GPU. #3884 (#3895)" (#3905)
This reverts commit 449bf52923.
2024-06-28 16:09:55 -04:00
Robin Huang
02cac1d487 Revert "Add macOs integration test for default workflow. (#3898)" (#3904)
This reverts commit 97b409cd48.
2024-06-28 16:09:39 -04:00
comfyanonymous
7ecb2ec169 Audio second setting in EmptyLatentAudio. 2024-06-28 02:55:36 -04:00
pythongosssss
0d9009c96e New menu/workflows fixes (#3900)
* Fix auto queue

* Detect added nodes via search

* Fix loading workflows

* Add button click style
2024-06-28 01:07:19 -04:00
comfyanonymous
264caca20e ControlNetApplySD3 node can now be used to use SD3 controlnets. 2024-06-27 18:43:11 -04:00
comfyanonymous
f8f7568d03 Basic SD3 controlnet implementation.
Still missing the node to properly use it.
2024-06-27 18:43:11 -04:00
comfyanonymous
66aaa14001 Controlnet refactor. 2024-06-27 18:43:11 -04:00
Robin Huang
97b409cd48 Add macOs integration test for default workflow. (#3898) 2024-06-27 16:10:16 -04:00
Robin Huang
449bf52923 Add integration test for Linux with Nvidia GPU. #3884 (#3895)
* Add linux integration test.

* Fix directory path.

* Add paths ignore.

* Fix conda env directory path.
2024-06-27 16:08:26 -04:00
comfyanonymous
8ceb5a02a3 Support saving stable audio checkpoint that can be loaded back. 2024-06-27 11:06:52 -04:00
Chenlei Hu
5ff3d4eb3a Fix audio upload when no audio in input dir (#3891) 2024-06-27 09:13:52 -04:00
comfyanonymous
4f9d2b057c Remove print. 2024-06-27 02:54:15 -04:00
comfyanonymous
4650e7d6e9 Save and load workflow from the flac files output by SaveAudio. 2024-06-27 02:07:29 -04:00
Chenlei Hu
3b423afcca Add audio widget (#3863)
* Add audio widget

* Fix audio bugs

* Add CSS

* Populate audio widget when load history
2024-06-27 00:22:55 -04:00
comfyanonymous
44947e7ad4 Add DEIS order 3 sampler.
Order 4 seems to give bad results.
2024-06-26 22:40:05 -04:00
Chenlei Hu
175fe02522 Ignore .vscode/ (#3879) 2024-06-26 19:59:19 -04:00
Chenlei Hu
bc5a0f10db Ignore *.log (#3880) 2024-06-26 19:59:09 -04:00
Chenlei Hu
a3e83f695d Update test ref (#3882)
* Update ref

* Disable some tests
2024-06-26 19:58:56 -04:00
Chenlei Hu
f12fa1d8d7 Enable browser tests on push (#3878) 2024-06-26 09:09:21 -04:00
pythongosssss
e3579f3360 Fix merge issue breaking api json loading (#3876) 2024-06-26 09:08:48 -04:00
Alex "mcmonkey" Goodwin
edfce78c86 add issue templates for ComfyUI Issues Page (#3868) 2024-06-26 01:37:27 -04:00
Chenlei Hu
e99d97a9d9 Remove duplicated Reset View button (#3865)
* Remove duplicated Reset View button

* Disable flaky test
2024-06-26 01:23:55 -04:00
comfyanonymous
69d710e40f Implement my alternative take on CFG++ as the euler_pp sampler.
Add euler_ancestral_pp which is the ancestral version of euler with the
same modification.
2024-06-25 07:41:52 -04:00
pythongosssss
90aebb6c86 New Menu & Workflow Management (#3112)
* menu

* wip

* wip

* wip

* wip

* wip

* workflow saving/loading

* Support inserting workflows
Move buttosn to top of lists

* fix session storage
implement renaming

* temp

* refactor, better workflow instance management

* wip

* progress on progress

* added send to workflow
various fixes

* Support multiple image loaders

* Support dynamic size breakpoints based on content

* various fixes
add close unsaved warning

* Add filtering tree

* prevent renaming unsaved

* fix zindex on hover

* fix top offset

* use filename as workflow name

* resize on setting change

* hide element until it is drawn

* remove glow

* Fix export name

* Fix test, revert accidental changes to groupNode

* Fix colors on all themes

* show hover items on smaller screen (mobile)

* remove debugging code

* dialog fix

* Dont reorder open workflows
Allow elements around canvas

* Toggle body display on setting change

* Fix menu disappearing on chrome

* Increase delay when typing, remove margin on Safari, fix dialog location

* Fix overflow issue on iOS

* Add reset view button
Prevent view changes causing history entries

* Bottom menu wip

* Various fixes

* Fix merge

* Fix breaking old menu position

* Fix merge adding restore view to loadGraphData
2024-06-25 06:49:25 -04:00
comfyanonymous
eab211bb1e Resample audio to 44100 when VAE encoding it. 2024-06-24 16:55:20 -04:00
Chenlei Hu
866f54da8d Add browser test action synced with TS repo (#3852)
* Add browser test action

* Add npm install task
2024-06-24 14:47:28 -04:00
comfyanonymous
73ca780019 Add SamplerEulerCFG++ node.
This node should match the DDIM implementation of CFG++ when "regular" is
selected.

"alternative" is a slightly different take on CFG++
2024-06-23 13:21:18 -04:00
comfyanonymous
2f360ae898 Support OneTrainer SD3 lora format. 2024-06-22 13:08:04 -04:00
comfyanonymous
4ef1479dcd Multi dimension tiled scale function and tiled VAE audio encoding fallback. 2024-06-22 11:57:49 -04:00
comfyanonymous
887a6341ed Proper ModelMergeSD3_2B node. 2024-06-21 08:41:31 -04:00
comfyanonymous
1e2839f4d9 More proper tiled audio decoding. 2024-06-20 16:50:31 -04:00
comfyanonymous
d5efde89b7 Add ipndm_v sampler, works best with the exponential scheduler. 2024-06-20 08:51:49 -04:00
Zhenyu Zhou
45e10cac19 feat: add gits scheduler (#3769) 2024-06-20 08:12:15 -04:00
Chenlei Hu
d7f0964266 Fix routes (#3790) 2024-06-19 22:36:31 -04:00
comfyanonymous
028a583bef Fix issue with full diffusers SD3 loras. 2024-06-19 22:32:04 -04:00
comfyanonymous
0d6a57938e Support loading diffusers SD3 model format with UNETLoader node. 2024-06-19 22:21:18 -04:00
comfyanonymous
b08a9dd04b Remove empty line. 2024-06-19 20:20:35 -04:00
Mario Klingemann
eee815ec99 Update sd1_clip.py (#3684)
Made token instance check more flexible so it also works with integers from numpy arrays or long tensors
2024-06-19 16:42:41 -04:00
comfyanonymous
e11052afcf Add ipndm sampler. 2024-06-19 16:32:30 -04:00
Chenlei Hu
97ae6ef460 Add api/ prefix to api endpoints (#3779) 2024-06-19 10:39:17 -04:00
comfyanonymous
3914d5a2ae Support full SD3 loras. 2024-06-19 10:13:33 -04:00
comfyanonymous
55f0dc124e Add soundfile dependency so that windows can save audio. 2024-06-18 09:57:40 -04:00
comfyanonymous
a45df69570 Basic tiled decoding for audio VAE. 2024-06-17 22:48:23 -04:00
Juanjuan
379ff92e9e fix app.js no graph defined (#3754)
* local test

* fix "graph" not found

* fix

---------

Co-authored-by: Xiujuan Li <xiujuali@amazon.com>
2024-06-17 07:56:53 -04:00
Janek Mann
b7c473d1ab Fix lora keys for SimpleTuner (#3759) 2024-06-17 07:55:06 -04:00
comfyanonymous
6425252c4f Use fp16 as the default vae dtype for the audio VAE. 2024-06-16 13:12:54 -04:00
comfyanonymous
8ddc151a4c Squash depreciation warning on new pytorch. 2024-06-16 13:06:23 -04:00
comfyanonymous
ca9d300a80 Better estimation for memory usage during audio VAE encoding/decoding. 2024-06-16 11:47:32 -04:00
comfyanonymous
746a0410d4 Fix VAEEncode with taesd3. 2024-06-16 03:10:04 -04:00
comfyanonymous
04e8798c37 Improvements to the TAESD3 implementation. 2024-06-16 02:04:24 -04:00
Dr.Lt.Data
df7db0e027 support TAESD3 (#3738) 2024-06-16 02:03:53 -04:00
comfyanonymous
bb1969cab7 Initial support for the stable audio open model. 2024-06-15 12:14:56 -04:00
comfyanonymous
1281f933c1 Small optimization. 2024-06-15 02:44:38 -04:00
comfyanonymous
f2e844e054 Optimize some unneeded if conditions in the sampling code. 2024-06-15 02:26:19 -04:00
comfyanonymous
0ec513d877 Add a --force-channels-last to inference models in channel last mode. 2024-06-15 01:08:12 -04:00
comfyanonymous
0e06b370db Print key names for easier debugging. 2024-06-14 18:18:53 -04:00
Simon Lui
5eb98f0092 Exempt IPEX from non_blocking previews fixing segmentation faults. (#3708) 2024-06-13 18:51:14 -04:00
comfyanonymous
ac151ac169 Support SD3 diffusers lora. 2024-06-13 18:26:10 -04:00
comfyanonymous
37a08a41b3 Support setting weight offsets in weight patcher. 2024-06-13 17:21:26 -04:00
comfyanonymous
605e64f6d3 Fix lowvram issue. 2024-06-12 10:39:33 -04:00
comfyanonymous
0eaa34ec5b Fix regular empty latent image not working with SD3 and custom sampler. 2024-06-12 10:32:34 -04:00
comfyanonymous
321e509e0a Add link to SD3 example page to README. 2024-06-12 09:48:27 -04:00
comfyanonymous
c8b5e08dc3 Default shift value on SD3 is 3.0 2024-06-12 02:24:39 -04:00
comfyanonymous
1ddf512fdc Don't auto convert clip and vae weights to fp16 when saving checkpoint. 2024-06-12 01:07:58 -04:00
comfyanonymous
32be358213 Save SD3 modelspec.architecture in CheckpointSave node. 2024-06-12 01:02:07 -04:00
comfyanonymous
694e0b48e0 SD3 better memory usage estimation. 2024-06-12 00:49:00 -04:00
comfyanonymous
69c8d6d8a6 Single and dual clip loader nodes support SD3.
You can use the CLIPLoader to use the t5xxl only or the DualCLIPLoader to
use CLIP-L and CLIP-G only for sd3.
2024-06-11 23:27:39 -04:00
comfyanonymous
0e49211a11 Load the SD3 T5xxl model in the same dtype stored in the checkpoint. 2024-06-11 17:03:26 -04:00
comfyanonymous
5889b7ca0a Support multiple text encoder configurations on SD3. 2024-06-11 13:14:43 -04:00
comfyanonymous
1c34d338d7 Update EmptySD3LatentImage to use 1024 resolution by default. 2024-06-11 07:37:22 -04:00
comfyanonymous
9424522ead Reuse code. 2024-06-11 07:20:26 -04:00
Dango233
73ce178021 Remove redundancy in mmdit.py (#3685) 2024-06-11 06:30:25 -04:00
comfyanonymous
4134564dc1 Require safetensors library to be at least 0.4.2 for fp8 support. 2024-06-11 06:26:13 -04:00
comfyanonymous
a82fae2375 Fix bug with cosxl edit model. 2024-06-10 16:00:03 -04:00
comfyanonymous
8c4a9befa7 SD3 Support. 2024-06-10 14:06:23 -04:00
comfyanonymous
a5e6a632f9 Support sampling non 2D latents. 2024-06-10 01:31:09 -04:00
comfyanonymous
742d5720d1 Support zeroing out text embeddings with the attention mask. 2024-06-09 16:51:58 -04:00
comfyanonymous
6cd8ffc465 Reshape the empty latent image to the right amount of channels if needed. 2024-06-08 02:35:08 -04:00
comfyanonymous
56333d4850 Use the end token for the text encoder attention mask. 2024-06-07 03:05:23 -04:00
comfyanonymous
0dccb4617d Remove some unnecessary arguments. 2024-06-06 14:49:45 -04:00
comfyanonymous
104fcea0c8 Add function to get the list of currently loaded models. 2024-06-05 23:25:16 -04:00
comfyanonymous
b1fd26fe9e pytorch xpu should be flash or mem efficient attention? 2024-06-04 17:44:14 -04:00
Denys Smirnov
20447e9ec9 Fix alpha in PorterDuffImageComposite. (#3411)
There were two bugs in PorterDuffImageComposite.

The first one is the fact that it uses the mask input directly as alpha, missing the conversion (`1-a`). The fix is similar to c16f5744.

The second one is that all color composition formulas assume alpha premultiplied values, while the input is not premultiplied.

This change fixes both of these issue.
2024-06-04 16:37:11 -04:00
comfyanonymous
cb8d0ebccc Don't load the view coordinates when loading a workflow from the history.
I think this makes things slightly less annoying for some users.
2024-06-03 19:48:27 -04:00
comfyanonymous
809cc85a8e Remove useless code. 2024-06-02 19:23:37 -04:00
comfyanonymous
b249862080 Add an annoying print to a function I want to remove. 2024-06-01 12:47:31 -04:00
Peter Crabtree
e2c585f3be Fix to allow use of PerpNegGuider with cfg_function_post hooks (like PAG) (#3618) 2024-06-01 12:36:08 -04:00
comfyanonymous
04b308229e Small refactor of preview code. 2024-05-31 11:18:37 -04:00
comfyanonymous
bf3e334d46 Disable non_blocking when --deterministic or directml. 2024-05-30 11:07:38 -04:00
comfyanonymous
71ec5b144e Update commands to install nightly pytorch in readme. 2024-05-29 00:20:02 -04:00
comfyanonymous
91542d4f8b Import spandrel_extra_arches if present.
I will not add this dependency to the default ones because models in the
spandrel_extra_arches package are non commercial and therefore not
compatible with free software licenses like the one ComfyUI uses.

If you don't mind this you can install it manually yourself.
2024-05-28 01:42:11 -04:00
JettHu
b26da2245f Fix UnetParams annotation typo (#3589) 2024-05-27 19:30:35 -04:00
comfyanonymous
0920e0e5fe Remove some unused imports. 2024-05-27 19:08:27 -04:00
luke zhang
34030fed92 improve dom widget performance (#3584) 2024-05-27 14:26:07 -04:00
Regis Gaughan, III
f6a203951f Extend core snapToGrid to LiteGraph Groups. (#3393)
Extends the core Comfy.SnapToGrid behavior for nodes to apply to LiteGraph's LGraphGroup with the same behavior. Also, pulls out redundant rounding code into util function.
2024-05-27 14:05:51 -04:00
comfyanonymous
16a493a190 Keep compatibility with some custom nodes. 2024-05-26 15:37:41 -04:00
comfyanonymous
9a151b7def Fix issue and unpin spandrel package. 2024-05-26 13:44:47 -04:00
Joey Ballentine
8cfd677cc0 Replace chainner_models with Spandrel package (#2146)
* Replace chainner_models with Spandrel

* Update to latest spandrel

* Use spandrel_foss instead

* update spandrel to new FOSS-compliant version
2024-05-26 13:44:17 -04:00
comfyanonymous
ffc4b7c30e Fix DORA strength.
This is a different version of #3298 with more correct behavior.
2024-05-25 02:50:11 -04:00
DLohn
5b87369474 Load titles from API format JSON (#3563) 2024-05-24 23:53:15 -04:00
comfyanonymous
efa5a711b2 Reduce memory usage when applying DORA: #3557 2024-05-24 23:36:48 -04:00
comfyanonymous
58c9838274 Speed up TAESD preview. 2024-05-24 02:37:57 -04:00
comfyanonymous
b02bcced05 Fix FreeU not working when shape is tensor. 2024-05-23 11:48:04 -04:00
comfyanonymous
6507a9c716 Remove the CTRL-Delete keybind.
On some keyboards it's apparently too easy to accidentally do CTRL-Delete
when pressing CTRL-Enter repeatedly.

CTRL-Backspace can still be used to clear the workflow.
2024-05-23 01:29:22 -04:00
comfyanonymous
6c23854f54 Fix OSX latent2rgb previews. 2024-05-22 13:56:28 -04:00
Chenlei Hu
7718ada4ed Add type annotation UnetWrapperFunction (#3531)
* Add type annotation UnetWrapperFunction

* nit

* Add types.py
2024-05-22 02:07:27 -04:00
comfyanonymous
8508df2569 Work around black image bug on Mac 14.5 by forcing attention upcasting. 2024-05-21 16:56:33 -04:00
comfyanonymous
83d969e397 Disable xformers when tracing model. 2024-05-21 13:55:49 -04:00
comfyanonymous
1900e5119f Fix potential issue. 2024-05-20 08:19:54 -04:00
comfyanonymous
276f8fce9f Print error when node is missing. 2024-05-20 07:04:08 -04:00
Dr.Lt.Data
4bc1884478 Provide a better error message when attempting to execute the workflow with a missing node. (#3517) 2024-05-20 06:58:46 -04:00
comfyanonymous
09e069ae6c Log the pytorch version. 2024-05-20 06:22:29 -04:00
comfyanonymous
11a2ad5110 Fix controlnet not upcasting on models that have it enabled. 2024-05-19 17:58:03 -04:00
comfyanonymous
4ae1515f14 Slightly faster latent2rgb previews. 2024-05-19 17:42:35 -04:00
comfyanonymous
f37a47110b Make --preview-method auto default to the fast latent2rgb previews. 2024-05-19 11:45:36 -04:00
comfyanonymous
0bdc2b15c7 Cleanup. 2024-05-18 10:11:44 -04:00
comfyanonymous
98f828fad9 Remove unnecessary code. 2024-05-18 09:36:44 -04:00
comfyanonymous
1c4af5918a Better error message if the webcam node doesn't work. 2024-05-17 14:02:09 -04:00
pythongosssss
91590adf04 Add webcam node (#3497)
* Add webcam node

* unused import
2024-05-17 13:16:08 -04:00
comfyanonymous
19300655dd Don't automatically switch to lowvram mode on GPUs with low memory. 2024-05-17 00:31:32 -04:00
comfyanonymous
46daf0a9a7 Add debug options to force on and off attention upcasting. 2024-05-16 04:09:41 -04:00
comfyanonymous
58f8388020 More proper fix for #3484. 2024-05-16 00:11:01 -04:00
comfyanonymous
2d41642716 Fix lowvram dora issue. 2024-05-15 02:47:40 -04:00
comfyanonymous
ec6f16adb6 Fix SAG. 2024-05-14 18:02:27 -04:00
comfyanonymous
bb4940d837 Only enable attention upcasting on models that actually need it. 2024-05-14 17:00:50 -04:00
comfyanonymous
b0ab31d06c Refactor attention upcasting code part 1. 2024-05-14 12:47:31 -04:00
comfyanonymous
2de3b69b30 Support saving some more modelspec types. 2024-05-13 21:54:11 -04:00
freakabcd
cf6e1efb69 Show message on error when loading wf from file (works on drag and drop) (#3466) 2024-05-13 15:22:22 -04:00
comfyanonymous
ece5acb8e8 Fix nightly package workflow. 2024-05-12 16:05:10 -04:00
comfyanonymous
794a357f7a Update the nightly workflow. 2024-05-12 07:24:12 -04:00
shawnington
22edd3add5 Fix to LoadImage Node for #3416 HDR images loading additional smaller… (#3454)
* Fix to LoadImage Node for #3416 HDR images loading additional smaller images. 

Added a blocking if statement  in the ImageSequence.Iterator that checks if subsequent images after the first match dimensionally, and prevent them from being appended to output_images if they do not match. 

This does not fix or change current behavior for PIL 10.2.0 where the images are loaded at the same size, but it does for 10.3.0 where they are loaded at their correct smaller sizes.

* added list of excluded formats that should return 1 image

added an explicit check for the image format so that additional formats can be added to the list that have problematic behavior.
2024-05-12 07:07:38 -04:00
Simon Lui
f509c6fe21 Fix Intel GPU memory allocation accuracy and documentation update. (#3459)
* Change calculation of memory total to be more accurate, allocated is actually smaller than reserved.

* Update README.md install documentation for Intel GPUs.
2024-05-12 06:36:30 -04:00
comfyanonymous
fa6dd7e5bb Fix lowvram issue with saving checkpoints.
The previous fix didn't cover the case where the model was loaded in
lowvram mode right before.
2024-05-12 06:13:45 -04:00
comfyanonymous
49c20cdc70 No longer necessary. 2024-05-12 05:34:43 -04:00
comfyanonymous
e1489ad257 Fix issue with lowvram mode breaking model saving. 2024-05-11 21:55:20 -04:00
comfyanonymous
4f63ee99f1 Add a button to reset the view. 2024-05-10 17:30:52 -04:00
pythongosssss
f374ea714d Setting for saving and restoring canvas position and zoom level (#3437) 2024-05-10 17:07:46 -04:00
shawnington
0fecfd2b1a Added generic wrapper function node_helpers.pillow to fix PIL issues #4472 and #2445 (#3422)
* Update node_helpers.py to use generic pillow wrapper to resolve multiple meta-data related issues.

replaced open_image function with a generic pillow function that takes Pil functions as a dependency injection and applies the ImageFile.LOAD_TRUNCATED_IMAGES try except fix to them. 

This provides an extensible function to handle related errors that can wrap offending functions when discovered without the need to repeat code.

* Update a few Pil functions to use node_helpers.pillow wrapper

Update a Pil function calls in a few locations to use the generic node_helpers.pillow wrapper that takes the function as a dependency injection and uses the try except method with ImageFIle.LOAD_TRUNCATED_IMAGES solution

* Corrected comment in issue #s fixed.

* Update node_helpers.py to remove import of Image from PIL

import of Image is no longer required as functions are Injected
2024-05-09 05:38:00 -04:00
comfyanonymous
93e876a3be Remove warnings that confuse people. 2024-05-09 05:29:42 -04:00
comfyanonymous
cd07340d96 Typo fix. 2024-05-08 18:36:56 -04:00
comfyanonymous
c33412288f Fix issue with loading some JPG: #3416 2024-05-07 05:41:06 -04:00
Dr.Lt.Data
d7fa417bfa feat: shortcuts for zoom in/out (#3410)
* feat: shortcuts for zoom in/out

* feat: pen support for canvas zoom

ctrl + LMB + vertical drag

* Ctrl+LMB+Drag -> ctrl+Shift+LMB+Drag

---------

Co-authored-by: Lt.Dr.Data <lt.dr.data@gmail.com>
2024-05-07 04:40:56 -04:00
comfyanonymous
c61eadf69a Make the load checkpoint with config function call the regular one.
I was going to completely remove this function because it is unmaintainable
but I think this is the best compromise.

The clip skip and v_prediction parts of the configs should still work but
not the fp16 vs fp32.
2024-05-06 20:04:39 -04:00
Pam
3787b4f246 Use get_model_object in Deep Shrink node (#3408) 2024-05-06 18:39:39 -04:00
comfyanonymous
565eb6d176 Add a SplitSigmasDenoise node as an alternative to SplitSigmas. 2024-05-05 05:24:36 -04:00
vilanele
9a70b70de4 add opacity slider in maskeditor (#3404)
Co-authored-by: vilanele <nomail@email.com>
2024-05-05 05:01:06 -04:00
comfyanonymous
72508a8d19 Only set LOAD_TRUNCATED_IMAGES when if the Image open fails.
Document which PIL issues this works around.
2024-05-04 03:51:03 -04:00
shawnington
0d45efb7d6 Fixed Issue with LoadImage node when loading PNG files with embedded ICC profiles. (#3316)
* Fix issue with how PIL loads small PNG files nodes.py

Added flag to prevent ValueError: Decompressed Data Too Large
when loading PNG images with large meta data such as large embedded color profiles

* Update LoadImage node to fix error when loading PNG's in nodes.py

Fixed Value Error: Decompressed Data Too Large thrown by PIL when attempting to opening PNG files with large embedded ICC colorspaces by setting the follow flag to true when loading png images:  ImageFile.LOAD_TRUNCATED_IMAGES = True

* Update node_helpers.py to include open_image helper function

open_image includes try except to catch Pillow Value Errors that occur when large ICC profiles are embedded in images.

* Update LoadImage node to use open_image helper function inplace of Image.open

open_image helper function in node_helpers.py  fixes a Pillow error when attempting to open images with large embedded ICC profiles by adding an exception handler to load the image with truncated meta data if regular loading is not possible.
2024-05-04 03:32:41 -04:00
comfyanonymous
daa92a8ff4 Fix potential issues with the int rounding fix. 2024-05-03 05:49:21 -04:00
comfyanonymous
89d0e9abeb Fix int widgets rounding. 2024-05-02 03:34:19 -04:00
Simon Lui
a56d02efc7 Change torch.xpu to ipex.optimize, xpu device initialization and remove workaround for text node issue from older IPEX. (#3388) 2024-05-02 03:26:50 -04:00
comfyanonymous
f81a6fade8 Fix some edge cases with samplers and arrays with a single sigma. 2024-05-01 17:05:30 -04:00
comfyanonymous
94d5a12801 Don't load the model in SDTurboScheduler 2024-05-01 16:57:10 -04:00
comfyanonymous
2aed53c4ac Workaround xformers bug. 2024-04-30 21:23:40 -04:00
Garrett Sutula
bacce529fb Add TLS Support (#3312)
* Add TLS Support

* Add to readme

* Add guidance for windows users on generating certificates

* Add guidance for windows users on generating certificates

* Fix typo
2024-04-30 20:17:02 -04:00
comfyanonymous
bb8b48a260 Update Readme. 2024-04-30 20:11:34 -04:00
comfyanonymous
eecd69b53a Add a SamplerLCMUpscale node.
This sampler is an LCM sampler that upscales the latent during sampling.

It can be used to generate at a higher resolution with an LCM model very
quickly.

To try it use it with a basic 5 step LCM workflow with scale_ratio 1.5 or
2.0
2024-04-29 20:00:47 -04:00
comfyanonymous
059773a6df Add some nodes to multiply the attention in UNet and Clip models. 2024-04-28 13:03:43 -04:00
comfyanonymous
10fcd09f4a Add a denoise value to AlignYourStepsScheduler. 2024-04-27 00:48:41 -04:00
comfyanonymous
8cab3be673 Update command for AMD stable pytorch install in README. 2024-04-26 15:44:12 -04:00
Jedrzej Kosinski
7990ae18c1 Fix error when more cond masks passed in than batch size (#3353) 2024-04-26 12:51:12 -04:00
comfyanonymous
16eabdf70d Free more vram for upscale models. 2024-04-25 17:04:19 -04:00
comfyanonymous
8dc19e40d1 Don't init a VAE model when there are no VAE weights. 2024-04-24 09:20:31 -04:00
comfyanonymous
27d5808fc4 Increase max lora strength to 100.0 2024-04-23 13:07:39 -04:00
Pam
b8218522f1 Increase sigma_min/sigma_max range for custom schedulers (#3317) 2024-04-23 09:40:10 -04:00
comfyanonymous
d09b5ef4ef Free some memory before loading upscale models. 2024-04-22 18:51:15 -04:00
comfyanonymous
4ee9aad6ca Speed up Sharpen node. 2024-04-21 09:02:06 -04:00
comfyanonymous
644a3ae58d Implement Align Your Steps as a AlignYourStepsScheduler node. 2024-04-20 04:34:12 -04:00
comfyanonymous
133dc3351b Faster blur. 2024-04-19 03:52:02 -04:00
comfyanonymous
5d08802f78 Sync some minor changes from the other repo. 2024-04-19 03:43:09 -04:00
comfyanonymous
c59fe9f254 Support VAE without quant_conv. 2024-04-18 21:05:33 -04:00
Torbjörn Lönnemark
a88b0ebc2d Improve node input/widget conversion sub-menus (#3281)
* Make input/widget conversion sub-menus optional

* Improve input/widget conversion sub-menu text

- Fix incorrect text for conversion from widget to input, previously it
  effectively said "convert input to input"
- Use "input" instead of "🔘".  The former is clearer and consistent
  with the rest of the application.
- Use title case (consistent with the rest of the menu entries).
- Strip the trailing periods. There is already a visual indicator for
  sub-menus, and no other sub-menus use trailing periods.
2024-04-18 16:41:23 -04:00
comfyanonymous
d64e217427 Fix annoying float issue causing the value to be rounded to above the max. 2024-04-17 17:34:02 -04:00
Dr.Lt.Data
072e3bd2b5 Fixed an issue where the main menu disappears intermittently as the coordinates become negative. (#3269) 2024-04-17 16:36:49 -04:00
comfyanonymous
abc69cab45 Add a helpful warning for links that don't point anywhere. 2024-04-17 12:28:05 -04:00
comfyanonymous
45ec1cbe96 Implement PerpNeg as a guider. 2024-04-16 02:57:34 -04:00
comfyanonymous
8903dce862 This can be removed since PAG doesn't use the uncond. 2024-04-15 12:14:00 -04:00
comfyanonymous
719fb2c81d Add basic PAG node. 2024-04-14 23:49:50 -04:00
comfyanonymous
258dbc06c3 Fix some memory related issues. 2024-04-14 12:08:58 -04:00
comfyanonymous
744ac944db Don't make dynamicPrompts the default on multiline string inputs.
This should be less confusing to those who want to use multiline input
without them.
2024-04-13 16:18:00 -04:00
comfyanonymous
58812ab8ca Support SDXS 512 model. 2024-04-12 22:12:35 -04:00
comfyanonymous
0256e7f769 Fix tests. 2024-04-12 20:02:53 -04:00
NyaamZ
2bef134ebf change Convert.. input (#3246) 2024-04-12 17:02:17 -04:00
comfyanonymous
4bd7d55b90 Add some colors to SamplerCustom links.
If you don't like them I am open to a PR.
2024-04-11 22:43:05 -04:00
comfyanonymous
fd7c636680 Add an AddNoise node to add noise depending on the sigma. 2024-04-10 23:40:31 -04:00
comfyanonymous
831511a1ee Fix issue with sampling_settings persisting across models. 2024-04-09 23:20:43 -04:00
comfyanonymous
4201181b35 Add ModelMergeSD1, ModelMergeSD2 and ModelMergeSDXL. 2024-04-09 04:31:14 -04:00
comfyanonymous
30abc324c2 Support properly saving CosXL checkpoints. 2024-04-08 00:36:22 -04:00
comfyanonymous
d644b6bcd8 Cleanup some more conditioning nodes. 2024-04-07 14:40:43 -04:00
comfyanonymous
c9fc242e2c The middle prompt should be treated more as a negative prompt. 2024-04-07 14:34:43 -04:00
comfyanonymous
80bda6c163 Cleanup a few conditioning nodes. 2024-04-07 14:27:40 -04:00
comfyanonymous
0a03009808 Fix issue with controlnet models getting loaded multiple times. 2024-04-06 18:38:39 -04:00
Gorka Eguileor
de172f8be7 Improve A1111 metadata parsing (#3216)
* A1111 import: Set VAE name

This patch sets the VAE name for the `VAELoader` when present in the png
metadata.

* A1111 import: Skip all hashes

When importing from A1111 the parsing assumes that values of a key will
never contain a ":", which is not correct.

There are 2 cases where we can have ":" in the value:

- Inside a string. E.g.:
  Lora hashes: "xl_more_art-full_v1: fe3b4816be83, add-detail-xl: 9c783c8ce46c"

- When the value is a json dictionary. E.g.:
  Hashes: {"vae": "63aeecb90f", "embed:negativeXL_D": "fff5d51ab6"}

This patch changes how we parse the metadata to take those 2 cases into
account and also skips the following additional keys that are present in
some Forge images:

- Version
- VAE hash
- TI hashes
- Lora hashes
- Hashes

* A1111 import: Parse Hires steps

This patch parses the `Hires steps` parameter that is part of the High
Resolution Upscale configuration when it  is present, and fallbacks to
the one from the `samplerNode` (like the code currently does) if it's
not present.
2024-04-06 12:10:17 -04:00
comfyanonymous
d8dea4cdb8 Fix DisableNoise node. 2024-04-05 21:36:23 -04:00
comfyanonymous
a7dd82e668 Fix copy paste issue with litegraph. 2024-04-05 14:59:05 -04:00
kk-89
38ed2da2dd Fix typo in lowvram patcher (#3209) 2024-04-05 12:02:13 -04:00
comfyanonymous
ea9ac9d30b Fix PerpNeg node. 2024-04-05 11:46:54 -04:00
comfyanonymous
1088d1850f Support for CosXL models. 2024-04-05 10:53:41 -04:00
comfyanonymous
41ed7e85ea Fix object_patches_backup not being the same object across clones. 2024-04-05 00:22:44 -04:00
comfyanonymous
0f5768e038 Fix missing arguments in cfg_function. 2024-04-04 23:38:57 -04:00
comfyanonymous
1f4fc9ea0c Fix issue with get_model_object on patched model. 2024-04-04 23:01:02 -04:00
comfyanonymous
1a0486bb96 Fix model needing to be loaded on GPU to generate the sigmas. 2024-04-04 22:08:49 -04:00
comfyanonymous
1f8d8e6c77 Add InstructPixToPixConditioning node. 2024-04-04 15:06:17 -04:00
comfyanonymous
5272fd4b03 Add DualCFGGuider used in IP2P models for example. 2024-04-04 14:57:44 -04:00
comfyanonymous
cfbf3be54b Add basic guider for models with no cfg. 2024-04-04 13:57:32 -04:00
comfyanonymous
c6bd456c45 Make zero denoise a NOP. 2024-04-04 11:41:27 -04:00
comfyanonymous
fcfd2bdf8a Small cleanup. 2024-04-04 11:16:49 -04:00
comfyanonymous
f117566299 SamplerCustomAdvanced node.
This node enables the creation of nodes to change the guider/denoiser and
the noise algorithm.
2024-04-04 01:32:25 -04:00
comfyanonymous
0542088ef8 Refactor sampler code for more advanced sampler nodes part 2. 2024-04-04 01:26:41 -04:00
comfyanonymous
57753c964a Refactor sampling code for more advanced sampler nodes. 2024-04-03 22:09:51 -04:00
comfyanonymous
6c6a39251f Fix saving text encoder in fp8. 2024-04-02 11:46:34 -04:00
comfyanonymous
e6482fbbfc Refactor calc_cond_uncond_batch into calc_cond_batch.
calc_cond_batch can take an arbitrary amount of cond inputs.

Added a calc_cond_uncond_batch wrapper with a warning so custom nodes
won't break.
2024-04-01 18:07:47 -04:00
comfyanonymous
1306464538 --force-fp16 is no longer necessary on Mac. 2024-03-31 12:50:28 -04:00
comfyanonymous
575acb69e4 IP2P model loading support.
This is the code to load the model and inference it with only a text
prompt. This commit does not contain the nodes to properly use it with an
image input.

This supports both the original SD1 instructpix2pix model and the
diffusers SDXL one.
2024-03-31 03:10:28 -04:00
comfyanonymous
96b4c757cf Add log to debug custom nodes that hang when imported. 2024-03-30 11:52:11 -04:00
comfyanonymous
94a5a67c32 Cleanup to support different types of inpaint models. 2024-03-29 14:44:13 -04:00
comfyanonymous
9bf6061dfc Switch prints to logging in folder_paths and add some extra debug. 2024-03-29 03:07:13 -04:00
comfyanonymous
5d8898c056 Fix some performance issues with weight loading and unloading.
Lower peak memory usage when changing model.

Fix case where model weights would be unloaded and reloaded.
2024-03-28 18:04:42 -04:00
comfyanonymous
327ca1313d Support SDXS 0.9 2024-03-27 23:58:58 -04:00
comfyanonymous
8ae1e4d125 Make step on sharpen node smaller. 2024-03-27 01:28:31 -04:00
comfyanonymous
2f93b91646 Add Tesla GPUs to cuda malloc blacklist. 2024-03-26 23:09:28 -04:00
comfyanonymous
c9673926fb Fix test. 2024-03-26 04:07:30 -04:00
comfyanonymous
11838e60f4 Increase the max resolution. 2024-03-26 04:00:53 -04:00
comfyanonymous
ae77590b4e dora_scale support for lora file. 2024-03-25 18:09:23 -04:00
comfyanonymous
c6de09b02e Optimize memory unload strategy for more optimized performance. 2024-03-24 02:36:30 -04:00
comfyanonymous
6a32c06f06 Move cleanup_models to improve performance. 2024-03-23 17:27:10 -04:00
comfyanonymous
a28a9dc836 Add an example to use the SaveImageWebsocket node and enable it. 2024-03-22 12:56:48 -04:00
comfyanonymous
0624838237 Add inverse noise scaling function. 2024-03-21 14:49:11 -04:00
comfyanonymous
5d875d77fe Fix regression with lcm not working with batches. 2024-03-20 20:48:54 -04:00
comfyanonymous
4b9005e949 Fix regression with model merging. 2024-03-20 13:56:12 -04:00
comfyanonymous
c18a203a8a Don't unload model weights for non weight patches. 2024-03-20 02:27:58 -04:00
comfyanonymous
150a3e946f Make LCM sampler use the model noise scaling function. 2024-03-20 01:35:59 -04:00
comfyanonymous
d14bdb1896 Revert, NOTE: this will be removed again soon please fix your nodes. 2024-03-19 11:17:49 -04:00
comfyanonymous
0c55f16c9e Remove code that should be useless now. 2024-03-19 09:47:14 -04:00
comfyanonymous
40e124c6be SV3D support. 2024-03-18 16:54:13 -04:00
comfyanonymous
0b78213bda Fix neg scale step. 2024-03-18 15:51:23 -04:00
comfyanonymous
b1a16d4500 Fix stable cascade img2img not working with all resolutions. 2024-03-18 13:51:38 -04:00
comfyanonymous
cacb022c4a Make saved SD1 checkpoints match more closely the official one. 2024-03-18 00:26:23 -04:00
comfyanonymous
d3406d8d58 Increase image batch nodes maximum values. 2024-03-17 08:57:49 -04:00
comfyanonymous
d7897fff2c Move cascade scale factor from stage_a to latent_formats.py 2024-03-16 14:49:35 -04:00
comfyanonymous
f2fe635c9f SamplerDPMAdaptative node to test the different options. 2024-03-15 22:36:10 -04:00
comfyanonymous
448d9263a2 Fix control loras breaking. 2024-03-14 09:30:21 -04:00
comfyanonymous
db8b59ecff Lower memory usage for loras in lowvram mode at the cost of perf. 2024-03-13 20:07:27 -04:00
comfyanonymous
eda8704386 Add SamplerDPMPP_3M_SDE node. 2024-03-12 12:16:37 -04:00
comfyanonymous
e7b8e240f7 Add SamplerLMS node. 2024-03-12 04:34:34 -04:00
comfyanonymous
2a813c3b09 Switch some more prints to logging. 2024-03-11 16:34:58 -04:00
comfyanonymous
0ed72befe1 Change log levels.
Logging level now defaults to info. --verbose sets it to debug.
2024-03-11 13:54:56 -04:00
comfyanonymous
dc6d4151a2 Not needed anymore. 2024-03-11 12:30:11 -04:00
comfyanonymous
03f4cfb7cd Replace more prints with logging. 2024-03-11 00:58:49 -04:00
comfyanonymous
65397ce601 Replace prints with logging and add --verbose argument. 2024-03-10 12:14:23 -04:00
MoonRide303
4656273e72 Added additional nodes for CLIP merging 2024-03-09 19:32:33 +01:00
comfyanonymous
a9ee9589b7 Add SamplerEulerAncestral node. 2024-03-09 08:21:43 -05:00
comfyanonymous
0a4675266e Make message about missing dependencies more clear. 2024-03-08 18:43:13 -05:00
comfyanonymous
314d28c251 Pass extra_pnginfo as None when not in input data. 2024-03-07 15:07:47 -05:00
comfyanonymous
55f37baae8 Move some stable cascade nodes outside of _for_testing. 2024-03-07 01:49:20 -05:00
comfyanonymous
3f75419e2e Add a node to use the super resolution controlnet. 2024-03-07 01:48:31 -05:00
comfyanonymous
5f60ee246e Support loading the sr cascade controlnet. 2024-03-07 01:22:48 -05:00
comfyanonymous
03e6e81629 Set upscale algorithm to bilinear for stable cascade controlnet. 2024-03-06 02:59:40 -05:00
comfyanonymous
03e83bb5d0 Support stable cascade canny controlnet. 2024-03-06 02:25:42 -05:00
comfyanonymous
10860bcd28 Add compression_ratio to controlnet code. 2024-03-05 15:15:20 -05:00
comfyanonymous
a38b9b3ac1 Add debugging info for when comfy_extra nodes fail to import. 2024-03-04 13:24:08 -05:00
comfyanonymous
b7b5593166 Fix nightly workflow and update other workflows. 2024-03-04 13:06:13 -05:00
Dmytro Mishkin
6d8834f08f Add Morphology nodes from kornia (#2781)
* import kornia

* Added morphology nodexs

* Add kornia to requirements

* fix choices

* options, also move to postprocessors

* fix placing and step
2024-03-04 12:50:28 -05:00
comfyanonymous
caddef8d88 Auto disable cuda malloc on unsupported GPUs on Linux. 2024-03-04 09:03:59 -05:00
comfyanonymous
478f71a249 Remove useless check. 2024-03-04 08:51:25 -05:00
comfyanonymous
0490ce8244 Fix differential diffusion node for batches. 2024-03-04 00:43:09 -05:00
comfyanonymous
b2e1744a16 Add a ThresholdMask node. 2024-03-04 00:31:59 -05:00
comfyanonymous
0db3111b5f Disable site dir in updater when doing pip install. 2024-03-03 16:25:16 -05:00
comfyanonymous
12c1080ebc Simplify differential diffusion code. 2024-03-03 15:34:42 -05:00
Shiimizu
727021bdea Implement Differential Diffusion (#2876)
* Implement Differential Diffusion

* Cleanup.

* Fix.

* Masks should be applied at full strength.

* Fix colors.

* Register the node.

* Cleaner code.

* Fix issue with getting unipc sampler.

* Adjust thresholds.

* Switch to linear thresholds.

* Only calculate nearest_idx on valid thresholds.
2024-03-03 15:34:13 -05:00
comfyanonymous
1abf8374ec utils.set_attr can now be used to set any attribute.
The old set_attr has been renamed to set_attr_param.
2024-03-02 17:27:23 -05:00
comfyanonymous
dce3555339 Add some tesla pascal GPUs to the fp16 working but slower list. 2024-03-02 17:16:31 -05:00
comfyanonymous
51df846598 Let conditioning specify custom concat conds. 2024-03-02 11:44:06 -05:00
comfyanonymous
9f71e4b62d Let model patches patch sub objects. 2024-03-02 11:43:27 -05:00
comfyanonymous
00425563c0 Cleanup: Use sampling noise scaling function for inpainting. 2024-03-01 14:24:41 -05:00
comfyanonymous
c62e836167 Move noise scaling to object with sampling math. 2024-03-01 12:54:38 -05:00
comfyanonymous
cb7c3a2921 Allow image_only_indicator to be None. 2024-02-29 13:11:30 -05:00
comfyanonymous
b3e97fc714 Koala 700M and 1B support.
Use the UNET Loader node to load the unet file to use them.
2024-02-28 12:10:11 -05:00
comfyanonymous
37a86e4618 Remove duplicate text_projection key from some saved models. 2024-02-28 03:57:41 -05:00
comfyanonymous
8daedc5bf2 Auto detect playground v2.5 model. 2024-02-27 18:03:03 -05:00
comfyanonymous
d46583ecec Playground V2.5 support with ModelSamplingContinuousEDM node.
Use ModelSamplingContinuousEDM with edm_playground_v2.5 selected.
2024-02-27 15:12:33 -05:00
comfyanonymous
1e0fcc9a65 Make XL checkpoints save in a more standard format. 2024-02-27 02:07:40 -05:00
comfyanonymous
b416be7d78 Make the text projection saved in the checkpoint the right format. 2024-02-27 01:52:23 -05:00
comfyanonymous
03c47fc0f2 Add a min_length property to tokenizer class. 2024-02-26 21:36:37 -05:00
comfyanonymous
e61755ead0 Update the old updater if present when running on the windows standalone. 2024-02-26 13:32:14 -05:00
comfyanonymous
36f7face37 Update the standalone package updater so it can self update. 2024-02-26 08:51:16 -05:00
comfyanonymous
8ac69f62e5 Make return_projected_pooled setable from the __init__ 2024-02-25 14:49:13 -05:00
comfyanonymous
ca7c310a0e Support loading old CLIP models saved with CLIPSave. 2024-02-25 08:29:12 -05:00
僵尸浩
8d7910cee9 disable follow_symlinks in static serving for security reason (#2902) 2024-02-25 07:43:26 -05:00
comfyanonymous
4a7e751ce6 Add example for how to use WEB_DIRECTORY to add frontend extensions. 2024-02-25 07:34:22 -05:00
comfyanonymous
c2cb8e889b Always return unprojected pooled output for gligen. 2024-02-25 07:33:13 -05:00
comfyanonymous
1cb3f6a83b Move text projection into the CLIP model code.
Fix issue with not loading the SSD1B clip correctly.
2024-02-25 01:41:08 -05:00
comfyanonymous
6533b172c1 Support text encoder text_projection in lora. 2024-02-24 23:50:46 -05:00
comfyanonymous
1e5f0f66be Support lora keys with lora_prior_unet_ and lora_prior_te_ 2024-02-23 12:21:20 -05:00
logtd
e1cb93c383 Fix model and cond transformer options merge 2024-02-23 01:19:43 -07:00
comfyanonymous
10847dfafe Cleanup uni_pc inpainting.
This causes some small changes to the uni pc inpainting behavior but it
seems to improve results slightly.
2024-02-23 02:39:35 -05:00
comfyanonymous
877a8f7a3c Merge branch 'patch-1' of https://github.com/feffy380/ComfyUI 2024-02-22 16:23:50 -05:00
Rick Love
f81dbe26e2 FIX recursive_will_execute performance (simple ~300x performance increase} (#2852)
* FIX recursive_will_execute performance

* Minimize code changes

* memo must be created outside lambda
2024-02-21 20:21:24 -05:00
comfyanonymous
7faa4507ec ModelSamplingDiscrete: x0 model support that predict a denoised image. 2024-02-21 08:05:43 -05:00
feffy380
820807c8ed Fix Perp-Neg math
adjust perp-neg implementation to match the paper
2024-02-21 10:33:03 +01:00
comfyanonymous
18c151b3e3 Add some latent2rgb matrices for previews. 2024-02-20 10:57:24 -05:00
comfyanonymous
0d0fbabd1d Pass pooled CLIP to stage b. 2024-02-20 04:24:45 -05:00
comfyanonymous
c6b7a157ed Align simple scheduling closer to official stable cascade scheduler. 2024-02-20 04:24:39 -05:00
comfyanonymous
ec4d89cee9 Add to Readme that stable cascade is supported. 2024-02-19 13:41:55 -05:00
comfyanonymous
a311524969 Node to make stable cascade image to image easier. 2024-02-19 13:36:20 -05:00
comfyanonymous
88f300401c Enable fp16 by default on mps. 2024-02-19 12:00:48 -05:00
comfyanonymous
e93cdd0ad0 Remove print. 2024-02-19 11:47:26 -05:00
comfyanonymous
3711b31dff Support Stable Cascade in checkpoint format. 2024-02-19 11:20:48 -05:00
comfyanonymous
d91f45ef28 Some cleanups to how the text encoders are loaded. 2024-02-19 10:46:30 -05:00
comfyanonymous
dbe0979b3f Larger range for min/max compression for StableCascade_EmptyLatentImage. 2024-02-19 08:59:53 -05:00
comfyanonymous
a7b5eaa7e3 Forgot to commit this. 2024-02-19 04:25:46 -05:00
comfyanonymous
3b2e579926 Support loading the Stable Cascade effnet and previewer as a VAE.
The effnet can be used to encode images for img2img with Stage C.
2024-02-19 04:10:01 -05:00
comfyanonymous
2e4628ac8d Merge branch 'iTXt-png-metadata-support' of https://github.com/shiimizu/ComfyUI 2024-02-18 23:44:58 -05:00
shiimizu
5171414143 Support additional PNG info. 2024-02-18 17:57:53 -08:00
comfyanonymous
dccca1daa5 Fix gligen lowvram mode. 2024-02-18 02:20:23 -05:00
comfyanonymous
8b60d33bb7 Add ModelSamplingStableCascade to control the shift sampling parameter.
shift is 2.0 by default on Stage C and 1.0 by default on Stage B.
2024-02-18 00:55:23 -05:00
comfyanonymous
6bcf57ff10 Fix attention masks properly for multiple batches. 2024-02-17 16:15:18 -05:00
comfyanonymous
11e3221f1f fp8 weight support for Stable Cascade. 2024-02-17 15:27:31 -05:00
comfyanonymous
f8706546f3 Fix attention mask batch size in some attention functions. 2024-02-17 15:22:21 -05:00
comfyanonymous
3b9969c1c5 Properly fix attention masks in CLIP with batches. 2024-02-17 12:13:13 -05:00
comfyanonymous
5b40e7a5ed Implement shift schedule for cascade stage C. 2024-02-17 11:38:47 -05:00
comfyanonymous
929e266f3e Manual cast for bf16 on older GPUs. 2024-02-17 09:01:17 -05:00
comfyanonymous
6c875d846b Fix clip attention mask issues on some hardware. 2024-02-17 07:53:52 -05:00
comfyanonymous
805c36ac9c Make Stable Cascade work on old pytorch 2.0 2024-02-17 00:42:30 -05:00
comfyanonymous
f2d1d16f4f Support Stable Cascade Stage B lite. 2024-02-16 23:41:23 -05:00
comfyanonymous
0b3c50480c Make --force-fp32 disable loading models in bf16. 2024-02-16 23:01:54 -05:00
comfyanonymous
97d03ae04a StableCascade CLIP model support. 2024-02-16 13:29:04 -05:00
comfyanonymous
667c92814e Stable Cascade Stage B. 2024-02-16 13:02:03 -05:00
comfyanonymous
f83109f09b Stable Cascade Stage C. 2024-02-16 10:55:08 -05:00
comfyanonymous
5e06baf112 Stable Cascade Stage A. 2024-02-16 06:30:39 -05:00
comfyanonymous
c2c885261a Merge branch 'batch-number-in-filename' of https://github.com/freakabcd/ComfyUI 2024-02-16 05:45:48 -05:00
comfyanonymous
aeaeca10bd Small refactor of is_device_* functions. 2024-02-15 21:10:10 -05:00
comfyanonymous
7f89cb48bf Add a disabled SaveImageWebsocket custom node.
This node can be used to efficiently get images without saving them to
disk when using ComfyUI as a backend.
2024-02-14 03:01:25 -05:00
comfyanonymous
38b7ac6e26 Don't init the CLIP model when the checkpoint has no CLIP weights. 2024-02-13 00:01:08 -05:00
comfyanonymous
0c9bc19768 Add ImageFromBatch. 2024-02-12 12:46:15 -05:00
chrisgoringe
cf4910a3a4 Prevent hideWidget being called twice for same widget
Fix for #2766
2024-02-12 08:59:25 +11:00
Steven Lu
02409c30d9 Safari: Draws certain elements on CPU. In case of search popup, can cause 10 seconds+ main thread lock due to painting. (#2763)
* lets toggle this setting first.

* also makes it easier for debug. I'll be honest this is generally preferred behavior as well for me but I ain't no power user shrug.

* attempting trick to put the work for filter: brightness on GPU as a first attempt before falling back to not using filter for large lists!

* revert litegraph.core.js changes from branch

* oops
2024-02-12 03:44:53 +09:00
comfyanonymous
7dd352cbd7 Merge branch 'feature_expose_discard_penultimate_sigma' of https://github.com/blepping/ComfyUI 2024-02-11 12:23:30 -05:00
comfyanonymous
20e3da6b31 Add a node to give the controlnet a prompt different from the unet. 2024-02-10 08:27:05 -05:00
Jedrzej Kosinski
f44225fd5f Fix infinite while loop being possible in ddim_scheduler 2024-02-09 17:11:34 -06:00
comfyanonymous
25a4805e51 Add a way to set different conditioning for the controlnet. 2024-02-09 14:13:31 -05:00
Imran Azeez
2ccc0be28f Add batch number to filename with %batch_num%
Allow configurable addition of batch number to output file name.
2024-02-08 22:03:11 +10:00
blepping
a352c021ec Allow custom samplers to request discard penultimate sigma 2024-02-08 02:24:23 -07:00
comfyanonymous
fd73b5ee3a Merge branch 'improved-mobile-support' of https://github.com/pythongosssss/ComfyUI 2024-02-08 01:06:33 -05:00
comfyanonymous
c661a8b118 Don't use numpy for calculating sigmas. 2024-02-07 18:52:51 -05:00
comfyanonymous
7daad468ec Sync litegraph to repo.
https://github.com/comfyanonymous/litegraph.js/pull/6
2024-02-06 12:43:06 -05:00
pythongosssss
d2e7f1b04b Support linking converted inputs from api json 2024-02-06 16:55:55 +00:00
comfyanonymous
236bda2683 Make minimum tile size the size of the overlap. 2024-02-05 01:29:26 -05:00
comfyanonymous
74b7233f57 Document IS_CHANGED in the example custom node. 2024-02-04 23:15:49 -05:00
comfyanonymous
66e28ef45c Don't use is_bf16_supported to check for fp16 support. 2024-02-04 20:53:35 -05:00
comfyanonymous
24129d78e6 Speed up SDXL on 16xx series with fp16 weights and manual cast. 2024-02-04 13:23:43 -05:00
comfyanonymous
98b80ad1f5 Merge branch 'feature/maskeditor_brush_modes' of https://github.com/UltimaBeaR/ComfyUI 2024-02-03 15:06:10 -05:00
ultimabear
5f3dbede58 Mask editor: semitransparent brush, brush color modes 2024-02-03 10:29:44 +03:00
comfyanonymous
4b0239066d Always use fp16 for the text encoders. 2024-02-02 10:02:49 -05:00
comfyanonymous
d0e2354c28 Merge branch 'LatentSeed_update' of https://github.com/FizzleDorf/ComfyUI 2024-02-02 04:38:18 -05:00
FizzleDorf
f2bae7463e changed default of LatentBatchSeedBehavior to fixed 2024-02-02 18:31:35 +09:00
Chaoses-Ib
951a2064a3 Fix frontend webp prompt handling 2024-02-02 13:27:03 +08:00
comfyanonymous
4c54c2ec0f Merge branch 'increment-wrap' of https://github.com/pksebben/ComfyUI 2024-02-01 17:01:21 -05:00
pksebben
53a22e1ab9 add increment-wrap as option to ValueControlWidget when isCombo, which loops back to 0 when at end of list 2024-01-31 16:14:50 -08:00
Lt.Dr.Data
6ab4205422 feat: better pen support for mask editor
- alt-drag: erase
- shift-drag(up/down): zoom in/out
2024-01-31 18:28:36 +09:00
comfyanonymous
c5a369a33d Update readme for new pytorch 2.2 release. 2024-01-31 02:27:12 -05:00
comfyanonymous
6565c9ad4d Litegraph node search improvements.
See: https://github.com/comfyanonymous/litegraph.js/pull/5
2024-01-31 02:26:27 -05:00
comfyanonymous
eeca72488b Merge branch 'group-manage-fixes' of https://github.com/pythongosssss/ComfyUI 2024-01-31 00:25:03 -05:00
comfyanonymous
4ce587bcd3 Merge branch 'fix/mask-editor-inpaint' of https://github.com/Meowu/ComfyUI 2024-01-30 23:15:31 -05:00
pythongosssss
af6165ab69 Fix scrolling with lots of nodes 2024-01-30 18:00:01 +00:00
pythongosssss
29558fb3ac Fix crash when no widgets on customized group node 2024-01-30 17:59:47 +00:00
comfyanonymous
da7a8df0d2 Put VAE key name in model config. 2024-01-30 02:24:38 -05:00
Meowu
364ef19354 fix: inpaint on mask editor bottom area 2024-01-30 14:23:01 +08:00
pythongosssss
ed2fa105ae Make auto saved workflow stored per tab 2024-01-29 18:43:59 +00:00
comfyanonymous
9321198da6 Add node to set only the conditioning area strength. 2024-01-29 00:24:53 -05:00
comfyanonymous
079dbf9198 Remove useless code. 2024-01-28 19:36:32 -05:00
comfyanonymous
7f4725f6b3 Fix some issues with --gpu-only 2024-01-27 02:51:27 -05:00
comfyanonymous
fc196aac80 Add a LatentBatchSeedBehavior node.
This lets you set it so the latents can use the same seed for the sampling
on every image in the batch.
2024-01-26 23:13:02 -05:00
comfyanonymous
2d105066df Cleanups. 2024-01-26 21:31:13 -05:00
comfyanonymous
89507f8adf Remove some unused imports. 2024-01-25 23:42:37 -05:00
comfyanonymous
d1533d9c0f Add experimental photomaker nodes.
Put the model file in models/photomaker and use PhotoMakerLoader.

Then use PhotoMakerEncode with the keyword "photomaker" to apply the image
2024-01-24 09:51:42 -05:00
comfyanonymous
b9911dcb2f Sync litegraph with repo.
https://github.com/comfyanonymous/litegraph.js/pull/4
2024-01-23 20:01:37 -05:00
pythongosssss
3762e676a9 Support refresh on group node combos (#2625)
* Support refresh on group node combos

* fix check
2024-01-23 14:15:52 -05:00
Dr.Lt.Data
05cd00695a typo fix - calculate_sigmas_scheduler (#2619)
self.scheduler -> scheduler_name

Co-authored-by: Lt.Dr.Data <lt.dr.data@gmail.com>
2024-01-23 03:47:01 -05:00
pythongosssss
8a92ac2120 Ability to hide menu
Responsive setting screen
Touch events for zooming/context menu
2024-01-22 18:56:43 +00:00
comfyanonymous
f2d432f9a7 Fix potential turbo scheduler model patching issue. 2024-01-22 00:28:13 -05:00
comfyanonymous
4871a36458 Cleanup some unused imports. 2024-01-21 21:51:22 -05:00
Kristjan Pärt
45bf88d8ef Fix queue on change to respect auto queue checkbox (#2608)
* Fix render on change not respecting auto queue checkbox

Fix issue where autoQueueEnabled checkbox is ignored for changes if autoQueueMode is left on `change`

* Make check more specific
2024-01-21 21:34:39 -05:00
comfyanonymous
ef5a28b597 Merge branch 'patch-1' of https://github.com/TFWol/ComfyUI 2024-01-20 20:17:57 -05:00
comfyanonymous
5823f18a79 Fix for the extracting issue on windows. 2024-01-19 23:08:15 -05:00
comfyanonymous
78a70fda87 Remove useless import. 2024-01-19 15:38:05 -05:00
comfyanonymous
9fff3c46b4 Move some nodes to model_patches section. 2024-01-18 15:57:35 -05:00
comfyanonymous
d76a04b6ea Add unfinished ImageOnlyCheckpointSave node to save a SVD checkpoint.
This node is unfinished, SVD checkpoints saved with this node will
work with ComfyUI but not with anything else.
2024-01-17 19:46:21 -05:00
realazthat
fad02dc2df Don't use PEP 604 type hints, to stay compatible with Python<3.10. 2024-01-17 17:16:34 -05:00
pythongosssss
ee2c5fa72d Fix renaming upload widget (#2554)
* Fix renaming upload widget

* Allow custom name
2024-01-16 08:58:54 -05:00
comfyanonymous
818d0c01b2 Merge branch 'fix-logging-setting' of https://github.com/pythongosssss/ComfyUI 2024-01-16 08:29:38 -05:00
pythongosssss
93bbe3f4c0 Auto queue on change (#2542)
* Add toggle to enable auto queue when graph is changed

* type fix

* better

* better alignment

* Change undoredo to not ignore inputs when autoqueue in change mode
2024-01-16 08:27:40 -05:00
pythongosssss
23687da9a9 Fix logging not checking onChange 2024-01-15 17:45:48 +00:00
comfyanonymous
f9e55d8463 Only auto enable bf16 VAE on nvidia GPUs that actually support it. 2024-01-15 03:10:22 -05:00
TFWol
1dab412c79 Add error handling to initial fix to keep cache intact 2024-01-14 15:06:33 -08:00
comfyanonymous
2395ae740a Make unclip more deterministic.
Pass a seed argument note that this might make old unclip images different.
2024-01-14 17:28:31 -05:00
pythongosssss
270daa02a8 Adds copy image option if browser feature available (#2544)
* Adds copy image option if browser feature available

* refactor
2024-01-14 14:53:52 -05:00
comfyanonymous
432ba1c179 Merge branch 'control_before_generate' of https://github.com/pythongosssss/ComfyUI 2024-01-13 16:06:43 -05:00
comfyanonymous
b5ece6354d Merge branch 'undoredo-fix-modifiers' of https://github.com/pythongosssss/ComfyUI 2024-01-13 16:03:44 -05:00
pythongosssss
9bddc9d94b Fix crash on group render 2024-01-13 21:02:51 +00:00
pythongosssss
18511dd581 Manage group nodes (#2455)
* wip group manage

* prototyping ui

* tweaks

* wip

* wip

* more wip

* fixes
add deletion

* Fix tests

* fixes

* Remove test code

* typo

* fix crash when link is invalid
2024-01-13 15:43:20 -05:00
pythongosssss
8e916735c0 export function 2024-01-13 18:57:59 +00:00
pythongosssss
32034217ae add setting to change control after generate to run before 2024-01-13 18:57:47 +00:00
pythongosssss
df49a727ff Fix modifiers triggering key down checks 2024-01-13 17:00:30 +00:00
comfyanonymous
56d9496b18 Rename status notes to status messages.
I think message describes them better.
2024-01-12 18:17:06 -05:00
comfyanonymous
bcc0bde2af Clear status notes on execution start. 2024-01-12 17:21:22 -05:00
comfyanonymous
1805cb2d69 Merge branch 'enhanced-history-status' of https://github.com/realazthat/ComfyUI 2024-01-12 16:36:56 -05:00
comfyanonymous
53c8a99e6c Make server storage the default.
Remove --server-storage argument.
2024-01-11 17:21:40 -05:00
comfyanonymous
d4edd9bfa8 Fix hypertile issue with high depths. 2024-01-11 15:13:38 -05:00
realazthat
1b3d65bd84 Add error, status to /history endpoint 2024-01-11 10:16:42 -05:00
TFWol
4ab0392f70 Resolved crashing nodes caused by FileNotFoundError during directory traversal
- Implemented a `try-except` block in the `recursive_search` function to handle `FileNotFoundError` gracefully.
- When encountering a file or directory path that cannot be accessed (causing `FileNotFoundError`), the code now logs a warning and skips processing for that specific path instead of crashing the node (CheckpointLoaderSimple was usually the first to break). This allows the rest of the directory traversal to proceed without interruption.
2024-01-11 06:34:33 -08:00
comfyanonymous
977eda19a6 Don't round noise mask. 2024-01-11 03:29:58 -05:00
comfyanonymous
10f2609fdd Add InpaintModelConditioning node.
This is an alternative to VAE Encode for inpaint that should work with
lower denoise.

This is a different take on #2501
2024-01-11 03:15:27 -05:00
comfyanonymous
b4e915e745 Skip SAG when latent is too small. 2024-01-10 04:08:43 -05:00
comfyanonymous
1a57423d30 Fix issue when using multiple t2i adapters with batched images. 2024-01-10 04:00:49 -05:00
comfyanonymous
2c80d9acb9 Round up to nearest power of 2 in SAG node to fix some resolution issues. 2024-01-09 15:12:12 -05:00
comfyanonymous
6a7bc35db8 Use basic attention implementation for small inputs on old pytorch. 2024-01-09 13:46:52 -05:00
comfyanonymous
b3b5ddb07a Support I mode images in LoadImageMask. 2024-01-08 17:08:17 -05:00
comfyanonymous
2d74fc4360 Fix issue with user manager parent dir not being created. 2024-01-08 17:08:00 -05:00
pythongosssss
235727fed7 Store user settings/data on the server and multi user support (#2160)
* wip per user data

* Rename, hide menu

* better error
rework default user

* store pretty

* Add userdata endpoints
Change nodetemplates to userdata

* add multi user message

* make normal arg

* Fix tests

* Ignore user dir

* user tests

* Changed to default to browser storage and add server-storage arg

* fix crash on empty templates

* fix settings added before load

* ignore parse errors
2024-01-08 17:06:44 -05:00
comfyanonymous
6a10640f0d Support properly loading images with mode I. 2024-01-08 03:46:36 -05:00
comfyanonymous
c6951548cf Update optimized_attention_for_device function for new functions that
support masked attention.
2024-01-07 13:52:08 -05:00
comfyanonymous
aaa9017302 Add attention mask support to sub quad attention. 2024-01-07 04:13:58 -05:00
comfyanonymous
0c2c9fbdfa Support attention mask in split attention. 2024-01-06 13:16:48 -05:00
comfyanonymous
3ad0191bfb Implement attention mask on xformers. 2024-01-06 04:33:03 -05:00
ramyma
af94eb14e3 fix: /free handler function name 2024-01-06 04:27:09 +02:00
comfyanonymous
7c9a0f7e0a Fix BasicScheduler issue with Loras. 2024-01-05 12:31:13 -05:00
comfyanonymous
35322a3766 StableZero123_Conditioning_Batched node.
This node lets you generate a batch of images with different elevations or
azimuths by setting the elevation_batch_increment and/or
azimuth_batch_increment.

It also sets the batch index for the latents so that the same init noise is
used on each frame.
2024-01-05 04:20:03 -05:00
comfyanonymous
6d281b4ff4 Add a /free route to unload models or free all memory.
A POST request to /free with: {"unload_models":true}
will unload models from vram.

A POST request to /free with: {"free_memory":true}
will unload models and free all cached data from the last run workflow.
2024-01-04 17:15:22 -05:00
comfyanonymous
8c6493578b Implement noise augmentation for SD 4X upscale model. 2024-01-03 14:27:11 -05:00
comfyanonymous
ef4f6037cb Fix model patches not working in custom sampling scheduler nodes. 2024-01-03 12:16:30 -05:00
comfyanonymous
a7874d1a8b Add support for the stable diffusion x4 upscaling model.
This is an old model.

Load the checkpoint like a regular one and use the new
SD_4XUpscale_Conditioning node.
2024-01-03 03:37:56 -05:00
comfyanonymous
2c4e92a98b Fix regression. 2024-01-02 14:41:33 -05:00
comfyanonymous
5eddfdd80c Refactor VAE code.
Replace constants with downscale_ratio and latent_channels.
2024-01-02 13:24:34 -05:00
comfyanonymous
8e2c99e3cf Fix issue when websocket is deleted when data is being sent. 2024-01-02 11:50:00 -05:00
comfyanonymous
a47f609f90 Auto detect out_channels from model. 2024-01-02 01:50:57 -05:00
comfyanonymous
79f73a4b33 Remove useless code. 2024-01-02 01:50:29 -05:00
comfyanonymous
66831eb6e9 Add node id and prompt id to websocket progress packet. 2024-01-01 14:27:56 -05:00
comfyanonymous
d1f3637a5a Add a denoise parameter to BasicScheduler node. 2023-12-31 15:37:20 -05:00
comfyanonymous
36e15f2507 Reregister nodes when pressing refresh button. 2023-12-31 05:05:14 -05:00
comfyanonymous
1b103e0cb2 Add argument to run the VAE on the CPU. 2023-12-30 05:49:07 -05:00
comfyanonymous
144e6580a4 This cache timeout is pretty useless in practice. 2023-12-29 17:47:24 -05:00
comfyanonymous
04b713dda1 Fix VALIDATE_INPUTS getting called multiple times.
Allow VALIDATE_INPUTS to only validate specific inputs.
2023-12-29 17:36:40 -05:00
comfyanonymous
12e822c6c8 Use function to calculate model size in model patcher. 2023-12-28 21:46:20 -05:00
comfyanonymous
e1e322cf69 Load weights that can't be lowvramed to target device. 2023-12-28 21:41:10 -05:00
comfyanonymous
a8baa40d85 Cleanup. 2023-12-28 12:23:07 -05:00
comfyanonymous
c782144433 Fix clip vision lowvram mode not working. 2023-12-27 13:50:57 -05:00
comfyanonymous
e478b1794e Only add _meta title to api prompt when dev mode is enabled in UI. 2023-12-27 01:07:02 -05:00
AYF
f15dce71fd Add title to the API workflow json. (#2380)
* Add `title` to the API workflow json.

* API: Move `title` to `_meta` dictionary, imply unused.
2023-12-27 00:55:11 -05:00
comfyanonymous
f21bb41787 Fix taesd VAE in lowvram mode. 2023-12-26 12:52:21 -05:00
comfyanonymous
61b3f15f8f Fix lowvram mode not working with unCLIP and Revision code. 2023-12-26 05:02:02 -05:00
shiimizu
392878a262 Fix hiding dom widgets. 2023-12-25 19:17:40 -08:00
comfyanonymous
257c2eaaa4 Merge branch 'patch-1' of https://github.com/savolla/ComfyUI 2023-12-25 12:24:31 -05:00
comfyanonymous
d0165d819a Fix SVD lowvram mode. 2023-12-24 07:13:18 -05:00
comfyanonymous
a252963f95 --disable-smart-memory now unloads everything like it did originally. 2023-12-23 04:25:06 -05:00
comfyanonymous
36a7953142 Greatly improve lowvram sampling speed by getting rid of accelerate.
Let me know if this breaks anything.
2023-12-22 14:38:45 -05:00
comfyanonymous
261bcbb0d9 A few missing comfy ops in the VAE. 2023-12-22 04:05:42 -05:00
comfyanonymous
d35267e85a Litegraph updates.
Update from upstream repo.

Auto select value in prompt.

Increase maximum number of nodes to 10k.
2023-12-21 13:21:25 -05:00
comfyanonymous
6781b181ef Fix potential tensor device issue with ImageCompositeMasked. 2023-12-21 02:35:01 -05:00
comfyanonymous
a1e1c69f7d LoadImage now loads all the frames from animated images as a batch. 2023-12-20 16:39:09 -05:00
comfyanonymous
5f54614e7f Add a RebatchImages node. 2023-12-20 16:22:18 -05:00
comfyanonymous
e82942cc29 Add a denoise parameter to the SDTurboScheduler. 2023-12-20 02:54:25 -05:00
comfyanonymous
ba3f3aa1ca Merge branch 'test-reliability' of https://github.com/pythongosssss/ComfyUI 2023-12-19 16:32:53 -05:00
pythongosssss
8680ac3dfd try to improve test reliability 2023-12-19 20:38:07 +00:00
pythongosssss
e65110fd93 Fix dom widgets not being hidden 2023-12-19 20:22:01 +00:00
Oleksiy Nehlyadyuk
40ea2bd011 Update requirements.txt
the UI launches with one missing module `torchvision`. spits out a `ModuleNotFoundError`. installing `torchvision` module fixed it.
2023-12-19 17:07:55 +03:00
comfyanonymous
9a7619b72d Fix regression with inpaint model. 2023-12-19 02:32:59 -05:00
comfyanonymous
571ea8cdcc Fix SAG not working with cfg 1.0 2023-12-18 17:03:32 -05:00
comfyanonymous
8cf1daa108 Fix SDXL area composition sometimes not using the right pooled output. 2023-12-18 12:54:23 -05:00
comfyanonymous
d2f322902c Fix wrong Stable Zero123 node name. 2023-12-18 03:59:50 -05:00
comfyanonymous
2258f85159 Support stable zero 123 model.
To use it use the ImageOnlyCheckpointLoader to load the checkpoint and
the new Stable_Zero123 node.
2023-12-18 03:48:04 -05:00
comfyanonymous
2f9d6a97ec Add --deterministic option to make pytorch use deterministic algorithms. 2023-12-17 16:59:21 -05:00
comfyanonymous
a036b94075 Move SaveAnimated nodes to image->animation. 2023-12-17 02:37:22 -05:00
pythongosssss
6453dc1ca2 Fix name counter preventing more than 3 of the same node
Fix linked widget offset when populating values
2023-12-16 14:16:12 +00:00
comfyanonymous
e45d920ae3 Don't resize clip vision image when the size is already good. 2023-12-16 03:06:10 -05:00
comfyanonymous
13e6d5366e Switch clip vision to manual cast.
Make it use the same dtype as the text encoder.
2023-12-16 02:47:26 -05:00
comfyanonymous
574efd3782 Fix perpneg not working on SDXL. 2023-12-16 02:30:16 -05:00
comfyanonymous
172984db01 Fix SAG not working on certain resolutions. 2023-12-16 01:29:57 -05:00
comfyanonymous
6596654d47 Add a LatentBatch node. 2023-12-16 01:21:00 -05:00
comfyanonymous
719fa0866f Set clip vision model in eval mode so it works without inference mode. 2023-12-15 18:53:08 -05:00
comfyanonymous
adc40e3d7b Forgot this. 2023-12-15 15:46:23 -05:00
comfyanonymous
014c8bf2f2 Refactor LCM to support more model types. 2023-12-15 15:26:12 -05:00
comfyanonymous
9cad2f06ff Make perp neg take a conditioning input instead of a CLIP one. 2023-12-15 14:40:57 -05:00
Hari
574363a8a6 Implement Perp-Neg 2023-12-16 00:28:16 +05:30
comfyanonymous
a5056cfb1f Remove useless code. 2023-12-15 01:28:16 -05:00
comfyanonymous
b12b48e170 cleanup. 2023-12-14 20:11:46 -05:00
comfyanonymous
329c571993 Improve code legibility. 2023-12-14 11:41:49 -05:00
comfyanonymous
6c5990f7db Fix cfg being calculated more than once if sampler_cfg_function. 2023-12-13 20:28:04 -05:00
comfyanonymous
ba04a87d10 Refactor and improve the sag node.
Moved all the sag related code to comfy_extras/nodes_sag.py
2023-12-13 16:11:26 -05:00
Rafie Walker
6761233e9d Implement Self-Attention Guidance (#2201)
* First SAG test

* need to put extra options on the model instead of patcher

* no errors and results seem not-broken

* Use @ashen-uncensored formula, which works better!!!

* Fix a crash when using weird resolutions. Remove an unnecessary UNet call

* Improve comments, optimize memory in blur routine

* SAG works with sampler_cfg_function
2023-12-13 15:52:11 -05:00
pythongosssss
390078904c Group node fixes (#2259)
* Prevent cleaning graph state on undo/redo

* Remove pause rendering due to LG bug

* Fix crash on disconnected internal reroutes

* Fix widget inputs being incorrect order and value

* Fix initial primitive values on connect

* basic support for basic rerouted converted inputs

* Populate primitive to reroute input

* dont crash on bad primitive links

* Fix convert to group changing control value

* reduce restrictions

* fix random crash in tests
2023-12-13 00:56:39 -05:00
comfyanonymous
b454a67bb9 Support segmind vega model. 2023-12-12 19:09:53 -05:00
comfyanonymous
824e4935f5 Add dtype parameter to VAE object. 2023-12-12 12:03:29 -05:00
comfyanonymous
32b7e7e769 Add manual cast to controlnet. 2023-12-12 11:32:42 -05:00
comfyanonymous
3152023fbc Use inference dtype for unet memory usage estimation. 2023-12-11 23:50:38 -05:00
comfyanonymous
77755ab8db Refactor comfy.ops
comfy.ops -> comfy.ops.disable_weight_init

This should make it more clear what they actually do.

Some unused code has also been removed.
2023-12-11 23:27:13 -05:00
comfyanonymous
b0aab1e4ea Add an option --fp16-unet to force using fp16 for the unet. 2023-12-11 18:36:29 -05:00
comfyanonymous
ba07cb748e Use faster manual cast for fp8 in unet. 2023-12-11 18:24:44 -05:00
pythongosssss
ab93abd4b2 Prevent cleaning graph state on undo/redo (#2255)
* Prevent cleaning graph state on undo/redo

* Remove pause rendering due to LG bug
2023-12-11 12:33:35 -05:00
comfyanonymous
57926635e8 Switch text encoder to manual cast.
Use fp16 text encoder weights for CPU inference to lower memory usage.
2023-12-10 23:00:54 -05:00
Dr.Lt.Data
69033081c5 mask editor bugfix
- Addressing the issue where an unnecessary hidden panel disrupts the drawing.
2023-12-11 00:24:28 +09:00
comfyanonymous
340177e6e8 Disable non blocking on mps. 2023-12-10 01:30:35 -05:00
comfyanonymous
614b7e731f Implement GLora. 2023-12-09 18:15:26 -05:00
comfyanonymous
cb63e230b4 Make lora code a bit cleaner. 2023-12-09 14:15:09 -05:00
comfyanonymous
9e411073e9 Add instructions for those that have python 3.12 2023-12-09 13:41:30 -05:00
comfyanonymous
eccc9e64a6 Merge branch 'group-reroute-fix' of https://github.com/pythongosssss/ComfyUI 2023-12-09 12:01:26 -05:00
comfyanonymous
da74e3bbe3 Update pytorch nightly packaging workflow. 2023-12-09 12:01:17 -05:00
comfyanonymous
174eba8e95 Use own clip vision model implementation. 2023-12-09 11:56:31 -05:00
pythongosssss
080ef75c31 fix 2023-12-09 13:19:21 +00:00
pythongosssss
9aaf368a41 Fix internal reroutes connected to other groups 2023-12-09 13:04:35 +00:00
comfyanonymous
97015b6b38 Cleanup. 2023-12-08 16:02:08 -05:00
comfyanonymous
a4ec54a40d Add linear_start and linear_end to model_config.sampling_settings 2023-12-08 02:49:30 -05:00
comfyanonymous
9ac0b487ac Make --gpu-only put intermediate values in GPU memory instead of cpu. 2023-12-08 02:35:45 -05:00
comfyanonymous
cdff081023 Fix hypertile. 2023-12-07 15:22:35 -05:00
comfyanonymous
efb704c758 Support attention masking in CLIP implementation. 2023-12-07 02:51:02 -05:00
comfyanonymous
248d9125b0 Merge branch 'ht_deterministic' of https://github.com/asagi4/ComfyUI 2023-12-07 01:45:11 -05:00
comfyanonymous
fbdb14d4c4 Cleaner CLIP text encoder implementation.
Use a simple CLIP model implementation instead of the one from
transformers.

This will allow some interesting things that would too hackish to implement
using the transformers implementation.
2023-12-06 23:50:03 -05:00
asagi4
03eadbb53c Make HyperTile deterministic 2023-12-06 21:17:56 +02:00
comfyanonymous
2db86b4676 Slightly faster lora applying. 2023-12-06 05:13:14 -05:00
comfyanonymous
e134547341 Merge branch 'reroute-converted-inputs' of https://github.com/pythongosssss/ComfyUI
# Conflicts:
#	web/extensions/core/widgetInputs.js
2023-12-06 03:01:35 -05:00
Dr.Lt.Data
8112a0d9fc improve: Mask Editor (#2171)
* renewal mask editor

* fix: ignoring keydown when 2nd open
2023-12-06 01:56:03 -05:00
comfyanonymous
ef29542030 Merge branch 'primitive-text-replacement' of https://github.com/pythongosssss/ComfyUI 2023-12-05 23:11:03 -05:00
pythongosssss
8de6f94f5c Allow widget placeholder replacement on primitives 2023-12-05 21:02:10 +00:00
pythongosssss
bcc469a2c9 try to stop test failing 2023-12-05 20:28:52 +00:00
pythongosssss
a99da6667f reroute + primitive tests 2023-12-05 20:28:05 +00:00
pythongosssss
44265e0810 Allow connecting primitivenode to reroutes 2023-12-05 20:27:13 +00:00
comfyanonymous
1bbd65ab30 Missed this one. 2023-12-05 12:48:41 -05:00
comfyanonymous
9b655d4fd7 Fix memory issue with control loras. 2023-12-04 21:55:19 -05:00
comfyanonymous
26b1c0a771 Fix control lora on fp8. 2023-12-04 13:47:41 -05:00
comfyanonymous
be3468ddd5 Less useless downcasting. 2023-12-04 12:53:46 -05:00
comfyanonymous
ca82ade765 Use .itemsize to get dtype size for fp8. 2023-12-04 11:52:06 -05:00
comfyanonymous
31b0f6f3d8 UNET weights can now be stored in fp8.
--fp8_e4m3fn-unet and --fp8_e5m2-unet are the two different formats
supported by pytorch.
2023-12-04 11:10:00 -05:00
comfyanonymous
af365e4dd1 All the unet ops with weights are now handled by comfy.ops 2023-12-04 03:12:18 -05:00
comfyanonymous
6efe561c2a Merge branch 'fix-template-sorting' of https://github.com/pythongosssss/ComfyUI 2023-12-03 22:51:23 -05:00
pythongosssss
77ab2c3f69 fix template sorting 2023-12-03 17:17:23 +00:00
pythongosssss
44d8abadf0 allow muting group node 2023-12-03 17:04:16 +00:00
pythongosssss
496de0891d Allow removing erroring embedded groups
Unregister group nodes on workflow change
2023-12-03 16:49:48 +00:00
comfyanonymous
61a123a1e0 A different way of handling multiple images passed to SVD.
Previously when a list of 3 images [0, 1, 2] was used for a 6 frame video
they were concated like this:
[0, 1, 2, 0, 1, 2]

now they are concated like this:
[0, 0, 1, 1, 2, 2]
2023-12-03 03:31:47 -05:00
comfyanonymous
b2517b4ceb Load api workflow if regular workflow isn't in loaded image. 2023-12-02 13:56:11 -05:00
comfyanonymous
88e2c9746b Merge branch 'image-cache' of https://github.com/jn-jairo/ComfyUI 2023-12-02 13:02:33 -05:00
pythongosssss
28220fa839 Fix node growing with DOM widgets when adding image even if enough space 2023-12-02 12:02:03 +00:00
Jairo Correa
c92f3dca73 Merge branch 'master' into image-cache 2023-12-02 05:16:21 -03:00
comfyanonymous
2995a24725 Update readme. 2023-12-01 18:29:33 -05:00
pythongosssss
8491280504 Add Extension tests (#2125)
* Add test for extension hooks
Add afterConfigureGraph callback

* fix comment
2023-12-01 17:24:20 -05:00
comfyanonymous
ec7a00aa96 Fix extension widgets not working. 2023-12-01 04:13:04 -05:00
comfyanonymous
5d5c320054 Fix right click not working for some users. 2023-12-01 02:03:34 -05:00
comfyanonymous
c97be4db91 Support SD2.1 turbo checkpoint. 2023-11-30 19:27:03 -05:00
comfyanonymous
6b769bca01 Do a garbage collect after the interval even if nothing is running. 2023-11-30 15:22:32 -05:00
pythongosssss
7f469203b7 Group nodes (#1776)
* setup ui unit tests

* Refactoring, adding connections

* Few tweaks

* Fix type

* Add general test

* Refactored and extended test

* move to describe

* for groups

* wip group nodes

* Relink nodes
Fixed widget values
Convert to nodes

* Reconnect on convert back

* add via node menu + canvas
refactor

* Add ws event handling

* fix using wrong node on widget serialize

* allow reroute pipe
fix control_after_generate configure

* allow multiple images

* Add test for converted widgets on missing nodes + fix crash

* tidy

* mores tests + refactor

* throw earlier to get less confusing error

* support outputs

* more test

* add ci action

* use lts node

* Fix?

* Prevent connecting non matching combos

* update

* accidently removed npm i

* Disable logging extension

* fix naming
allow control_after_generate custom name
allow convert from reroutes

* group node tests

* Add executing info, custom node icon
Tidy

* internal reroute just works

* Fix crash on virtual nodes e.g. note

* Save group nodes to templates

* Fix template nodes not being stored

* Fix aborting convert

* tidy

* Fix reconnecting output links on convert to group

* Fix links on convert to nodes

* Handle missing internal nodes

* Trigger callback on text change

* Apply value on connect

* Fix converted widgets not reconnecting

* Group node updates
- persist internal ids in current session
- copy widget values when converting to nodes
- fix issue serializing converted inputs

* Resolve issue with sanitized node name

* Fix internal id

* allow outputs to be used internally and externally

* order widgets on group node
various fixes

* fix imageupload widget requiring a specific name

* groupnode imageupload test
give widget unique name

* Fix issue with external node links

* Add VAE model

* Fix internal node id check

* fix potential crash

* wip widget input support

* more wip group widget inputs

* Group node refactor
Support for primitives/converted widgets

* Fix convert to nodes with internal reroutes

* fix applying primitive

* Fix control widget values

* fix test
2023-11-30 14:13:27 -05:00
comfyanonymous
d19de2753e Merge branch 'fix_folders_handling' of https://github.com/fazo96/ComfyUI 2023-11-29 14:10:30 -05:00
comfyanonymous
777f6b1522 Add to README that SDXL Turbo is supported. 2023-11-28 14:45:00 -05:00
comfyanonymous
b911eefc42 Limit gc.collect() to once every 10 seconds. 2023-11-28 14:20:56 -05:00
comfyanonymous
57d7f4464f Add SDTurboScheduler node. 2023-11-28 13:35:32 -05:00
comfyanonymous
21063fa35b Lower compress level of png sent on websocket. 2023-11-28 11:01:05 -05:00
comfyanonymous
983ebc5792 Use smart model management for VAE to decrease latency. 2023-11-28 04:58:51 -05:00
comfyanonymous
798a34d009 Lower compress level for image preview. 2023-11-28 04:57:59 -05:00
comfyanonymous
a667638442 Merge branch 'undo-redo' of https://github.com/pythongosssss/ComfyUI 2023-11-27 22:29:46 -05:00
comfyanonymous
c45d1b9b67 Add a function to load a unet from a state dict. 2023-11-27 17:41:29 -05:00
comfyanonymous
f30b992b18 .sigma and .timestep now return tensors on the same device as the input. 2023-11-27 16:41:33 -05:00
comfyanonymous
488de0b4df ModelSamplingDiscreteLCM -> ModelSamplingDiscreteDistilled 2023-11-27 16:32:03 -05:00
comfyanonymous
13fdee6abf Try to free memory for both cond+uncond before inference. 2023-11-27 14:55:40 -05:00
comfyanonymous
be71bb5e13 Tweak memory inference calculations a bit. 2023-11-27 14:04:16 -05:00
pythongosssss
9be0b30cf1 fix formatting 2023-11-27 14:02:50 +00:00
pythongosssss
34eccd863b Add simple undo redo history 2023-11-27 14:00:15 +00:00
comfyanonymous
96c2deeefb Merge branch 'path_error_fix' of https://github.com/jeske/ComfyUI 2023-11-27 02:06:08 -05:00
David Jeske
edd6f75d3a better error for invalid output paths 2023-11-26 13:10:31 -07:00
Jack Bauer
6aa1bcd601 Remove hard coded max_items in history API 2023-11-26 17:23:11 +04:00
comfyanonymous
39e75862b2 Fix regression from last commit. 2023-11-26 03:43:02 -05:00
comfyanonymous
50dc39d6ec Clean up the extra_options dict for the transformer patches.
Now everything in transformer_options gets put in extra_options.
2023-11-26 03:13:56 -05:00
comfyanonymous
5b37270d3a Add a lora loader node for models with no CLIP. 2023-11-25 02:26:50 -05:00
comfyanonymous
5d6dfce548 Fix importing diffusers unets. 2023-11-24 20:35:29 -05:00
comfyanonymous
e020ab61f9 Fix output APNG not working with ffmpeg. 2023-11-24 18:24:19 -05:00
comfyanonymous
8ad5d494d5 Fix APNG not working in ffmpeg. 2023-11-24 18:14:17 -05:00
comfyanonymous
916e9c998c Use same default fps as webp node. 2023-11-24 11:19:23 -05:00
comfyanonymous
eff24ea6aa Add a node to save animated PNG files. These work in ffpmeg unlike webp. 2023-11-24 11:12:10 -05:00
comfyanonymous
3e5ea74ad3 Make buggy xformers fall back on pytorch attention. 2023-11-24 03:55:35 -05:00
comfyanonymous
982338b9bb Fix issue loading webp files in UI. 2023-11-24 02:08:08 -05:00
comfyanonymous
c782cf3ea9 Add to Readme that Stable Video Diffusion is supported. 2023-11-24 00:27:08 -05:00
comfyanonymous
02ffbb2de3 Fix typo. 2023-11-23 23:20:07 -05:00
comfyanonymous
42dfae6331 Nodes to properly use the SDV img2vid checkpoint.
The img2vid model is conditioned on clip vision output only which means
there's no CLIP model which is why I added a ImageOnlyCheckpointLoader to
load it. Note that the unClipCheckpointLoader can also load it because it
also has a CLIP_VISION output.

SDV_img2vid_Conditioning is the node used to pass the right conditioning
to the img2vid model.

VideoLinearCFGGuidance applies a linearly decreasing CFG scale to each
video frame from the cfg set in the sampler node to min_cfg.

SDV_img2vid_Conditioning can be found in conditioning->video_models
ImageOnlyCheckpointLoader can be found in loaders->video_models
VideoLinearCFGGuidance can be found in sampling->video_models
2023-11-23 19:48:49 -05:00
comfyanonymous
871cc20e13 Support SVD img2vid model. 2023-11-23 19:41:33 -05:00
Enrico Fasoli
1964bf1e78 fix: folder handling issues 2023-11-23 22:24:58 +01:00
comfyanonymous
022033a0e7 Fix SaveAnimatedWEBP not working when metadata is disabled. 2023-11-23 15:39:35 -05:00
pythongosssss
4d2437e681 Call widget onRemove to remove element 2023-11-23 19:43:55 +00:00
comfyanonymous
a657f96c5c Add a node to save animated webp. 2023-11-23 14:28:41 -05:00
comfyanonymous
87031a1945 Update readme with link to LCM example page. 2023-11-23 11:59:11 -05:00
comfyanonymous
d03d8aa2e3 Fix loading groups. 2023-11-23 01:09:15 -05:00
comfyanonymous
410bf07771 Make VAE memory estimation take dtype into account. 2023-11-22 18:17:19 -05:00
comfyanonymous
32447f0c39 Add sampling_settings so models can specify specific sampling settings. 2023-11-22 17:24:00 -05:00
pythongosssss
70d2ea0faa Control filter list (#2009)
* Add control_filter_list to filter items after queue

* fix regex

* backwards compatibility

* formatting

* revert

* Add and fix test
2023-11-22 12:52:20 -05:00
comfyanonymous
1ca4802e8c Merge branch 'hide-if-collapsed' of https://github.com/pythongosssss/ComfyUI 2023-11-22 11:46:21 -05:00
pythongosssss
ab7d4f7848 Handle collapsing to hide element 2023-11-22 13:53:30 +00:00
comfyanonymous
c3ae99a749 Allow controlling downscale and upscale methods in PatchModelAddDownscale. 2023-11-22 03:23:16 -05:00
comfyanonymous
72741105a6 Remove useless code. 2023-11-21 17:27:28 -05:00
comfyanonymous
6a491ebe27 Allow model config to preprocess the vae state dict on load. 2023-11-21 16:29:18 -05:00
comfyanonymous
d66b631d74 Merge branch 'fix-collapsed-clip' of https://github.com/pythongosssss/ComfyUI 2023-11-21 13:26:26 -05:00
comfyanonymous
cd4fc77d5f Add taesd and taesdxl to VAELoader node.
They will show up if both the taesd_encoder and taesd_decoder or taesdxl
model files are present in the models/vae_approx directory.
2023-11-21 12:54:19 -05:00
pythongosssss
89e31abc46 Fix clipping of collapsed nodes 2023-11-21 17:54:01 +00:00
pythongosssss
6ff06fa796 Animated image output support (#2008)
* Refactor multiline widget into generic DOM widget

* wip webp preview

* webp support

* fix check

* fix sizing

* show image when zoomed out

* Swap webp checkto generic animated image flag

* remove duplicate

* Fix falsy check
2023-11-21 01:33:58 -05:00
comfyanonymous
ce67dcbcda Make it easy for models to process the unet state dict on load. 2023-11-20 23:17:53 -05:00
comfyanonymous
2dd5b4dd78 Only show last 200 elements in the UI history tab. 2023-11-20 16:56:29 -05:00
comfyanonymous
a03dde190e Cap maximum history size at 10000. Delete oldest entry when reached. 2023-11-20 16:38:39 -05:00
comfyanonymous
31c5ea7b2c Add LatentInterpolate to interpolate between latents. 2023-11-20 03:55:51 -05:00
comfyanonymous
dba4f3b4fc Add a RepeatImageBatch node. 2023-11-19 06:09:01 -05:00
comfyanonymous
d9d8702d8d percent_to_sigma now returns a float instead of a tensor. 2023-11-18 23:20:29 -05:00
comfyanonymous
8a451234b3 Add ImageCrop node. 2023-11-18 04:44:17 -05:00
comfyanonymous
0cf4e86939 Add some command line arguments to store text encoder weights in fp8.
Pytorch supports two variants of fp8:
--fp8_e4m3fn-text-enc (the one that seems to give better results)
--fp8_e5m2-text-enc
2023-11-17 02:56:59 -05:00
comfyanonymous
107e78b1cb Add support for loading SSD1B diffusers unet version.
Improve diffusers model detection.
2023-11-16 23:12:55 -05:00
comfyanonymous
7e3fe3ad28 Make deep shrink behave like it should. 2023-11-16 15:26:28 -05:00
comfyanonymous
9f00a18095 Fix potential issues. 2023-11-16 14:59:54 -05:00
comfyanonymous
bd07ad1861 Add PatchModelAddDownscale (Kohya Deep Shrink) node.
By adding a downscale to the unet in the first timesteps this node lets
you generate images at higher resolutions with less consistency issues.
2023-11-16 13:25:46 -05:00
comfyanonymous
7ea6bb038c Print warning when controlnet can't be applied instead of crashing. 2023-11-16 12:57:12 -05:00
comfyanonymous
dcec1047e6 Invert the start and end percentages in the code.
This doesn't affect how percentages behave in the frontend but breaks
things if you relied on them in the backend.

percent_to_sigma goes from 0 to 1.0 instead of 1.0 to 0 for less confusion.

Make percent 0 return an extremely large sigma and percent 1.0 return a
zero one to fix imprecision.
2023-11-16 04:23:44 -05:00
comfyanonymous
7114cfec0e Always clone graph data when loading to fix some load issues. 2023-11-15 15:55:02 -05:00
comfyanonymous
629e4c552c Merge branch 'master' of https://github.com/42lux/ComfyUI 2023-11-15 01:47:21 -05:00
comfyanonymous
57eea0efbb heunpp2 sampler. 2023-11-14 23:50:55 -05:00
42lux
7b87c825a3 Added Colorschemes. Arc, North and Github. 2023-11-15 02:37:35 +01:00
comfyanonymous
728613bb3e Fix last pr. 2023-11-14 14:41:31 -05:00
comfyanonymous
ec3d0ab432 Merge branch 'master' of https://github.com/Jannchie/ComfyUI 2023-11-14 14:38:07 -05:00
comfyanonymous
c962884a5c Make bislerp work on GPU. 2023-11-14 11:38:36 -05:00
comfyanonymous
420beeeb05 Clean up and refactor sampler code.
This should make it much easier to write custom nodes with kdiffusion type
samplers.
2023-11-14 00:39:34 -05:00
Jianqi Pan
f2e49b1d57 fix: adaptation to older versions of pytroch 2023-11-14 14:32:05 +09:00
comfyanonymous
94cc718e9c Add a way to add patches to the input block. 2023-11-14 00:08:12 -05:00
comfyanonymous
8509bd58b4 Reorganize custom_sampling nodes. 2023-11-13 21:45:23 -05:00
comfyanonymous
61112c81b9 Add a node to flip the sigmas for unsampling. 2023-11-13 21:45:08 -05:00
comfyanonymous
eb0407e806 Update litegraph to latest. 2023-11-13 16:26:28 -05:00
comfyanonymous
7339479b10 Disable xformers when it can't load properly. 2023-11-13 12:31:10 -05:00
comfyanonymous
f12ec55983 Allow boolean widgets to have no options dict. 2023-11-13 00:42:34 -05:00
pythongosssss
4aeef781a3 Support number/text ids when importing API JSON (#1952)
* support numeric/text ids
2023-11-12 14:49:23 -05:00
comfyanonymous
4781819a85 Make memory estimation aware of model dtype. 2023-11-12 04:28:26 -05:00
comfyanonymous
dd4ba68b6e Allow different models to estimate memory usage differently. 2023-11-12 04:03:52 -05:00
comfyanonymous
2c9dba8dc0 sampling_function now has the model object as the argument. 2023-11-12 03:45:10 -05:00
comfyanonymous
8d80584f6a Remove useless argument from uni_pc sampler. 2023-11-12 01:25:33 -05:00
Jairo Correa
006b24cc32 Prevent image cache 2023-11-11 15:56:14 -03:00
comfyanonymous
248aa3e563 Fix bug. 2023-11-11 12:20:16 -05:00
comfyanonymous
4a8a839b40 Add option to use in place weight updating in ModelPatcher. 2023-11-11 01:11:12 -05:00
comfyanonymous
412d3ff57d Refactor. 2023-11-11 01:11:06 -05:00
comfyanonymous
ca2812bae0 Fix RescaleCFG for batch size > 1. 2023-11-10 22:05:25 -05:00
comfyanonymous
58d5d71a93 Working RescaleCFG node.
This was broken because of recent changes so I fixed it and moved it from
the experiments repo.
2023-11-10 20:52:10 -05:00
comfyanonymous
3e0033ef30 Fix model merge bug.
Unload models before getting weights for model patching.
2023-11-10 03:19:05 -05:00
comfyanonymous
002aefa382 Support lcm models.
Use the "lcm" sampler to sample them, you also have to use the
ModelSamplingDiscrete node to set them as lcm models to use them properly.
2023-11-09 18:30:22 -05:00
comfyanonymous
ca71e542d2 Lower cfg step to 0.1 in sampler nodes. 2023-11-09 17:35:17 -05:00
pythongosssss
72e3feb573 Load API JSON (#1932)
* added loading api json

* revert async change

* reorder
2023-11-09 13:33:43 -05:00
comfyanonymous
cd6df8b323 Fix sanitize node name removing the "/" character. 2023-11-09 13:10:19 -05:00
comfyanonymous
ec12000136 Add support for full diff lora keys. 2023-11-08 22:05:31 -05:00
comfyanonymous
064d7583eb Add a CONDConstant for passing non tensor conds to unet. 2023-11-08 01:59:09 -05:00
comfyanonymous
794dd2064d Fix typo. 2023-11-07 23:41:55 -05:00
comfyanonymous
0a6fd49a3e Print leftover keys when using the UNETLoader. 2023-11-07 22:15:55 -05:00
comfyanonymous
fe40109b57 Fix issue with object patches not being copied with patcher. 2023-11-07 22:15:15 -05:00
comfyanonymous
a527d0c795 Code refactor. 2023-11-07 19:33:40 -05:00
comfyanonymous
2a23ba0b8c Fix unet ops not entirely on GPU. 2023-11-07 04:30:37 -05:00
comfyanonymous
844dbf97a7 Add: advanced->model->ModelSamplingDiscrete node.
This allows changing the sampling parameters of the model (eps or vpred)
or set the model to use zsnr.
2023-11-07 03:28:53 -05:00
comfyanonymous
d07cd44272 Merge branch 'master' of https://github.com/cubiq/ComfyUI 2023-11-07 01:52:13 -05:00
comfyanonymous
656c0b5d90 CLIP code refactor and improvements.
More generic clip model class that can be used on more types of text
encoders.

Don't apply weighting algorithm when weight is 1.0

Don't compute an empty token output when it's not needed.
2023-11-06 14:17:41 -05:00
comfyanonymous
b3fcd64c6c Make SDTokenizer class work with more types of tokenizers. 2023-11-06 01:09:18 -05:00
matt3o
4acfc11a80 add difference blend mode 2023-11-05 19:00:23 +01:00
comfyanonymous
a6c83b3cd0 Merge branch 'fix_unet_wrapper_function_name' of https://github.com/gameltb/ComfyUI 2023-11-05 12:41:38 -05:00
comfyanonymous
02f062b5b7 Sanitize unknown node types on load to prevent XSS. 2023-11-05 12:29:28 -05:00
gameltb
7e455adc07 fix unet_wrapper_function name in ModelPatcher 2023-11-05 17:11:44 +08:00
comfyanonymous
1ffa8858e7 Move model sampling code to comfy/model_sampling.py 2023-11-04 01:32:23 -04:00
comfyanonymous
ae2acfc21b Don't convert Nan to zero.
Converting Nan to zero is a bad idea because it makes it hard to tell when
something went wrong.
2023-11-03 13:13:15 -04:00
comfyanonymous
ee74ef5c9e Increase maximum batch size in LatentRebatch. 2023-11-02 13:07:41 -04:00
Matteo Spinelli
6e84a01ecc Refactor the template manager (#1878)
* add drag-drop to node template manager

* better dnd, save field on change

* actually save templates

---------

Co-authored-by: matt3o <matt3o@gmail.com>
2023-11-02 12:29:57 -04:00
comfyanonymous
dd116abfc4 Merge branch 'quantize-dither' of https://github.com/tsone/ComfyUI 2023-11-02 00:57:00 -04:00
comfyanonymous
d2e27b48f1 sampler_cfg_function now gets the noisy output as argument again.
This should make things that use sampler_cfg_function behave like before.

Added an input argument for those that want the denoised output.

This means you can calculate the x0 prediction of the model by doing:
(input - cond) for example.
2023-11-01 21:24:08 -04:00
comfyanonymous
2455aaed8a Allow model or clip to be None in load_lora_for_models. 2023-11-01 20:27:20 -04:00
comfyanonymous
45a3df1cde Merge branch 'filter-widgets-crash-fix' of https://github.com/Jantolick/ComfyUI 2023-11-01 20:17:25 -04:00
comfyanonymous
ecb80abb58 Allow ModelSamplingDiscrete to be instantiated without a model config. 2023-11-01 19:13:03 -04:00
Joseph Antolick
88410ace9b fix: handle null case for currentNode widgets to prevent scroll error 2023-11-01 16:52:51 -04:00
comfyanonymous
e73ec8c4da Not used anymore. 2023-11-01 00:01:30 -04:00
comfyanonymous
111f1b5255 Fix some issues with sampling precision. 2023-10-31 23:49:29 -04:00
comfyanonymous
7c0f255de1 Clean up percent start/end and make controlnets work with sigmas. 2023-10-31 22:14:32 -04:00
comfyanonymous
a268a574fa Remove a bunch of useless code.
DDIM is the same as euler with a small difference in the inpaint code.
DDIM uses randn_like but I set a fixed seed instead.

I'm keeping it in because I'm sure if I remove it people are going to
complain.
2023-10-31 18:11:29 -04:00
comfyanonymous
1777b54d02 Sampling code changes.
apply_model in model_base now returns the denoised output.

This means that sampling_function now computes things on the denoised
output instead of the model output. This should make things more consistent
across current and future models.
2023-10-31 17:33:43 -04:00
tsone
23c5d17837 Added Bayer dithering to Quantize node. 2023-10-31 22:22:40 +01:00
comfyanonymous
c837a173fa Fix some memory issues in sub quad attention. 2023-10-30 15:30:49 -04:00
comfyanonymous
125b03eead Fix some OOM issues with split attention. 2023-10-30 13:14:11 -04:00
Jedrzej Kosinski
41b07ff8d7 Fix TAESD preview to only decode first latent, instead of all 2023-10-29 13:30:23 -05:00
comfyanonymous
a12cc05323 Add --max-upload-size argument, the default is 100MB. 2023-10-29 03:55:46 -04:00
comfyanonymous
aac8fc99d6 Cleanup webp import code a bit. 2023-10-28 12:24:50 -04:00
comfyanonymous
2a134bfab9 Fix checkpoint loader with config. 2023-10-27 22:13:55 -04:00
comfyanonymous
e60ca6929a SD1 and SD2 clip and tokenizer code is now more similar to the SDXL one. 2023-10-27 15:54:04 -04:00
comfyanonymous
6ec3f12c6e Support SSD1B model and make it easier to support asymmetric unets. 2023-10-27 14:45:15 -04:00
comfyanonymous
434ce25ec0 Restrict loading embeddings from embedding folders. 2023-10-27 02:54:13 -04:00
comfyanonymous
40963b5a16 Apply primitive nodes to graph before serializing workflow. 2023-10-26 19:52:41 -04:00
comfyanonymous
723847f6b3 Faster clip image processing. 2023-10-26 01:53:01 -04:00
comfyanonymous
a373367b0c Fix some OOM issues with split and sub quad attention. 2023-10-25 20:17:28 -04:00
comfyanonymous
7fbb217d3a Fix uni_pc returning noisy image when steps <= 3 2023-10-25 16:08:30 -04:00
Jedrzej Kosinski
3783cb8bfd change 'c_adm' to 'y' in ControlNet.get_control 2023-10-25 08:24:32 -05:00
comfyanonymous
d1d2fea806 Pass extra conds directly to unet. 2023-10-25 00:07:53 -04:00
comfyanonymous
036f88c621 Refactor to make it easier to add custom conds to models. 2023-10-24 23:31:12 -04:00
comfyanonymous
3fce8881ca Sampling code refactor to make it easier to add more conds. 2023-10-24 03:38:41 -04:00
comfyanonymous
5c65da312a Remove prints. 2023-10-23 23:39:22 -04:00
comfyanonymous
b935bea3a0 The frontend can now load workflows from webp exif. 2023-10-23 21:13:50 -04:00
comfyanonymous
2ec6158e9e Call widget callback on value control to fix primitive node issue. 2023-10-22 23:38:18 -04:00
comfyanonymous
8594c8be4d Empty the cache when torch cache is more than 25% free mem. 2023-10-22 13:58:12 -04:00
comfyanonymous
8b65f5de54 attention_basic now works with hypertile. 2023-10-22 03:59:53 -04:00
comfyanonymous
e6bc42df46 Make sub_quad and split work with hypertile. 2023-10-22 03:51:29 -04:00
comfyanonymous
8cfce083c4 Fix primitive node control value not getting loaded. 2023-10-21 22:36:04 -04:00
comfyanonymous
a0690f9df9 Fix t2i adapter issue. 2023-10-21 20:31:24 -04:00
comfyanonymous
9906e3efe3 Make xformers work with hypertile. 2023-10-21 13:23:03 -04:00
comfyanonymous
1443caf373 HyperTile node, can be found in: _for_testing->HyperTile 2023-10-21 05:16:38 -04:00
comfyanonymous
8d50f0890d Merge branch 'templates-export-import' of https://github.com/jn-jairo/ComfyUI 2023-10-21 01:29:24 -04:00
comfyanonymous
77c893350a Fix previous commit that broke tests. 2023-10-20 23:13:54 -04:00
comfyanonymous
e0c0029fc1 Try to speed up the test-ui workflow. 2023-10-20 23:00:05 -04:00
comfyanonymous
25e3e5af68 Use npm ci for ci instead of npm install in tests. 2023-10-20 22:52:12 -04:00
pythongosssss
5818ca83a2 Unit tests + widget input fixes (#1760)
* setup ui unit tests

* Refactoring, adding connections

* Few tweaks

* Fix type

* Add general test

* Refactored and extended test

* move to describe

* for groups

* Add test for converted widgets on missing nodes + fix crash

* tidy

* mores tests + refactor

* throw earlier to get less confusing error

* support outputs

* more test

* add ci action

* use lts node

* Fix?

* Prevent connecting non matching combos

* update

* accidently removed npm i

* Disable logging extension

* added step to generate object_info

* fix python

* install python

* install deps

* fix cwd?

* logging

* Fix double resolve

* create dir

* update pkg
2023-10-20 22:49:04 -04:00
Jairo Correa
484bfe46c2 Clear importInput after import so change event works with same file 2023-10-20 15:19:29 -03:00
comfyanonymous
4185324a1d Fix uni_pc sampler math. This changes the images this sampler produces. 2023-10-20 04:16:53 -04:00
Dr.Lt.Data
f1062be622 fix: Fixing intermittent crashes with undefined graphs in the Firefox browser. 2023-10-20 00:07:08 +09:00
comfyanonymous
e6962120c6 Make sure cond_concat is on the right device. 2023-10-19 01:14:25 -04:00
comfyanonymous
45c972aba8 Refactor cond_concat into conditioning. 2023-10-18 20:36:58 -04:00
comfyanonymous
430a8334c5 Fix some potential issues. 2023-10-18 19:48:36 -04:00
comfyanonymous
782a24fce6 Refactor cond_concat into model object. 2023-10-18 16:48:37 -04:00
comfyanonymous
0d45a565da Fix memory issue related to control loras.
The cleanup function was not getting called.
2023-10-18 02:43:01 -04:00
comfyanonymous
c2bb34d865 Implement updated FreeU as _for_testing->FreeU_V2 node 2023-10-18 02:06:49 -04:00
Jairo Correa
a555074737 Use name from input to export single node template 2023-10-17 19:44:26 -03:00
Jairo Correa
6dbb18df92 Export and import templates 2023-10-17 17:53:57 -03:00
comfyanonymous
d44a2de49f Make VAE code closer to sgm. 2023-10-17 15:18:51 -04:00
comfyanonymous
f8caa24bcc Support hypernetwork with mish activation function and layer norm. 2023-10-17 12:08:03 -04:00
comfyanonymous
92f0318630 Try to fix notebook. 2023-10-17 11:39:15 -04:00
comfyanonymous
88ceeb3f29 Merge branch 'fix-node-bounding' of https://github.com/jn-jairo/ComfyUI 2023-10-17 03:23:49 -04:00
comfyanonymous
23680a9155 Refactor the attention stuff in the VAE. 2023-10-17 03:19:29 -04:00
comfyanonymous
c8013f73e5 Add some Quadro cards to the list of cards with broken fp16. 2023-10-16 16:48:46 -04:00
Jairo Correa
5a608aa37c Fix node getBounding for collapsed nodes 2023-10-16 17:29:23 -03:00
comfyanonymous
142aac3003 Merge branch 'group-options' of https://github.com/jn-jairo/ComfyUI 2023-10-16 16:18:32 -04:00
Jairo Correa
682c84ccf3 Fix fit group to nodes with reroute and collapsed nodes 2023-10-16 16:00:01 -03:00
Jairo Correa
e8c02219ee Fix add selected nodes to empty group 2023-10-16 15:26:36 -03:00
Jairo Correa
7d5d0fd577 Group options
- Add Group For Selected Nodes
- Add Selected Nodes To Group
- Fit Group To Nodes
2023-10-16 15:12:40 -03:00
comfyanonymous
bb064c9796 Add a separate optimized_attention_masked function. 2023-10-16 02:31:24 -04:00
comfyanonymous
7e09e889e3 Make clear that the old CheckpointLoader is deprecated. 2023-10-15 02:22:22 -04:00
comfyanonymous
2231edec21 Merge branch 'filter-files-extensions' of https://github.com/jn-jairo/ComfyUI 2023-10-14 14:30:24 -04:00
comfyanonymous
1b782f2494 Merge branch 'group-select-nodes' of https://github.com/jn-jairo/ComfyUI 2023-10-14 14:28:59 -04:00
comfyanonymous
a0ce8a443e Merge branch 'shortcut-collapse' of https://github.com/jn-jairo/ComfyUI 2023-10-14 14:28:17 -04:00
Jairo Correa
a7b65b9505 Group menu option select nodes 2023-10-14 12:11:49 -03:00
Jairo Correa
8d04978298 Allow all extensions if extension list is empty 2023-10-14 11:59:35 -03:00
Jairo Correa
2e6270e328 Stop auto queue on error 2023-10-14 11:56:44 -03:00
Jairo Correa
25f0f4e9c8 Shortcut Alt + C to collapse/uncollapse selected nodes 2023-10-14 11:54:33 -03:00
comfyanonymous
3fcab0c642 Merge branch 'fix-mask-nodes' of https://github.com/jn-jairo/ComfyUI 2023-10-14 02:42:06 -04:00
comfyanonymous
fd4c5f07e7 Add a --bf16-unet to test running the unet in bf16. 2023-10-13 14:51:10 -04:00
comfyanonymous
9a55dadb4c Refactor code so model can be a dtype other than fp32 or fp16. 2023-10-13 14:41:17 -04:00
Jairo Correa
b5fa3d28d7 Fix MaskComposite 2023-10-13 13:40:53 -03:00
Jairo Correa
87097a11c3 Fix FeatherMask 2023-10-13 12:26:54 -03:00
comfyanonymous
fee3b0c070 Move and comment out. 2023-10-12 20:54:43 -04:00
Nick Teeple
851a4bdb80 Update extra_model_paths.yaml.example with comfy specific example 2023-10-12 21:26:27 +08:00
comfyanonymous
536799d172 Merge branch 'fix-1723' of https://github.com/chrisgoringe/ComfyUI 2023-10-11 23:35:24 -04:00
Chris
41d2c5660d add query 2023-10-12 14:26:53 +11:00
comfyanonymous
88733c997f pytorch_attention_enabled can now return True when xformers is enabled. 2023-10-11 21:30:57 -04:00
comfyanonymous
20d3852aa1 Pull some small changes from the other repo. 2023-10-11 20:38:48 -04:00
comfyanonymous
ac7d8cfa87 Allow attn_mask in attention_pytorch. 2023-10-11 20:38:48 -04:00
comfyanonymous
1a4bd9e9a6 Refactor the attention functions.
There's no reason for the whole CrossAttention object to be repeated when
only the operation in the middle changes.
2023-10-11 20:38:48 -04:00
comfyanonymous
8cc75c64ff Let unet wrapper functions have .to attributes. 2023-10-11 01:34:38 -04:00
comfyanonymous
5e885bd9c8 Cleanup. 2023-10-10 21:46:53 -04:00
comfyanonymous
851bb87ca9 Merge branch 'taesd_safetensors' of https://github.com/mochiya98/ComfyUI 2023-10-10 21:42:35 -04:00
comfyanonymous
be903eb2e2 Add default CheckpointSave, CLIPSave and VAESave paths to model paths. 2023-10-10 01:25:47 -04:00
comfyanonymous
877553843f Add a CLIPSave node to save CLIP model weights. 2023-10-10 01:24:49 -04:00
Yukimasa Funaoka
9eb621c95a Supports TAESD models in safetensors format 2023-10-10 13:21:44 +09:00
comfyanonymous
d1a0abd40b Merge branch 'input-directory' of https://github.com/jn-jairo/ComfyUI 2023-10-09 01:53:29 -04:00
comfyanonymous
4308862ce0 Add a note to README about pytorch 3.12 not being supported. 2023-10-09 01:51:01 -04:00
comfyanonymous
7bb9f6b7e8 Add a VAESave node. 2023-10-09 01:42:15 -04:00
comfyanonymous
c16f5744e3 Fix SplitImageWithAlpha and JoinImageWithAlpha. 2023-10-08 15:52:10 -04:00
comfyanonymous
1f2f4eaa6f Fix bug when copying node with converted input. 2023-10-08 04:04:25 -04:00
comfyanonymous
69a824e9a4 Move _for_testing/custom_sampling nodes to sampling/custom_sampling. 2023-10-08 03:20:35 -04:00
Dr.Lt.Data
a0b1d4f21d improve: image preview (#1683)
* improve image preview
- grid mode: align in rectangle instead of first image, show cell border
- individual mode: proper ratio handling

* improve: fix preview button position instead of relative

* improve: image preview - compact mode for same aspect ratio
2023-10-08 03:00:33 -04:00
comfyanonymous
1c5d6663fa Update standalone download link. 2023-10-07 16:13:35 -04:00
comfyanonymous
0986cc7c38 Fix issues with the packaging. 2023-10-07 11:57:32 -04:00
pythongosssss
ae3e4e9ad8 access getConfig via a symbol so structuredClone works (#1677) 2023-10-06 16:48:30 -04:00
comfyanonymous
72188dffc3 load_checkpoint_guess_config can now optionally output the model. 2023-10-06 13:48:18 -04:00
comfyanonymous
5b828258f1 Merge branch 'widget-input-updates' of https://github.com/pythongosssss/ComfyUI 2023-10-06 12:51:08 -04:00
comfyanonymous
0134d7ab49 Generate update script with right settings. 2023-10-06 12:49:40 -04:00
pythongosssss
d761eaa486 if the output type is an array, use combo 2023-10-06 17:47:46 +01:00
comfyanonymous
1497528de8 Fix workflow. 2023-10-06 10:43:12 -04:00
comfyanonymous
640d5080e5 Make xformers optional in packaging. 2023-10-06 10:29:52 -04:00
comfyanonymous
34b36e3207 More configurable workflows to package windows release. 2023-10-06 10:26:51 -04:00
comfyanonymous
6f464f801f Update nightly workflow to python 3.11.6 2023-10-06 03:32:00 -04:00
comfyanonymous
11b404766e Merge branch 'widget-input-updates' of https://github.com/pythongosssss/ComfyUI 2023-10-05 14:20:47 -04:00
pythongosssss
b9b178b839 More cleanup of old type data
Fix connecting combos of same type from different types of node
2023-10-05 19:16:39 +01:00
pythongosssss
80932ddf40 updated messages 2023-10-05 17:13:13 +01:00
comfyanonymous
48242be508 Update readme for pytorch 2.1 2023-10-05 08:25:15 -04:00
Jairo Correa
63e5fd1790 Option to input directory 2023-10-04 19:45:15 -03:00
comfyanonymous
0e763e880f JoinImageWithAlpha now works with any mask shape. 2023-10-04 15:54:34 -04:00
pythongosssss
0b9246d9fa allow connecting numbers merging config 2023-10-04 20:48:55 +01:00
comfyanonymous
9212bea87c Change a few things in #1578. 2023-10-04 15:43:41 -04:00
MoonRide303
214ca7197e Corrected joining images with alpha (for RGBA input), and checking scaling conditions 2023-10-04 19:04:52 +02:00
MoonRide303
585fb0475b Adding default alpha when splitting RGB images 2023-10-04 19:04:52 +02:00
MoonRide303
ece69bf28c Change channel type to MASK (reduced redundancy, increased usability) 2023-10-04 19:04:52 +02:00
MoonRide303
d06cd2805d Added support for Porter-Duff image compositing 2023-10-04 19:04:48 +02:00
City
9bfec2bdbf Fix quality loss due to low precision 2023-10-04 15:40:59 +02:00
pythongosssss
6fc7314393 support refreshing primitive combos
no longer uses combo list as type name
2023-10-03 20:19:12 +01:00
comfyanonymous
4103f7fad5 Merge branch 'fix/robust_object_info' of https://github.com/ltdrdata/ComfyUI 2023-10-03 11:14:58 -04:00
Dr.Lt.Data
1f38de1fb3 If an error occurs while retrieving object_info, only the node that encountered the error should be handled as an exception, while the information for the other nodes should continue to be processed normally. 2023-10-03 18:30:38 +09:00
comfyanonymous
fe1e2dbe90 pytorch nightly is now ROCm 5.7 2023-10-03 00:01:49 -04:00
comfyanonymous
ec454c771b Refactor with code from comment of #1588 2023-10-02 17:26:59 -04:00
comfyanonymous
2ef459b1d4 Add VPScheduler node 2023-10-01 03:48:07 -04:00
comfyanonymous
8ab49dc0a4 DPMPP_SDE node. 2023-09-30 01:51:22 -04:00
comfyanonymous
213976f8c3 Add ExponentialScheduler and PolyexponentialScheduler nodes. 2023-09-29 09:05:30 -04:00
badayvedat
0f17993d05 fix: typo in extra sampler 2023-09-29 06:09:59 +03:00
Jukka Seppänen
1c8ae9dbb2 Allow GrowMask node to work with batches (for AnimateDiff) (#1623)
* Allow mask batches

This allows LatentCompositeMasked -node to work with AnimateDiff. I tried to keep old functionality too, unsure if it's correct, but both single mask and batch of masks seems to work with this change.

* Update nodes_mask.py
2023-09-28 22:01:19 -04:00
comfyanonymous
66756de100 Add SamplerDPMPP_2M_SDE node. 2023-09-28 21:56:23 -04:00
comfyanonymous
26b7372805 Fix SplitSigmas. 2023-09-28 01:11:22 -04:00
comfyanonymous
71713888c4 Print missing VAE keys. 2023-09-28 00:54:57 -04:00
comfyanonymous
76e0f8fc8f Add function to split sigmas. 2023-09-28 00:40:09 -04:00
comfyanonymous
2bf051fda8 Add a basic node to generate sigmas from scheduler. 2023-09-28 00:30:45 -04:00
comfyanonymous
d234ca558a Add missing samplers to KSamplerSelect. 2023-09-28 00:17:03 -04:00
comfyanonymous
1d7dfc07d5 Make add_noise in SamplerCustom a boolean. 2023-09-27 22:42:23 -04:00
comfyanonymous
1adcc4c3a2 Add a SamplerCustom Node.
This node takes a list of sigmas and a sampler object as input.

This lets people easily implement custom schedulers and samplers as nodes.

More nodes will be added to it in the future.
2023-09-27 22:21:18 -04:00
comfyanonymous
bf3fc2f1b7 Refactor sampling related code. 2023-09-27 16:45:22 -04:00
comfyanonymous
fff491b032 Model patches can now know which batch is positive and negative. 2023-09-27 12:04:07 -04:00
comfyanonymous
1d6dd83184 Scheduler code refactor. 2023-09-26 17:07:07 -04:00
comfyanonymous
446caf711c Sampling code refactor. 2023-09-26 13:45:15 -04:00
comfyanonymous
aeba1cc2a0 Merge branch 'chore/update-actions-versions' of https://github.com/M1kep/ComfyUI 2023-09-26 02:58:55 -04:00
comfyanonymous
9546a798fb Make LoadImage and LoadImageMask return masks in batch format. 2023-09-26 02:56:40 -04:00
comfyanonymous
1d36dfb9fe GrowMask now works with mask batches. 2023-09-26 02:53:57 -04:00
comfyanonymous
d76d71de3f GrowMask can now be used with negative numbers to erode it. 2023-09-26 02:45:31 -04:00
Michael Poutre
e0efa78b71 chore(CI): Update test-build to use updated version of actions 2023-09-25 21:20:51 -07:00
comfyanonymous
d2cec6cdbf Make mask functions work with batches of masks and images. 2023-09-25 16:19:37 -04:00
comfyanonymous
046b4fe0ee Support batches of masks in mask composite nodes. 2023-09-25 16:02:21 -04:00
comfyanonymous
ba7dfd60f2 Merge branch 'proportional-scale' of https://github.com/jn-jairo/ComfyUI 2023-09-25 12:39:53 -04:00
comfyanonymous
2381d36e6d 1024 wasn't enough. 2023-09-25 01:46:44 -04:00
comfyanonymous
42f6d1ebe2 Increase maximum batch sizes of empty image nodes. 2023-09-25 01:22:37 -04:00
comfyanonymous
f00471cdc8 Do FreeU fft on CPU if the device doesn't support fft functions. 2023-09-24 18:09:44 -04:00
comfyanonymous
77c124c5a1 Fix typo. 2023-09-24 13:27:57 -04:00
Jairo Correa
593b7069e7 Proportional scale latent and image 2023-09-24 12:08:54 -03:00
comfyanonymous
76cdc809bf Support more controlnet models. 2023-09-23 18:47:46 -04:00
comfyanonymous
05e661e5ef FreeU now works with the refiner. 2023-09-23 12:19:08 -04:00
comfyanonymous
ae87543653 Merge branch 'cast_intel' of https://github.com/simonlui/ComfyUI 2023-09-23 00:57:17 -04:00
comfyanonymous
fd93c759e2 Implement FreeU: Free Lunch in Diffusion U-Net node.
_for_testing->FreeU
2023-09-23 00:56:09 -04:00
Simon Lui
eec449ca8e Allow Intel GPUs to LoRA cast on GPU since it supports BF16 natively. 2023-09-22 21:11:27 -07:00
comfyanonymous
afa2399f79 Add a way to set output block patches to modify the h and hsp. 2023-09-22 20:26:47 -04:00
comfyanonymous
29ccf9f471 Fix typo. 2023-09-22 01:33:46 -04:00
comfyanonymous
422d16c027 Add some nodes to add, subtract and multiply latents. 2023-09-21 22:23:01 -04:00
comfyanonymous
492db2de8d Allow having a different pooled output for each image in a batch. 2023-09-21 01:14:42 -04:00
comfyanonymous
0793eb9269 Only clear clipboard when copying nodes. 2023-09-20 23:16:01 -04:00
comfyanonymous
4d41bd595c Fix loading group titles. 2023-09-20 21:46:41 -04:00
comfyanonymous
1122df1a20 Increase range of lora strengths. 2023-09-20 17:58:54 -04:00
comfyanonymous
1cdfb3dba4 Only do the cast on the device if the device supports it. 2023-09-20 17:52:41 -04:00
comfyanonymous
b92a86d737 Update litegraph to upstream. 2023-09-20 13:24:08 -04:00
comfyanonymous
f895260e5e Merge branch 'escape-glob' of https://github.com/seanlynch/ComfyUI 2023-09-19 13:13:40 -04:00
comfyanonymous
7c9a92f552 Don't depend on torchvision. 2023-09-19 13:12:47 -04:00
Sean Lynch
8321592408 Escape paths when passing them to globs
Try to prevent JS search from breaking on pathnames with square
brackets.
2023-09-19 08:18:29 -04:00
MoonRide303
2b6b178173 Added support for lanczos scaling 2023-09-19 10:40:38 +02:00
comfyanonymous
6d3dee9d16 Clean up #1541. 2023-09-18 23:33:52 -04:00
comfyanonymous
f32463936d Unhardcode sampler and scheduler list in test. 2023-09-18 23:24:14 -04:00
City
7c93afd2cd Manual float precision, toggle for old behavior (#1541)
* Add toggle for float rounding

* Add manual precision override
2023-09-18 23:20:00 -04:00
enzymezoo-code
26cd8405dd Ci quality workflows (#1423)
* Add inference tests

* Clean up

* Rename test graph file

* Add readme for tests

* Separate server fixture

* test file name change

* Assert images are generated

* Clean up comments

* Add __init__.py so tests can run with command line `pytest`

* Fix command line args for pytest

* Loop all samplers/schedulers in test_inference.py

* Ci quality workflows compare (#1)

* Add image comparison tests

* Comparison tests do not pass with empty metadata

* Ensure tests are run in correct order

* Save image files  with test name

* Update tests readme

* Reduce step counts in tests to ~halve runtime

* Ci quality workflows build (#2)

* Add build test github workflow
2023-09-18 23:18:06 -04:00
comfyanonymous
b92bf8196e Do lora cast on GPU instead of CPU for higher performance. 2023-09-18 23:04:49 -04:00
comfyanonymous
0109431626 Lower the minimum resolution of EmptyLatentImage. 2023-09-18 16:20:03 -04:00
comfyanonymous
db63aa7e53 Nodes can now control the rounding in the UI. 2023-09-17 12:49:06 -04:00
comfyanonymous
321c5fa295 Enable pytorch attention by default on xpu. 2023-09-17 04:09:19 -04:00
comfyanonymous
0665749b1a Move ModelSubtract and ModelAdd to advanced/model_merging 2023-09-17 02:10:06 -04:00
comfyanonymous
d6d9b83447 Merge branch 'fix/preview_ratio' of https://github.com/ltdrdata/ComfyUI 2023-09-16 15:43:42 -04:00
comfyanonymous
61b1f67734 Support models without previews. 2023-09-16 12:59:54 -04:00
Dr.Lt.Data
4d5e057bb2 fix indent 2023-09-16 20:37:42 +09:00
Dr.Lt.Data
69680fede7 fix: thumbnail ratio fix for mixed ratio images 2023-09-16 20:36:00 +09:00
comfyanonymous
43d4935a1d Add cond_or_uncond array to transformer_options so hooks can check what is
cond and what is uncond.
2023-09-15 22:21:14 -04:00
comfyanonymous
415abb275f Add DDPM sampler. 2023-09-15 19:22:47 -04:00
comfyanonymous
099226015e Merge branch 'Fix-structuredClone-error-with-early-chrome-version-browser' of https://github.com/KarryCharon/ComfyUI 2023-09-15 15:48:22 -04:00
comfyanonymous
94e4fe39d8 This isn't used anywhere. 2023-09-15 12:03:03 -04:00
karrycharon
076f3e6310 fix structuredClone undefined error; 2023-09-15 16:37:58 +08:00
comfyanonymous
44361f6344 Support for text encoder models that need attention_mask. 2023-09-15 02:02:05 -04:00
comfyanonymous
0d8f376446 Set last layer on SD2.x models uses the proper indexes now.
Before I had made the last layer the penultimate layer because some
checkpoints don't have them but it's not consistent with the others models.

TLDR: for SD2.x models only: CLIPSetLastLayer -1 is now -2.
2023-09-14 20:28:22 -04:00
comfyanonymous
0966d3ce82 Don't run text encoders on xpu because there are issues. 2023-09-14 12:16:07 -04:00
pythongosssss
0e4395a8a3 Allow pasting nodes with connections in firefox 2023-09-13 18:42:44 +01:00
comfyanonymous
3039b08eb1 Only parse command line args when main.py is called. 2023-09-13 11:38:20 -04:00
comfyanonymous
30de95e4b4 Add some nodes to subtract and add model weights. 2023-09-13 01:10:31 -04:00
comfyanonymous
0b829fe35b .gitignore refactor. 2023-09-12 18:44:05 -04:00
comfyanonymous
ed58730658 Don't leave very large hidden states in the clip vision output. 2023-09-12 15:09:10 -04:00
comfyanonymous
fb3b728203 Fix issue where autocast fp32 CLIP gave different results from regular. 2023-09-11 21:49:56 -04:00
comfyanonymous
7d401ed1d0 Add ldm format support to UNETLoader. 2023-09-11 16:36:50 -04:00
comfyanonymous
9562a6b49e Fix a few clipboard issues. 2023-09-10 11:19:31 -04:00
comfyanonymous
d4b2bc0964 Merge branch 'master' of https://github.com/miabrahams/ComfyUI 2023-09-10 10:15:02 -04:00
comfyanonymous
122fd5d37f Merge branch 'add-defaultInput' of https://github.com/chrisgoringe/ComfyUI 2023-09-10 03:18:05 -04:00
comfyanonymous
7df822212f Allow checkpoints with .pt and .bin extensions. 2023-09-10 02:36:04 -04:00
comfyanonymous
07691e80c3 Does it make sense to allow configuring the round and precision? 2023-09-09 03:15:31 -04:00
comfyanonymous
5c8b7ea03c Merge branch 'round-float-widgets' of https://github.com/chrisgoringe/ComfyUI 2023-09-09 03:07:57 -04:00
Chris
7372255e49 Specify the precision and rounding based on step 2023-09-09 15:21:38 +10:00
Michael Poutre
cc2fa311dd fix(server): Disable access logs 2023-09-08 21:11:53 -07:00
comfyanonymous
e85be36bd2 Add a penultimate_hidden_states to the clip vision output. 2023-09-08 14:06:58 -04:00
comfyanonymous
10de64af7f Google doesn't want people to use ComfyUI on colab anymore. 2023-09-08 14:02:03 -04:00
Michael Abrahams
264867bf87 Clear clipboard on copy 2023-09-08 12:42:13 -04:00
comfyanonymous
1e6b67101c Support diffusers format t2i adapters. 2023-09-08 11:36:51 -04:00
Chris
3ebe6b539a round float widgets (by default to 0.001) 2023-09-08 20:40:27 +10:00
MoonRide303
ff962098fd Fixed Load Image preview not displaying some files (issue #1158) 2023-09-08 08:43:17 +02:00
Chris
0782ac2a96 defaultInput 2023-09-08 14:53:59 +10:00
comfyanonymous
326577d04c Allow cancelling of everything with a progress bar. 2023-09-07 23:37:03 -04:00
comfyanonymous
9261587d89 Small refactor. 2023-09-07 18:14:30 -04:00
comfyanonymous
d6d1a8998f Properly check upload filename for directory transversal. 2023-09-07 18:06:22 -04:00
comfyanonymous
e464fa8f04 Merge branch 'fix-validate' of https://github.com/pythongosssss/ComfyUI 2023-09-07 15:15:52 -04:00
pythongosssss
62799c8585 fix crash on node with VALIDATE_INPUTS and actual inputs 2023-09-07 18:42:21 +01:00
comfyanonymous
f65db2981b Merge branch 'description' of https://github.com/chrisgoringe/ComfyUI 2023-09-07 12:50:46 -04:00
comfyanonymous
8be46438be Support DiffBIR SwinIR models. 2023-09-07 03:31:43 -04:00
Chris
694c705f52 get class description 2023-09-07 12:22:39 +10:00
Chris
adb9eb94b0 Send class description if any 2023-09-07 12:22:39 +10:00
comfyanonymous
cb080e771e Lower refresh timeout for search in litegraph. 2023-09-06 16:18:02 -04:00
comfyanonymous
f88f7f413a Add a ConditioningSetAreaPercentage node. 2023-09-06 03:28:27 -04:00
comfyanonymous
21a563d385 Remove prints. 2023-09-05 23:46:37 -04:00
comfyanonymous
eb2349822b Merge branch 'folder_paths_ignore_git' of https://github.com/M1kep/ComfyUI 2023-09-05 23:37:22 -04:00
Michael Poutre
bc1f6e2185 fix(ui/widgets): Only set widget forceInput option if a widget is added 2023-09-05 15:06:46 -07:00
comfyanonymous
f368e5ac7d Don't paste nodes when target is a textarea or a text box. 2023-09-05 01:22:26 -04:00
Michael Poutre
3e00fa4332 feat: Exclude .git when retrieving filename lists
In the future could support user provided excluded dirs via config file
2023-09-04 17:50:32 -07:00
Michael Poutre
d196847079 feat: Add support for excluded_dirs to folder_paths.recursive_search
Refactored variable names to better match what they represent
2023-09-04 17:50:32 -07:00
comfyanonymous
2d9d3ca38b Merge branch 'master' of https://github.com/miabrahams/ComfyUI 2023-09-04 14:51:19 -04:00
comfyanonymous
1938f5c5fe Add a force argument to soft_empty_cache to force a cache empty. 2023-09-04 00:58:18 -04:00
comfyanonymous
7746bdf7b0 Merge branch 'generalize_fixes' of https://github.com/simonlui/ComfyUI 2023-09-04 00:43:11 -04:00
comfyanonymous
2419901e6c Merge branch 'addOnExecutionStart' of https://github.com/chrisgoringe/ComfyUI 2023-09-03 16:59:41 -04:00
Michael Abrahams
6f70227b8c Add support for pasting images into the graph
It can be useful to paste images from the clipboard directly into the node graph.
This commit modifies copy and paste handling to support this.

When an image file is found in the clipboard, we check whether an image node is selected.
If so, paste the image into that node. Otherwise, a new node is created.
If no image data are found in the clipboard, we call the original Litegraph paste.
To ensure that onCopy and onPaste events are fired, we override Litegraph's ctrl+c and ctrl+v handling.

Try to detect whether the pasted image is a real file on disk, or just pixel data copied from e.g. Photoshop.
Pasted pixel data will be called 'image.png' and have a creation time of now.
If it is simply pasted data, we store it in the subfolder /input/clipboard/.

This also adds support for the subfolder property in the IMAGEUPLOAD widget.
2023-09-03 12:08:04 -04:00
Simon Lui
2da73b7073 Revert changes in comfy/ldm/modules/diffusionmodules/util.py, which is unused. 2023-09-02 20:07:52 -07:00
comfyanonymous
a74c5dbf37 Move some functions to utils.py 2023-09-02 22:33:37 -04:00
comfyanonymous
766c7b3815 Update upscale model code to latest Chainner model code.
Don't add SRFormer because the code license is incompatible with the GPL.

Remove MAT because it's unused and the license is incompatible with GPL.
2023-09-02 22:27:40 -04:00
Simon Lui
4a0c4ce4ef Some fixes to generalize CUDA specific functionality to Intel or other GPUs. 2023-09-02 18:22:10 -07:00
Chris
dfd6489c96 onExecutionStart 2023-09-03 07:53:02 +10:00
comfyanonymous
62efc78a4b Display history in reverse order to make it easier to load last gen. 2023-09-02 15:49:16 -04:00
comfyanonymous
6962cb46a9 Fix issue when node_input is undefined. 2023-09-02 12:17:30 -04:00
comfyanonymous
7291e303f6 Fix issue with some workflows not getting serialized. 2023-09-02 11:48:44 -04:00
comfyanonymous
77a176f9e0 Use common function to reshape batch to. 2023-09-02 03:42:49 -04:00
comfyanonymous
36ea8784a8 Only return tuple of 3 args in CheckpointLoaderSimple. 2023-09-02 03:34:57 -04:00
Muhammed Yusuf
7891d13329 Added label for autoQueueCheckbox. (#1295)
* Added label for autoQueueCheckbox.

* Menu gets behind of some custom nodes.

* Edited extraOptions.
Options divided in to different divs to manage them with ease.
2023-09-02 02:58:23 -04:00
comfyanonymous
7931ff0fd9 Support SDXL inpaint models. 2023-09-01 15:22:52 -04:00
comfyanonymous
c335fdf200 Merge branch 'pixelass-patch-1' of https://github.com/pixelass/ComfyUI 2023-09-01 11:48:11 -04:00
comfyanonymous
43f2505389 Merge branch 'fix/widget-wonkyness' of https://github.com/M1kep/ComfyUI 2023-09-01 03:07:10 -04:00
comfyanonymous
0e3b641172 Remove xformers related print. 2023-09-01 02:12:03 -04:00
comfyanonymous
5c363a9d86 Fix controlnet bug. 2023-09-01 02:01:08 -04:00
Michael Poutre
69c5e6de85 fix(widgets): Add options object if not present when forceInput: true 2023-08-31 17:58:43 -07:00
Michael Poutre
9a7a52f8b5 refactor/fix: Treat forceInput widgets as standard widgets 2023-08-31 17:58:43 -07:00
comfyanonymous
cfe1c54de8 Fix controlnet issue. 2023-08-31 15:16:58 -04:00
comfyanonymous
57beace324 Fix VAEDecodeTiled minimum. 2023-08-31 14:26:16 -04:00
comfyanonymous
1c012d69af It doesn't make sense for c_crossattn and c_concat to be lists. 2023-08-31 13:25:00 -04:00
comfyanonymous
5f101f4da1 Update litegraph with upstream: middle mouse dragging. 2023-08-31 02:39:34 -04:00
Ridan Vandenbergh
2cd3980199 Remove forced lowercase on embeddings endpoint 2023-08-30 20:48:55 +02:00
comfyanonymous
7e941f9f24 Clean up DiffusersLoader node. 2023-08-30 12:57:07 -04:00
Simon Lui
18617967e5 Fix error message in model_patcher.py
Found while tinkering.
2023-08-30 00:25:04 -07:00
comfyanonymous
fe4c07400c Fix "Load Checkpoint with config" node. 2023-08-29 23:58:32 -04:00
comfyanonymous
d70b0bc43c Use the GPU for the canny preprocessor when available. 2023-08-29 17:58:40 -04:00
comfyanonymous
81d9200e18 Add node to convert a specific colour in an image to a mask. 2023-08-29 17:55:42 -04:00
comfyanonymous
f2f5e5dcbb Support SDXL t2i adapters with 3 channel input. 2023-08-29 16:44:57 -04:00
comfyanonymous
15adc3699f Move beta_schedule to model_config and allow disabling unet creation. 2023-08-29 14:22:53 -04:00
comfyanonymous
968078b149 Merge branch 'feat/mute_bypass_nodes_in_group' of https://github.com/M1kep/ComfyUI 2023-08-29 11:33:40 -04:00
comfyanonymous
66c690e698 Merge branch 'preserve-pnginfo' of https://github.com/chrisgoringe/ComfyUI 2023-08-29 11:32:58 -04:00
comfyanonymous
bed116a1f9 Remove optimization that caused border. 2023-08-29 11:21:36 -04:00
Chris
18379dea36 check for text attr and save 2023-08-29 18:50:28 +10:00
Chris
edcff9ab8a copy metadata into modified image 2023-08-29 18:50:28 +10:00
Michael Poutre
6944288aff refactor(ui): Switch statement, and handle other modes in group actions 2023-08-29 00:24:31 -07:00
Michael Poutre
e30d546e38 feat(ui): Add node mode toggles to group context menu 2023-08-28 23:49:25 -07:00
comfyanonymous
8ddd081b09 Use the same units for tile size in VAEDecodeTiled and VAEEncodeTiled. 2023-08-29 01:51:35 -04:00
comfyanonymous
fbf375f161 Merge branch 'master' of https://github.com/bvhari/ComfyUI 2023-08-29 01:42:00 -04:00
comfyanonymous
65cae62c71 No need to check filename extensions to detect shuffle controlnet. 2023-08-28 16:49:06 -04:00
comfyanonymous
4e89b2c25a Put clip vision outputs on the CPU. 2023-08-28 16:26:11 -04:00
comfyanonymous
a094b45c93 Load clipvision model to GPU for faster performance. 2023-08-28 15:29:27 -04:00
comfyanonymous
1300a1bb4c Text encoder should initially load on the offload_device not the regular. 2023-08-28 15:08:45 -04:00
comfyanonymous
f92074b84f Move ModelPatcher to model_patcher.py 2023-08-28 14:51:31 -04:00
BVH
d86b222fe9 Reduce min tile size for encode 2023-08-28 22:39:09 +05:30
comfyanonymous
4798cf5a62 Implement loras with norm keys. 2023-08-28 11:20:06 -04:00
BVH
9196588088 Make tile size in Tiled VAE encode/decode user configurable 2023-08-28 19:57:22 +05:30
Dr.Lt.Data
0faee1186f support on prompt event handler (#765)
Co-authored-by: Lt.Dr.Data <lt.dr.data@gmail.com>
2023-08-28 00:52:22 -04:00
comfyanonymous
b8c7c770d3 Enable bf16-vae by default on ampere and up. 2023-08-27 23:06:19 -04:00
comfyanonymous
1c794a2161 Fallback to slice attention if xformers doesn't support the operation. 2023-08-27 22:24:42 -04:00
comfyanonymous
d935ba50c4 Make --bf16-vae work on torch 2.0 2023-08-27 21:33:53 -04:00
comfyanonymous
412596d325 Merge branch 'increase_client_max_size' of https://github.com/ramyma/ComfyUI 2023-08-27 13:12:39 -04:00
Dr.Lt.Data
d9f4922993 fix: cannot disable dynamicPrompts (#1327)
* fix: cannot disable dynamicPrompts

* indent fix

---------

Co-authored-by: Lt.Dr.Data <lt.dr.data@gmail.com>
2023-08-27 12:34:24 -04:00
ramyma
0b6cf7a558 Increase client_max_size to allow bigger request bodies 2023-08-26 19:48:20 +03:00
comfyanonymous
a57b0c797b Fix lowvram model merging. 2023-08-26 11:52:07 -04:00
comfyanonymous
f72780a7e3 The new smart memory management makes this unnecessary. 2023-08-25 18:02:15 -04:00
comfyanonymous
c77f02e1c6 Move controlnet code to comfy/controlnet.py 2023-08-25 17:33:04 -04:00
comfyanonymous
15a7716fa6 Move lora code to comfy/lora.py 2023-08-25 17:11:51 -04:00
comfyanonymous
ec96f6d03a Move text_projection to base clip model. 2023-08-24 23:43:48 -04:00
comfyanonymous
30eb92c3cb Code cleanups. 2023-08-24 19:39:18 -04:00
comfyanonymous
51dde87e97 Try to free enough vram for control lora inference. 2023-08-24 17:20:54 -04:00
comfyanonymous
e3d0a9a490 Fix potential issue with text projection matrix multiplication. 2023-08-24 00:54:16 -04:00
comfyanonymous
cc44ade79e Always shift text encoder to GPU when the device supports fp16. 2023-08-23 21:45:00 -04:00
comfyanonymous
a6ef08a46a Even with forced fp16 the cpu device should never use it. 2023-08-23 21:38:28 -04:00
comfyanonymous
00c0b2c507 Initialize text encoder to target dtype. 2023-08-23 21:01:15 -04:00
comfyanonymous
f081017c1a Save memory by storing text encoder weights in fp16 in most situations.
Do inference in fp32 to make sure quality stays the exact same.
2023-08-23 01:08:51 -04:00
comfyanonymous
d7b3b0f8c1 Don't hardcode node names for image upload widget. 2023-08-22 19:41:49 -04:00
comfyanonymous
afcb9cb1df All resolutions now work with t2i adapter for SDXL. 2023-08-22 16:23:54 -04:00
comfyanonymous
85fde89d7f T2I adapter SDXL. 2023-08-22 14:40:43 -04:00
comfyanonymous
f2a7cc9121 Add control lora links to colab notebook. 2023-08-22 01:55:09 -04:00
comfyanonymous
e2256b4087 Add clip_vision_g download command to colab notebook for ReVision. 2023-08-22 01:44:31 -04:00
comfyanonymous
cf5ae46928 Controlnet/t2iadapter cleanup. 2023-08-22 01:06:26 -04:00
comfyanonymous
763b0cf024 Fix control lora not working in fp32. 2023-08-21 20:38:31 -04:00
comfyanonymous
bc76b3829f Merge branch 'custom-node-js' of https://github.com/pythongosssss/ComfyUI 2023-08-21 00:58:38 -04:00
comfyanonymous
199d73364a Fix ControlLora on lowvram. 2023-08-21 00:54:04 -04:00
comfyanonymous
d08e53de2e Remove autocast from controlnet code. 2023-08-20 21:47:32 -04:00
pythongosssss
cdaf65ceb1 remove log 2023-08-20 20:01:25 +01:00
comfyanonymous
0d7b0a4dc7 Small cleanups. 2023-08-20 14:56:47 -04:00
pythongosssss
9b1d5a587c Allow loading js extensions without copying to /web folder 2023-08-20 19:55:48 +01:00
Simon Lui
9225465975 Further tuning and fix mem_free_total. 2023-08-20 14:19:53 -04:00
Simon Lui
2c096e4260 Add ipex optimize and other enhancements for Intel GPUs based on recent memory changes. 2023-08-20 14:19:51 -04:00
comfyanonymous
8ee0473687 Merge branch 'parallel-extensions-load' of https://github.com/NoCrypt/ComfyUI 2023-08-20 14:14:01 -04:00
comfyanonymous
e9469e732d --disable-smart-memory now disables loading model directly to vram. 2023-08-20 04:00:53 -04:00
comfyanonymous
c9b562aed1 Free more memory before VAE encode/decode. 2023-08-19 12:13:13 -04:00
ncpt
81ccacaa7c Make the extensions loads in parallel instead of waiting one by one 2023-08-19 17:36:13 +07:00
comfyanonymous
b80c3276dc Fix issue with gligen. 2023-08-18 16:32:23 -04:00
comfyanonymous
d6e4b342e6 Support for Control Loras.
Control loras are controlnets where some of the weights are stored in
"lora" format: an up and a down low rank matrice that when multiplied
together and added to the unet weight give the controlnet weight.

This allows a much smaller memory footprint depending on the rank of the
matrices.

These controlnets are used just like regular ones.
2023-08-18 11:59:51 -04:00
comfyanonymous
39ac856a33 ReVision support: unclip nodes can now be used with SDXL. 2023-08-18 11:59:36 -04:00
comfyanonymous
76d53c4622 Add support for clip g vision model to CLIPVisionLoader. 2023-08-18 11:13:29 -04:00
comfyanonymous
fc99fa56a9 Add node to scale image to a total amount of pixels keeping aspect. 2023-08-18 02:32:39 -04:00
comfyanonymous
eb5c991a8c Merge branch 'add-user-css' of https://github.com/pythongosssss/ComfyUI 2023-08-17 16:41:54 -04:00
comfyanonymous
bd7321c8ac Update aiohttp in nightly workflow. 2023-08-17 16:41:24 -04:00
Alexopus
e59fe0537a Fix referenced before assignment
For https://github.com/BlenderNeko/ComfyUI_TiledKSampler/issues/13
2023-08-17 22:30:07 +02:00
comfyanonymous
be9c5e25bc Fix issue with not freeing enough memory when sampling. 2023-08-17 15:59:56 -04:00
comfyanonymous
ac0758a1a4 Fix bug with lowvram and controlnet advanced node. 2023-08-17 13:38:51 -04:00
comfyanonymous
c28db1f315 Fix potential issues with patching models when saving checkpoints. 2023-08-17 11:07:08 -04:00
pythongosssss
c828543a77 Allow user customizable css 2023-08-17 13:36:55 +01:00
comfyanonymous
1498f1a342 Merge branch 'add-growmask-node' of https://github.com/coreyryanhanson/ComfyUI 2023-08-17 03:21:20 -04:00
comfyanonymous
3aee33b54e Add --disable-smart-memory for those that want the old behaviour. 2023-08-17 03:12:37 -04:00
comfyanonymous
2be2742711 Fix issue with regular torch version. 2023-08-17 01:58:54 -04:00
comfyanonymous
89a0767abf Smarter memory management.
Try to keep models on the vram when possible.

Better lowvram mode for controlnets.
2023-08-17 01:06:34 -04:00
comfyanonymous
2c97c30256 Support small diffusers controlnet so both types are now supported. 2023-08-16 12:45:56 -04:00
comfyanonymous
53f326a3d8 Support diffusers mini controlnets. 2023-08-16 12:28:01 -04:00
comfyanonymous
58f0c616ed Fix clip vision issue with old transformers versions. 2023-08-16 11:36:22 -04:00
comfyanonymous
ae270f79bc Fix potential issue with batch size and clip vision. 2023-08-16 11:05:11 -04:00
Corey
18e86a4010 add a node to allow growing of masks through dilation 2023-08-16 10:57:14 -04:00
comfyanonymous
27b87c25a1 Add an EmptyImage node.
TODO: implement color picker in the frontend.
2023-08-15 17:53:10 -04:00
comfyanonymous
6dc02c7bac Add a "resize_source" option to Image and Latent CompositeMasked. 2023-08-15 17:51:52 -04:00
comfyanonymous
7567c4ac8f Add bypass to readme and add a Bypass menu option to the nodes. 2023-08-15 13:28:34 -04:00
comfyanonymous
a2ce9655ca Refactor unclip code. 2023-08-14 23:48:47 -04:00
comfyanonymous
94fceb8700 Make Blur node use the image device for processing. 2023-08-14 21:08:45 -04:00
comfyanonymous
e7d88855f4 Add node to batch images together. 2023-08-14 20:23:38 -04:00
comfyanonymous
d4380f3aa3 Add option to use different xformers version in the github workflow. 2023-08-14 18:13:11 -04:00
comfyanonymous
06681ee035 Add codeowners file. 2023-08-14 16:54:30 -04:00
comfyanonymous
9cc12c833d CLIPVisionEncode can now encode multiple images. 2023-08-14 16:54:05 -04:00
comfyanonymous
0cb6dac943 Remove 3m from PR #1213 because of some small issues. 2023-08-14 00:48:45 -04:00
comfyanonymous
e244b2df83 Add sgm_uniform scheduler that acts like the default one in sgm. 2023-08-14 00:29:03 -04:00
comfyanonymous
58c7da3665 Gpu variant of dpmpp_3m_sde. Note: use 3m with exponential or karras. 2023-08-14 00:28:50 -04:00
comfyanonymous
ba319a34e4 Merge branch 'dpmpp3m' of https://github.com/FizzleDorf/ComfyUI 2023-08-14 00:23:15 -04:00
FizzleDorf
3cfad03a68 dpmpp 3m + dpmpp 3m sde added 2023-08-13 22:29:04 -04:00
comfyanonymous
192ca0676c Add some more cards to the cuda malloc blacklist. 2023-08-13 16:08:11 -04:00
comfyanonymous
861fd58819 Add a warning if a card that doesn't support cuda malloc has it enabled. 2023-08-13 12:37:53 -04:00
comfyanonymous
585a062910 Print unet config when model isn't detected. 2023-08-13 01:39:48 -04:00
comfyanonymous
8c730dc4a7 Add an ImageCompositeMasked node. 2023-08-12 01:02:36 -04:00
comfyanonymous
c8a23ce9e8 Support for yet another lora type based on diffusers. 2023-08-11 13:04:21 -04:00
comfyanonymous
2bc12d3d22 Add --temp-directory argument to set temp directory. 2023-08-11 05:13:03 -04:00
comfyanonymous
00877b0363 Don't ignore extra paths that don't exist. 2023-08-11 02:41:04 -04:00
comfyanonymous
c20583286f Support diffuser text encoder loras. 2023-08-10 20:28:28 -04:00
comfyanonymous
f7e6a5ed07 Fix litegraph button being black on light theme. 2023-08-10 12:29:56 -04:00
comfyanonymous
cf10c5592c Disable calculating uncond when CFG is 1.0 2023-08-09 20:55:03 -04:00
comfyanonymous
5ac96897e9 Images can now be uploaded by dragging from another window in chromium. 2023-08-09 11:31:27 -04:00
Gregor Adams
af32197067 feat(extensions): Allow hiding link connectors
Thank you for adding this feature (linksRenderMode) to core. I would like to add the "Hidden" option (invalid number 3 will just hide the connector lines), so that I can remove that extension from my extension pack to prevent conflicts

https://github.com/failfa-st/failfast-comfyui-extensions
2023-08-09 13:03:30 +02:00
comfyanonymous
a5599ed42c Add missing direct dep that gets pulled in by another. 2023-08-08 10:45:35 -04:00
comfyanonymous
5e2b4893da Fix path issue. 2023-08-07 19:29:36 -04:00
comfyanonymous
285ea7b790 Add "display" to custom node example. 2023-08-07 08:29:50 -04:00
comfyanonymous
1f0f4cc0bd Add argument to disable auto launching the browser. 2023-08-07 02:25:12 -04:00
comfyanonymous
0ce8a540ce Update litegraph to latest. 2023-08-06 14:36:43 -04:00
comfyanonymous
d8e58f0a7e Detect hint_channels from controlnet. 2023-08-06 14:08:59 -04:00
comfyanonymous
0cb14a33f6 Fix issue with logging missing nodes. 2023-08-05 21:54:58 -04:00
comfyanonymous
fc71cf656e Add some 800M gpus to cuda malloc blacklist. 2023-08-05 21:54:52 -04:00
comfyanonymous
c9ef919e29 Formatting issue. 2023-08-05 17:20:35 -04:00
comfyanonymous
435577457a Add a way to use cloudflared tunnel to the colab notebook. 2023-08-05 17:18:45 -04:00
pythongosssss
b948b2cf41 handle value missing 2023-08-05 11:04:04 +01:00
pythongosssss
32e115b818 prevent crashing if the widget cant be found 2023-08-05 11:00:18 +01:00
comfyanonymous
c5d7593ccf Support loras in diffusers format. 2023-08-05 01:40:24 -04:00
comfyanonymous
5a90d3cea5 GeForce MX110 + MX130 are maxwell. 2023-08-04 21:44:37 -04:00
pythongosssss
8918f1085c Add setting to change link render mode
Add support for combo settings
2023-08-04 21:26:11 +01:00
comfyanonymous
cb25b88329 Merge branch 'logging' of https://github.com/pythongosssss/ComfyUI 2023-08-04 12:12:39 -04:00
comfyanonymous
1ce0d8ad68 Add CMP 30HX card to the nvidia_16_series list. 2023-08-04 12:08:45 -04:00
comfyanonymous
3d614dde49 Fix bug with reroutes and bypass. 2023-08-04 03:47:45 -04:00
pythongosssss
b2ea0cbd5c add logging 2023-08-04 08:30:01 +01:00
pythongosssss
43ae9fe721 add system stats function 2023-08-04 08:29:51 +01:00
pythongosssss
0bbd9dd4d9 add system info to stats endpoint 2023-08-04 08:29:25 +01:00
comfyanonymous
d7638c47fc Fix ui inconsistency. 2023-08-04 03:22:47 -04:00
comfyanonymous
fa962e86c1 Make LatentBlend more consistent with other nodes. 2023-08-04 02:51:28 -04:00
comfyanonymous
11ad6060fc Merge branch 'LatentBlend' of https://github.com/fuami/ComfyUI 2023-08-04 02:35:53 -04:00
comfyanonymous
c99d8002f8 Make sure the pooled output stays at the EOS token with added embeddings. 2023-08-03 20:27:50 -04:00
Dr.Lt.Data
9534f0f8a5 allows convert to widget for boolean type (#1063) 2023-08-03 20:24:52 -04:00
comfyanonymous
d1347544bc Make context menu filter import from relative path. 2023-08-03 16:51:37 -04:00
comfyanonymous
077617e8c9 Fix bypassed nodes with no inputs. 2023-08-03 02:57:40 -04:00
comfyanonymous
19fbab6ce3 Fix reroute nodes not working with bypassed nodes. 2023-08-03 02:38:11 -04:00
comfyanonymous
05321fd947 Add an experimental CTRL-B shortcut to bypass nodes. 2023-08-03 01:57:00 -04:00
comfyanonymous
9ccc965899 Merge branch 'fix/no-required-input' of https://github.com/M1kep/ComfyUI into prs 2023-08-02 15:06:09 -04:00
comfyanonymous
e4a3e9e54c Add an option in the UI to disable sliders. 2023-08-01 18:50:06 -04:00
Michael Poutre
90b0163524 fix(execution): Fix support for input-less nodes 2023-08-01 12:29:01 -07:00
Michael Poutre
7785d073f0 chore: Fix typo 2023-08-01 12:27:50 -07:00
comfyanonymous
834ab278d2 Update instructions for mac. 2023-08-01 03:17:04 -04:00
comfyanonymous
38cfba0430 Rename toggle to boolean. 2023-08-01 03:08:35 -04:00
FuamiCake
d712193885 Add LatentBlend node, allowing for blending between two Latent inputs. 2023-08-01 01:23:14 -05:00
comfyanonymous
eb5191f911 0.0.0.0 doesn't work on windows. 2023-08-01 01:15:18 -04:00
comfyanonymous
076d2db60f display_as -> display. 2023-07-31 22:41:54 -04:00
comfyanonymous
730a5d170f Merge branch 'slider_toggle' of https://github.com/Guillaume-Fgt/ComfyUI into prs 2023-07-31 15:24:09 -04:00
comfyanonymous
41cf43f89e Merge branch 'SaveLatent_outputs' of https://github.com/fuami/ComfyUI 2023-07-31 15:23:02 -04:00
Guillaume Faguet
6cdc9afc7c pass slider type as option 2023-07-31 08:48:44 +02:00
comfyanonymous
4a77fcd6ab Only shift text encoder to vram when CPU cores are under 8. 2023-07-31 00:08:54 -04:00
FuamiCake
3dcad78fe1 SaveLatent reports its outputs so they are visible to API 2023-07-30 16:36:55 -05:00
comfyanonymous
3cd31d0e24 Lower CPU thread check for running the text encoder on the CPU vs GPU. 2023-07-30 17:18:24 -04:00
comfyanonymous
2b13939044 Remove some useless code. 2023-07-30 14:13:33 -04:00
comfyanonymous
95d796fc85 Faster VAE loading. 2023-07-29 16:28:30 -04:00
comfyanonymous
4b957a0010 Initialize the unet directly on the target device. 2023-07-29 14:51:56 -04:00
comfyanonymous
ad5866b02b Fix ROCm nightly install command. 2023-07-29 14:48:29 -04:00
Guillaume Faguet
d3d9ad00d8 added slider and toggle widget 2023-07-29 14:48:00 +02:00
comfyanonymous
c910b4a01c Remove unused code and torchdiffeq dependency. 2023-07-28 21:32:27 -04:00
comfyanonymous
1141029a4a Add --disable-metadata argument to disable saving metadata in files. 2023-07-28 12:31:41 -04:00
comfyanonymous
fbf5c51c1c Merge branch 'fix_batch_timesteps' of https://github.com/asagi4/ComfyUI 2023-07-27 16:13:48 -04:00
comfyanonymous
68be24eead Remove some prints. 2023-07-27 16:12:43 -04:00
asagi4
1ea4d84691 Fix timestep ranges when batch_size > 1 2023-07-27 21:14:09 +03:00
comfyanonymous
4ab75d9cb8 Update colab notebook with SDXL links. 2023-07-26 21:50:44 -04:00
comfyanonymous
5379051d16 Fix diffusers VAE loading. 2023-07-26 18:26:39 -04:00
comfyanonymous
00da9b3268 Merge branch 'fix/types' of https://github.com/melMass/ComfyUI 2023-07-26 01:55:55 -04:00
comfyanonymous
5e3ac1928a Implement modelspec metadata in CheckpointSave for SDXL and refiner. 2023-07-25 22:02:34 -04:00
comfyanonymous
727588d076 Fix some new loras. 2023-07-25 16:39:15 -04:00
comfyanonymous
315ba30c81 Update nightly ROCm pytorch command in readme to 5.6 2023-07-25 15:48:26 -04:00
comfyanonymous
4f9b6f39d1 Fix potential issue with Save Checkpoint. 2023-07-25 00:45:20 -04:00
comfyanonymous
7c0a5a3e0e Disable cuda malloc on a bunch of quadro cards. 2023-07-25 00:09:01 -04:00
comfyanonymous
a51f33ee49 Use bigger tiles when upscaling with model and fallback on OOM. 2023-07-24 19:47:32 -04:00
comfyanonymous
5f75d784a1 Start is now 0.0 and end is now 1.0 for the timestep ranges. 2023-07-24 18:38:17 -04:00
comfyanonymous
7ff14b62f8 ControlNetApplyAdvanced can now define when controlnet gets applied. 2023-07-24 17:50:49 -04:00
comfyanonymous
d191c4f9ed Add a ControlNetApplyAdvanced node.
The controlnet can be applied to the positive or negative prompt only by
connecting it correctly.
2023-07-24 13:35:20 -04:00
comfyanonymous
0240946ecf Add a way to set which range of timesteps the cond gets applied to. 2023-07-24 09:25:02 -04:00
comfyanonymous
30de083dd0 Disable cuda malloc on all the 9xx series. 2023-07-23 13:29:14 -04:00
comfyanonymous
22f29d66ca Try to fix memory issue with lora. 2023-07-22 21:38:56 -04:00
comfyanonymous
67be7eb81d Nodes can now patch the unet function. 2023-07-22 17:01:12 -04:00
comfyanonymous
12a6e93171 Del the right object when applying lora. 2023-07-22 11:25:49 -04:00
comfyanonymous
85a8900a14 Disable cuda malloc on regular GTX 960. 2023-07-22 11:05:33 -04:00
comfyanonymous
78e7958d17 Support controlnet in diffusers format. 2023-07-21 22:58:16 -04:00
comfyanonymous
09386a3697 Fix issue with lora in some cases when combined with model merging. 2023-07-21 21:27:27 -04:00
comfyanonymous
58b2364f58 Properly support SDXL diffusers unet with UNETLoader node. 2023-07-21 14:38:56 -04:00
melMass
5190aa284d fix: ️ small type fix
getCustomWidgets expects a plain record and not an array of records
2023-07-21 13:19:05 +02:00
comfyanonymous
0115018695 Print errors and continue when lora weights are not compatible. 2023-07-20 19:56:22 -04:00
comfyanonymous
4760c29380 Merge branch 'fix-AttributeError-module-'torch'-has-no-attribute-'mps'' of https://github.com/KarryCharon/ComfyUI 2023-07-20 00:34:54 -04:00
comfyanonymous
ccb6b70de1 Move image encoding outside of sampling loop for better preview perf. 2023-07-19 18:06:58 -04:00
comfyanonymous
39c58b227f Disable cuda malloc on GTX 750 Ti. 2023-07-19 15:14:10 -04:00
comfyanonymous
d5c0765f4e Update how to get the prompt in api format in the example. 2023-07-19 15:07:12 -04:00
comfyanonymous
799c08a4ce Auto disable cuda malloc on some GPUs on windows. 2023-07-19 14:43:55 -04:00
comfyanonymous
0b284f650b Fix typo. 2023-07-19 10:20:32 -04:00
comfyanonymous
e032ca6138 Fix ddim issue with older torch versions. 2023-07-19 10:16:00 -04:00
comfyanonymous
18885f803a Add MX450 and MX550 to list of cards with broken fp16. 2023-07-19 03:08:30 -04:00
comfyanonymous
9ba440995a It's actually possible to torch.compile the unet now. 2023-07-18 21:36:35 -04:00
comfyanonymous
51d5477579 Add key to indicate checkpoint is v_prediction when saving. 2023-07-18 00:25:53 -04:00
comfyanonymous
ff6b047a74 Fix device print on old torch version. 2023-07-17 15:18:58 -04:00
comfyanonymous
9871a15cf9 Enable --cuda-malloc by default on torch 2.0 and up.
Add --disable-cuda-malloc to disable it.
2023-07-17 15:12:10 -04:00
comfyanonymous
55d0fca9fa --windows-standalone-build now enables --cuda-malloc 2023-07-17 14:10:36 -04:00
comfyanonymous
1679abd86d Add a command line argument to enable backend:cudaMallocAsync 2023-07-17 11:00:14 -04:00
comfyanonymous
3a150bad15 Only calculate randn in some samplers when it's actually being used. 2023-07-17 10:11:08 -04:00
comfyanonymous
ee8f8ee07f Fix regression with ddim and uni_pc when batch size > 1. 2023-07-17 09:35:19 -04:00
comfyanonymous
3ded1a3a04 Refactor of sampler code to deal more easily with different model types. 2023-07-17 01:22:12 -04:00
comfyanonymous
ac9c038ac2 Merge branch 'master' of https://github.com/ComfyUI-Community/ComfyUI 2023-07-16 03:04:45 -04:00
comfyanonymous
5f57362613 Lower lora ram usage when in normal vram mode. 2023-07-16 02:59:04 -04:00
ComfyUI-Community
a8f3bbc35d Patch del self.loaded_lora to prevent error with persistent lora_name swapping 2023-07-15 17:11:12 -07:00
comfyanonymous
490771b7f4 Speed up lora loading a bit. 2023-07-15 13:25:22 -04:00
comfyanonymous
50b1180dde Fix CLIPSetLastLayer not reverting when removed. 2023-07-15 01:41:21 -04:00
comfyanonymous
6fb084f39d Reduce floating point rounding errors in loras. 2023-07-15 00:53:00 -04:00
comfyanonymous
91ed2815d5 Add a node to merge CLIP models. 2023-07-14 02:41:18 -04:00
comfyanonymous
907c9fbf0d Refactor to make it easier to set the api path. 2023-07-14 00:50:49 -04:00
comfyanonymous
30ea187160 Merge branch 'use-relative-paths' of https://github.com/mcmonkey4eva/ComfyUI 2023-07-13 23:56:29 -04:00
comfyanonymous
eed3042830 Move conditioning concat node to conditioning section. 2023-07-13 21:44:56 -04:00
comfyanonymous
8a577966c5 Enables a way to save workflows in api format in frontend.
Enable the dev mode in the settings to see it.
2023-07-13 21:08:54 -04:00
comfyanonymous
bdba394290 Add a canny preprocessor node. 2023-07-13 13:26:48 -04:00
comfyanonymous
6f914fb77d Print prestartup times for custom nodes. 2023-07-13 13:01:45 -04:00
comfyanonymous
3bc8be33e4 Don't let custom nodes overwrite base nodes. 2023-07-13 12:56:38 -04:00
comfyanonymous
876dadca84 Highlight nodes with errors in red even when workflow works fine. 2023-07-13 10:07:50 -04:00
comfyanonymous
b2f03164c7 Prevent the clip_g position_ids key from being saved in the checkpoint.
This is to make it match the official checkpoint.
2023-07-12 20:15:02 -04:00
comfyanonymous
46dc050c9f Fix potential tensors being on different devices issues. 2023-07-12 19:29:27 -04:00
comfyanonymous
90aa597099 Add back roundRect to fix issue on firefox ESR. 2023-07-12 02:07:48 -04:00
KarryCharon
3e2309f149 fix mps miss import 2023-07-12 10:06:34 +08:00
comfyanonymous
f4b9390623 Add a random string to the temp prefix for PreviewImage. 2023-07-11 17:35:55 -04:00
comfyanonymous
2b2a1474f7 Move to litegraph. 2023-07-11 03:12:00 -04:00
comfyanonymous
cef30cc6b6 Merge branch 'hidpi-canvas' of https://github.com/EHfive/ComfyUI 2023-07-11 03:04:10 -04:00
comfyanonymous
880c9b928b Update litegraph to latest. 2023-07-11 03:00:52 -04:00
Huang-Huang Bao
05e6eac7b3 Scale graph canvas based on DPI factor
Similar to fixes in litegraph.js editor demo:
3ef215cf11/editor/js/code.js (L19-L28)

Also workarounds to address viewpoint problem of lightgrapgh.js in DPI scaling scenario.

Fixes #161
2023-07-11 14:47:58 +08:00
Dr.Lt.Data
99abcbef41 feat/startup-script: Feature to avoid package installation errors when installing custom nodes. (#856)
* support startup script for installation without locking on windows

* modified: Instead of executing scripts from the startup-scripts directory, I will change it to execute the prestartup_script.py for each custom node.
2023-07-11 02:33:21 -04:00
comfyanonymous
606a537090 Support SDXL embedding format with 2 CLIP. 2023-07-10 10:34:59 -04:00
Alex "mcmonkey" Goodwin
5797ff89b0 use relative paths for all web connections
This enables local reverse-proxies to host ComfyUI on a path, eg "http://example.com/ComfyUI/" in such a way that at least everything I tested works. Without this patch, proxying ComfyUI in this way will yield errors.
2023-07-10 02:09:03 -07:00
comfyanonymous
6ad0a6d7e2 Don't patch weights when multiplier is zero. 2023-07-09 17:46:56 -04:00
comfyanonymous
af15add967 Fix annoyance with textbox unselecting in chromium. 2023-07-09 15:41:19 -04:00
comfyanonymous
d5323d16e0 latent2rgb matrix for SDXL. 2023-07-09 13:59:09 -04:00
comfyanonymous
0ae81c03bb Empty cache after model unloading for normal vram and lower. 2023-07-09 09:56:03 -04:00
comfyanonymous
d3f5998218 Support loading clip_g from diffusers in CLIP Loader nodes. 2023-07-09 09:33:53 -04:00
comfyanonymous
a9a4ba7574 Fix merging not working when model2 of model merge node was a merge. 2023-07-08 22:31:10 -04:00
comfyanonymous
febea8c101 Merge branch 'bugfix/img-offset' of https://github.com/ltdrdata/ComfyUI 2023-07-08 03:45:37 -04:00
Dr.Lt.Data
9caab9380d fix: Image.ANTIALIAS is no longer available. (#847)
* modify deprecated api call

* prevent breaking old Pillow users

* change LANCZOS to BILINEAR
2023-07-08 02:36:48 -04:00
Dr.Lt.Data
d43cff2105 bugfix: image widget's was mis-aligned when node has multiline widget 2023-07-08 01:42:33 +09:00
comfyanonymous
c2d407b0f7 Merge branch 'Yaruze66-patch-1' of https://github.com/Yaruze66/ComfyUI 2023-07-07 01:55:10 -04:00
comfyanonymous
bb5fbd29e9 Merge branch 'condmask-fix' of https://github.com/vmedea/ComfyUI 2023-07-07 01:52:25 -04:00
comfyanonymous
2c9d98f3e6 CLIPTextEncodeSDXL now works when prompts are of very different sizes. 2023-07-06 23:23:54 -04:00
comfyanonymous
e7bee85df8 Add arguments to run the VAE in fp16 or bf16 for testing. 2023-07-06 23:23:46 -04:00
comfyanonymous
f5232c4869 Fix 7z error when extracting package. 2023-07-06 04:18:36 -04:00
comfyanonymous
608fcc2591 Fix bug with weights when prompt is long. 2023-07-06 02:43:40 -04:00
comfyanonymous
ddc6f12ad5 Disable autocast in unet for increased speed. 2023-07-05 21:58:29 -04:00
comfyanonymous
603f02d613 Fix loras not working when loading checkpoint with config. 2023-07-05 19:42:24 -04:00
comfyanonymous
ccb1b25908 Add a conditioning concat node. 2023-07-05 17:40:22 -04:00
comfyanonymous
af7a49916b Support loading unet files in diffusers format. 2023-07-05 17:38:59 -04:00
comfyanonymous
e57cba4c61 Add gpu variations of the sde samplers that are less deterministic
but faster.
2023-07-05 01:39:38 -04:00
comfyanonymous
f81b192944 Add logit scale parameter so it's present when saving the checkpoint. 2023-07-04 23:01:28 -04:00
comfyanonymous
acf95191ff Properly support SDXL diffusers loras for unet. 2023-07-04 21:15:23 -04:00
mara
c61a95f9f7 Fix size check for conditioning mask
The wrong dimensions were being checked, [1] and [2] are the image size.
not [2] and [3]. This results in an out-of-bounds error if one of them
actually matches.
2023-07-04 16:34:42 +02:00
comfyanonymous
8d694cc450 Fix issue with OSX. 2023-07-04 02:09:02 -04:00
comfyanonymous
c02f3baeaf Now the model merge blocks node will use the longest match. 2023-07-04 00:51:17 -04:00
comfyanonymous
3a09fac835 ConditioningAverage now also averages the pooled output. 2023-07-03 21:44:37 -04:00
comfyanonymous
d94ddd8548 Add text encode nodes to control the extra parameters in SDXL. 2023-07-03 19:11:36 -04:00
comfyanonymous
c3e96e637d Pass device to CLIP model. 2023-07-03 16:09:37 -04:00
comfyanonymous
5e6bc824aa Allow passing custom path to clip-g and clip-h. 2023-07-03 15:45:04 -04:00
comfyanonymous
dc9d1f31c8 Improvements for OSX. 2023-07-03 00:08:30 -04:00
Yaruze66
9ae6ff65bc Update extra_model_paths.yaml.example: add RealESRGAN path 2023-07-02 22:59:55 +05:00
comfyanonymous
103c487a89 Cleanup. 2023-07-02 11:58:23 -04:00
comfyanonymous
ae948b42fa Add taesd weights to standalones. 2023-07-02 11:47:30 -04:00
comfyanonymous
2c4e0b49b7 Switch to fp16 on some cards when the model is too big. 2023-07-02 10:00:57 -04:00
comfyanonymous
6f3d9f52db Add a --force-fp16 argument to force fp16 for testing. 2023-07-01 22:42:35 -04:00
comfyanonymous
1c1b0e7299 --gpu-only now keeps the VAE on the device. 2023-07-01 15:22:40 -04:00
comfyanonymous
ce35d8c659 Lower latency by batching some text encoder inputs. 2023-07-01 15:07:39 -04:00
comfyanonymous
3b6fe51c1d Leave text_encoder on the CPU when it can handle it. 2023-07-01 14:38:51 -04:00
comfyanonymous
b6a60fa696 Try to keep text encoders loaded and patched to increase speed.
load_model_gpu() is now used with the text encoder models instead of just
the unet.
2023-07-01 13:28:07 -04:00
comfyanonymous
97ee230682 Make highvram and normalvram shift the text encoders to vram and back.
This is faster on big text encoder models than running it on the CPU.
2023-07-01 12:37:23 -04:00
comfyanonymous
fa1959e3ef Fix nightly packaging. 2023-07-01 01:31:03 -04:00
comfyanonymous
9f2986318f Move model merging nodes to advanced and add to readme. 2023-06-30 15:21:55 -04:00
comfyanonymous
5a9ddf94eb LoraLoader node now caches the lora file between executions. 2023-06-29 23:40:51 -04:00
comfyanonymous
6e9f28401f Persist node instances between executions instead of deleting them.
If the same node id with the same class exists between two executions the
same instance will be used.

This means you can now cache things in nodes for more efficiency.
2023-06-29 23:38:56 -04:00
comfyanonymous
9920367d3c Fix embeddings not working with --gpu-only 2023-06-29 20:43:06 -04:00
comfyanonymous
62db11683b Move unet to device right after loading on highvram mode. 2023-06-29 20:43:06 -04:00
reaper47
e7ed507d3d Add link to 7z in README (#809)
* Add link to 7z in README

* Change 7z to 7-Zip
2023-06-29 04:09:59 -04:00
comfyanonymous
4376b125eb Remove useless code. 2023-06-29 00:26:33 -04:00
comfyanonymous
89120f1fbe This is unused but it should be 1280. 2023-06-28 18:04:23 -04:00
comfyanonymous
2c7c14de56 Support for SDXL text encoder lora. 2023-06-28 02:22:49 -04:00
comfyanonymous
fcef47f06e Fix bug. 2023-06-28 00:38:07 -04:00
comfyanonymous
2d880fec3a Add a node to zero out the cond to advanced/conditioning
The stability streamlit example passes a zero cond as the negative input
so using this for the negative input makes outputs match the streamlit.
2023-06-27 23:30:52 -04:00
comfyanonymous
50abf7c938 Merge branch 'patch-1' of https://github.com/jjangga0214/ComfyUI 2023-06-27 01:42:16 -04:00
comfyanonymous
8248babd44 Use pytorch attention by default on nvidia when xformers isn't present.
Add a new argument --use-quad-cross-attention
2023-06-26 13:03:44 -04:00
comfyanonymous
9b93b920be Add CheckpointSave node to save checkpoints.
The created checkpoints contain workflow metadata that can be loaded by
dragging them on top of the UI or loading them with the "Load" button.

Checkpoints will be saved in fp16 or fp32 depending on the format ComfyUI
is using for inference on your hardware. To force fp32 use: --force-fp32

Anything that patches the model weights like merging or loras will be
saved.

The output directory is currently set to: output/checkpoints but that might
change in the future.
2023-06-26 12:22:27 -04:00
comfyanonymous
b72a7a835a Support loras based on the stability unet implementation. 2023-06-26 02:56:11 -04:00
comfyanonymous
c71a7e6b20 Fix ddim + inpainting not working. 2023-06-26 00:48:48 -04:00
jjangga0214
530e408ab8 docs(extra model paths): add LyCORIS path 2023-06-25 20:11:28 +09:00
comfyanonymous
4eab00e14b Set the seed in the SDE samplers to make them more reproducible. 2023-06-25 03:04:57 -04:00
comfyanonymous
cef6aa62b2 Add support for TAESD decoder for SDXL. 2023-06-25 02:38:14 -04:00
comfyanonymous
20f579d91d Add DualClipLoader to load clip models for SDXL.
Update LoadClip to load clip models for SDXL refiner.
2023-06-25 01:40:38 -04:00
comfyanonymous
b7933960bb Fix CLIPLoader node. 2023-06-24 13:56:46 -04:00
comfyanonymous
78d8035f73 Fix bug with controlnet. 2023-06-24 11:02:38 -04:00
Dr.Lt.Data
c9f5d5b2e1 optimize: support preview mode for mask editor. (#755)
* support preview mode for mask editor.
* use original file reference instead of loaded frontend blob

bugfix:
* prevent file open dialog when save to load image

* bugfix: cannot clear previous mask painted image's alpha

* bugfix

* bugfix

---------

Co-authored-by: Lt.Dr.Data <lt.dr.data@gmail.com>
2023-06-24 03:45:41 -04:00
comfyanonymous
05676942b7 Add some more transformer hooks and move tomesd to comfy_extras.
Tomesd now uses q instead of x to decide which tokens to merge because
it seems to give better results.
2023-06-24 03:30:22 -04:00
comfyanonymous
fa28d7334b Remove useless code. 2023-06-23 12:35:26 -04:00
comfyanonymous
8607c2d42d Move latent scale factor from VAE to model. 2023-06-23 02:33:31 -04:00
comfyanonymous
30a3861946 Fix bug when yaml config has no clip params. 2023-06-23 01:12:59 -04:00
comfyanonymous
9e37f4c7d5 Fix error with ClipVision loader node. 2023-06-23 01:08:05 -04:00
comfyanonymous
3e0686ce94 Add SDXL support to readme and improve the Running section. 2023-06-22 19:33:48 -04:00
comfyanonymous
7573897a3e Merge branch 'master' of https://github.com/VladislavNekto/ComfyUI 2023-06-22 19:28:18 -04:00
comfyanonymous
9f83b098c9 Don't merge weights when shapes don't match and print a warning. 2023-06-22 19:08:31 -04:00
comfyanonymous
f87ec10a97 Support base SDXL and SDXL refiner models.
Large refactor of the model detection and loading code.
2023-06-22 13:03:50 -04:00
Vladislav
ca485d2328 Update README.md
Information about running at RX7600
2023-06-22 22:23:47 +06:00
comfyanonymous
9fccf4aa03 Add original_shape parameter to transformer patch extra_options. 2023-06-21 13:22:01 -04:00
comfyanonymous
852cf4db99 Merge branch 'widget-input-overlapping' of https://github.com/ssitu/ComfyUI 2023-06-21 02:45:59 -04:00
comfyanonymous
6f0f8aa7aa Merge branch 'reroute-disconnect-fix' of https://github.com/ssitu/ComfyUI 2023-06-21 02:45:11 -04:00
comfyanonymous
51581dbfa9 Fix last commits causing an issue with the text encoder lora. 2023-06-20 19:44:39 -04:00
comfyanonymous
bf3f271775 Add some nodes for basic model merging. 2023-06-20 19:17:03 -04:00
comfyanonymous
8125b51a62 Keep a set of model_keys for faster add_patches. 2023-06-20 19:08:48 -04:00
comfyanonymous
45beebd33c Add a type of model patch useful for model merging. 2023-06-20 17:34:11 -04:00
ssit
6f54b01954 Fix reroute node connecting different types 2023-06-20 15:25:56 -04:00
ssit
8c3d24434a Fix overlapping when converting widgets to inputs 2023-06-20 12:03:46 -04:00
comfyanonymous
186f92042b Merge branch 'improve-keyboard' of https://github.com/reaper47/ComfyUI 2023-06-20 00:54:04 -04:00
reaper47
96e8307bd3 Clean keybinds extension 2023-06-19 21:32:21 +02:00
comfyanonymous
036a22077c Fix k_diffusion math being off by a tiny bit during txt2img. 2023-06-19 15:28:54 -04:00
comfyanonymous
8883cb0f67 Add a way to set patches that modify the attn2 output.
Change the transformer patches function format to be more future proof.
2023-06-18 22:58:22 -04:00
comfyanonymous
cd930d4e7f pop clip vision keys after loading them. 2023-06-18 21:21:17 -04:00
comfyanonymous
c9e4a8c9e5 Not needed anymore. 2023-06-18 13:06:59 -04:00
comfyanonymous
fb4bf7f591 This is not needed anymore and causes issues with alphas_cumprod. 2023-06-18 03:18:25 -04:00
comfyanonymous
45be2e92c1 Fix DDIM v-prediction. 2023-06-17 20:48:21 -04:00
comfyanonymous
e619278730 Merge branch 'html5-dialog' of https://github.com/reaper47/ComfyUI 2023-06-17 18:39:55 -04:00
comfyanonymous
8c9c94b5f3 Add bicubic upscale method. 2023-06-17 01:54:33 -04:00
comfyanonymous
e6e50ab2dd Fix an issue when alphas_comprod are half floats. 2023-06-16 17:16:51 -04:00
comfyanonymous
ae43f09ef7 All the unet weights should now be initialized with the right dtype. 2023-06-15 18:42:30 -04:00
comfyanonymous
cf3974c829 Update readme with command to install pytorch with ROCm5.5.
Remove mentions of python 3.10 since 3.11 works fine now.
2023-06-15 18:11:28 -04:00
comfyanonymous
f7edcfd927 Add a --gpu-only argument to keep and run everything on the GPU.
Make the CLIP model work on the GPU.
2023-06-15 15:38:52 -04:00
comfyanonymous
7bf89ba923 Initialize more unet weights as the right dtype. 2023-06-15 15:00:10 -04:00
comfyanonymous
e21d9ad445 Initialize transformer unet block weights in right dtype at the start. 2023-06-15 14:29:26 -04:00
reaper47
3fbd0abc5f Add missed .comfy-table in CSS 2023-06-15 18:39:18 +02:00
reaper47
34ddbfdc8a Beautify settings dialog 2023-06-15 18:36:52 +02:00
comfyanonymous
6253ec4aef Fix server crashing because of terminated websocket connection. 2023-06-15 11:01:56 -04:00
comfyanonymous
bb1f45d6e8 Properly disable weight initialization in clip models. 2023-06-14 20:13:08 -04:00
comfyanonymous
21f04fe632 Disable default weight values in unet conv2d for faster loading. 2023-06-14 19:46:08 -04:00
comfyanonymous
9d54066ebc This isn't needed for inference. 2023-06-14 13:05:08 -04:00
comfyanonymous
fa2cca056c Don't initialize CLIPVision weights to default values. 2023-06-14 12:57:02 -04:00
comfyanonymous
6b774589a5 Set model to fp16 before loading the state dict to lower ram bump. 2023-06-14 12:48:02 -04:00
comfyanonymous
0c7cad404c Don't initialize clip weights to default values. 2023-06-14 12:47:36 -04:00
comfyanonymous
6971646b8b Speed up model loading a bit.
Default pytorch Linear initializes the weights which is useless and slow.
2023-06-14 12:09:41 -04:00
comfyanonymous
84f13f828a Merge branch 'issue-752' of https://github.com/reaper47/ComfyUI 2023-06-14 00:17:25 -04:00
comfyanonymous
388567f20b sampler_cfg_function now uses a dict for the argument.
This means arguments can be added without issues.
2023-06-13 16:10:36 -04:00
comfyanonymous
d52ed407a7 Send websocket message only when prompt is actually done executing. 2023-06-13 13:38:43 -04:00
comfyanonymous
ff9b22d79e Turn on safe load for a few models. 2023-06-13 10:12:03 -04:00
comfyanonymous
735ac4cf81 Remove pytorch_lightning dependency. 2023-06-13 10:11:33 -04:00
comfyanonymous
cb180b9998 Add some missing direct dependencies that were getting pulled indirectly. 2023-06-13 02:45:26 -04:00
comfyanonymous
2b14041d4b Remove useless code. 2023-06-13 02:40:58 -04:00
reaper47
aba886e9da Issue 741: Darken white background 2023-06-13 08:27:26 +02:00
comfyanonymous
274dff3257 Remove more useless files. 2023-06-13 02:22:19 -04:00
comfyanonymous
f0a2b81cd0 Cleanup: Remove a bunch of useless files. 2023-06-13 02:19:08 -04:00
comfyanonymous
74297f5f9d Merge branch 'master' of https://github.com/ssitu/ComfyUI 2023-06-13 01:41:27 -04:00
ssit
0c874e604c Fix unhandled message "execution_cached" 2023-06-12 17:16:03 -04:00
comfyanonymous
2803e78bd0 Add a note to script about which websocket library is used. 2023-06-12 17:05:28 -04:00
comfyanonymous
f5d8aadb22 Add script example that downloads the images after a prompt is executed. 2023-06-12 14:36:45 -04:00
comfyanonymous
af91df85c2 Add a /history/{prompt_id} endpoint. 2023-06-12 14:34:30 -04:00
reaper47
3402ec0c0d Issue 752: Fix background 2023-06-12 15:58:05 +02:00
comfyanonymous
67833c83d8 Add ImageScaleBy node. 2023-06-12 01:14:04 -04:00
comfyanonymous
f8c5931053 Split the batch in VAEEncode if there's not enough memory. 2023-06-12 00:21:50 -04:00
comfyanonymous
c069fc0730 Auto switch to tiled VAE encode if regular one runs out of memory. 2023-06-11 23:25:39 -04:00
comfyanonymous
c64ca8c0b2 Refactor unCLIP noise augment out of samplers.py 2023-06-11 04:01:18 -04:00
reaper47
7b2f09b5fa Issue 742: Extension folder should be ignored 2023-06-10 21:53:49 +02:00
comfyanonymous
656f62569d Make the sections in the others install section more clearly separate. 2023-06-10 04:19:33 -04:00
comfyanonymous
b18946c53b Merge branch 'next-task' of https://github.com/reaper47/ComfyUI 2023-06-10 03:23:25 -04:00
comfyanonymous
ba23753670 DirectML is for Windows. 2023-06-10 03:23:01 -04:00
Jorge Campo
2bcdd6c7d4 Add install instructions for Apple silicon 2023-06-09 22:25:33 +02:00
comfyanonymous
de142eaad5 Simpler base model code. 2023-06-09 12:31:16 -04:00
reaper47
bfebe2d6c3 Improve ContextMenuFilter extension 2023-06-09 13:29:15 +02:00
comfyanonymous
4b0b516544 Add code to handle primitive nodes connected to reroute nodes.
Revert last commit because I noticed it broke a few things.
2023-06-09 02:49:13 -04:00
Dr.Lt.Data
8e14c46a38 allows connect primitive node to reroute if primitive node has type (#751)
Co-authored-by: Lt.Dr.Data <lt.dr.data@gmail.com>
2023-06-09 02:21:30 -04:00
comfyanonymous
8b82f79cb2 Merge branch 'comment-syntax' of https://github.com/space-nuko/ComfyUI 2023-06-09 02:15:44 -04:00
comfyanonymous
23cf8ca7c5 Fix bug when embedding gets ignored because of mismatched size. 2023-06-08 23:48:14 -04:00
space-nuko
65922419e2 Add comment note in README 2023-06-08 12:12:07 -05:00
space-nuko
eed4f62cc5 Add comment support to dynamic prompts nodes 2023-06-08 12:08:00 -05:00
comfyanonymous
29c50954ea Add some quick instructions how to use directml. 2023-06-08 02:00:44 -04:00
comfyanonymous
631132c8c5 Merge branch 'bugfix/paste-clipspace' of https://github.com/ltdrdata/ComfyUI 2023-06-08 01:23:35 -04:00
Dr.Lt.Data
28677342c1 robust paste for image 2023-06-08 00:06:56 +09:00
Dr.Lt.Data
70e02b443f robust patch on pasteFromClipspace 2023-06-07 22:56:08 +09:00
reaper47
5cf4079923 Give linux some love 2023-06-07 15:15:38 +02:00
comfyanonymous
ee62b4ecc2 Merge branch 'bugfix/widget_size_conflict' of https://github.com/ltdrdata/ComfyUI 2023-06-07 02:08:07 -04:00
comfyanonymous
4f1d8c3370 Merge branch 'update-gitignore' of https://github.com/reaper47/ComfyUI 2023-06-07 02:07:52 -04:00
comfyanonymous
0e425603fb Small refactor. 2023-06-06 13:23:01 -04:00
reaper47
3b5b095d04 Add .idea/ to .gitignore 2023-06-06 17:40:07 +02:00
Dr.Lt.Data
422163c2ba bugfix: Fixing the calculation issue when an image widget is added to the size calculation of the text widget. 2023-06-06 22:29:19 +09:00
comfyanonymous
a3a713b6c5 Refactor previews into one command line argument.
Clean up a few things.
2023-06-06 02:13:05 -04:00
comfyanonymous
081134f5c8 Merge branch 'taesd-preview' of https://github.com/space-nuko/ComfyUI 2023-06-05 23:53:36 -04:00
space-nuko
2b2ea5194e Add readme note 2023-06-05 19:16:51 -05:00
space-nuko
8b4a6c19c2 Fix 2023-06-05 19:00:51 -05:00
space-nuko
3e17971acb preview method autodetection 2023-06-05 18:59:10 -05:00
space-nuko
d5a28fadaa Add latent2rgb preview 2023-06-05 18:39:56 -05:00
space-nuko
70d72c4336 Slightly less vibrant sample 2023-06-05 15:26:56 -05:00
space-nuko
48f7ec750c Make previews into cli option 2023-06-05 13:19:02 -05:00
space-nuko
f326a0a468 Make new LATENT_PREVIEWER type for declaring KSampler preview methods 2023-06-05 09:20:20 -05:00
space-nuko
a9fa2d3727 Fix 2023-06-05 09:20:20 -05:00
space-nuko
38bc02bb40 Fix 2023-06-05 09:20:20 -05:00
space-nuko
1c40296d74 Fix 2023-06-05 09:20:20 -05:00
space-nuko
b4f434ee66 Preview sampled images with TAESD 2023-06-05 09:20:17 -05:00
comfyanonymous
2ec980bb9f Limit preview to webp and RGB jpeg. 2023-06-05 01:50:14 -04:00
Dr.Lt.Data
9f3a19b728 improve: lightweight preview to reduce network traffic (#733)
* To reduce bandwidth traffic in a remote environment, a lossy compression-based preview mode is provided for displaying simple visualizations in node-based widgets.

* Added 'preview=[image format]' option to the '/view' API.
* Updated node to use preview for displaying images as widgets.
* Excluded preview usage in the open image, save image, mask editor where the original data is required.

* Made preview_format parameterizable for extensibility.

* default preview format changed: jpeg -> webp

* Support advanced preview_format option.
- grayscale option for visual debugging
- quality option for aggressive reducing

L?;format;quality?

ex)
jpeg => rgb, jpeg, quality 90
L;webp;80 => grayscale, webp, quality 80
L;png => grayscale, png, quality 90
webp;50 => rgb, webp, quality 50

* move comment

* * add settings for preview_format
* default value is ''(= don't reencode)

---------

Co-authored-by: Lt.Dr.Data <lt.dr.data@gmail.com>
2023-06-05 01:49:43 -04:00
comfyanonymous
fed0a4dd29 Some comments to say what the vram state options mean. 2023-06-04 17:51:04 -04:00
Dr.Lt.Data
126b4050dc Crash fix for intermittent crashes that occur when opening MaskEditor. (#732) 2023-06-03 12:25:49 -04:00
comfyanonymous
0764bb5218 Move node properties panel from double click to menu option. 2023-06-03 11:47:20 -04:00
comfyanonymous
c092ffcc18 Latest litegraph from upstream. 2023-06-03 11:46:52 -04:00
comfyanonymous
32f282c861 Search box style fix. 2023-06-03 11:19:10 -04:00
comfyanonymous
0a5fefd621 Cleanups and fixes for model_management.py
Hopefully fix regression on MPS and CPU.
2023-06-03 11:05:37 -04:00
comfyanonymous
700491d81a Implement global average pooling for controlnet. 2023-06-03 01:49:03 -04:00
comfyanonymous
66e588d837 Ignore folder path directories that don't exist. 2023-06-02 16:48:56 -04:00
comfyanonymous
871a86593a Smarter filename list caching. 2023-06-02 16:34:47 -04:00
comfyanonymous
67892b5ac5 Refactor and improve model_management code related to free memory. 2023-06-02 15:21:33 -04:00
space-nuko
499641ebf1 More accurate total 2023-06-02 00:14:41 -05:00
space-nuko
b5dd15c67a System stats endpoint 2023-06-01 23:26:23 -05:00
space-nuko
1bbd3f7fe1 Send back prompt number from prompt/ endpoint 2023-06-01 22:15:06 -05:00
comfyanonymous
5c38958e49 Tweak lowvram model memory so it's closer to what it was before. 2023-06-01 04:04:35 -04:00
comfyanonymous
94680732d3 Empty cache on mps. 2023-06-01 03:52:51 -04:00
space-nuko
d200fa1314 Prevent callers from mutating folder lists 2023-05-31 21:07:27 -04:00
comfyanonymous
b06c5259db Merge branch 'refactor/registerNodes' of https://github.com/ltdrdata/ComfyUI 2023-05-31 13:26:28 -04:00
comfyanonymous
03da8a3426 This is useless for inference. 2023-05-31 13:03:24 -04:00
ltdrdata
8e8d6070f2 race condition patch 2023-05-31 23:26:56 +09:00
ltdrdata
1f34bf08f0 To support dynamic custom loading, separate the node registration
process based on the defs in the registerNodes function.
2023-05-31 22:01:25 +09:00
comfyanonymous
606446d030 Merge branch 'fix-litegraph-css' of https://github.com/space-nuko/ComfyUI 2023-05-30 23:42:00 -04:00
comfyanonymous
8ef197f028 Keep list of filenames and only refresh it when something changes. 2023-05-30 18:48:50 -04:00
space-nuko
468c27afea Fix litegraph dialog z-index/font 2023-05-30 16:06:17 -05:00
space-nuko
04f4fba013 Fix litegraph dialog CSS 2023-05-30 16:01:49 -05:00
comfyanonymous
2260802d90 Check if folder_name is valid instead of just throwing exception. 2023-05-30 16:44:09 -04:00
comfyanonymous
9af7033c5e Merge branch 'hotfix/refresh-primitive-conflict' of https://github.com/ltdrdata/ComfyUI 2023-05-30 12:38:26 -04:00
comfyanonymous
eb448dd8e1 Auto load model in lowvram if not enough memory. 2023-05-30 12:36:41 -04:00
Lt.Dr.Data
08abd838b8 HOTFIX: Patched the conflict issue between the Combo Refresh feature and PrimitiveNodes. 2023-05-30 15:26:45 +09:00
comfyanonymous
560e9f7a43 Disable repo owner validation in update.py 2023-05-29 11:29:00 -04:00
comfyanonymous
b9818eb910 Add route to get safetensors metadata:
/view_metadata/loras?filename=lora.safetensors
2023-05-29 02:48:50 -04:00
Dr.Lt.Data
23ffafeb5d typo fix: field name in error message 2023-05-28 23:31:40 +09:00
comfyanonymous
a532888846 Support VAEs in diffusers format. 2023-05-28 02:02:09 -04:00
comfyanonymous
0fc483dcfd Refactor diffusers model convert code to be able to reuse it. 2023-05-28 01:55:40 -04:00
comfyanonymous
f3ac938b4a Round the mask values for bitwise operations. 2023-05-28 00:42:53 -04:00
comfyanonymous
ad81fd682a Fix issue with cancelling prompt. 2023-05-28 00:32:26 -04:00
comfyanonymous
1cfb2a733f Merge branch 'error-improvements' of https://github.com/space-nuko/ComfyUI 2023-05-27 23:09:40 -04:00
space-nuko
00646b0813 Bitwise operations for masks 2023-05-27 21:48:49 -05:00
space-nuko
03f2d0a764 Rename exception message field 2023-05-27 21:06:07 -05:00
space-nuko
52c9590b7b Exception message 2023-05-27 21:06:07 -05:00
space-nuko
62bdd9d26a Catch typecast errors 2023-05-27 21:06:07 -05:00
space-nuko
a9e7e23724 Fix 2023-05-27 21:06:07 -05:00
space-nuko
e2d080b694 Return null for value format 2023-05-27 21:06:07 -05:00
space-nuko
6b2a8a3845 Show message in the frontend if prompt execution raises an exception 2023-05-27 21:06:07 -05:00
space-nuko
ffec815257 Send back more information about exceptions that happen during execution 2023-05-27 21:06:07 -05:00
space-nuko
0d834e3a2b Add missing input name/config 2023-05-27 21:06:07 -05:00
space-nuko
c33b7c5549 Improve invalid prompt error message 2023-05-27 21:06:07 -05:00
space-nuko
cc4d3435d3 Highlight failing nodes/inputs in frontend 2023-05-27 21:06:07 -05:00
space-nuko
73e85fb3f4 Improve error output for failed nodes 2023-05-27 21:06:07 -05:00
comfyanonymous
9144947244 Merge branch 'zero-lora-weights' of https://github.com/space-nuko/ComfyUI 2023-05-26 22:32:10 -04:00
comfyanonymous
679bd2845a Safetensors isn't optional anymore. 2023-05-26 21:46:11 -04:00
space-nuko
4d1ed829d9 Don't load some model types if weight is zero 2023-05-26 19:33:30 -05:00
comfyanonymous
eb4bd7711a Remove einops. 2023-05-25 18:42:56 -04:00
comfyanonymous
87ab25fac7 Do operations in same order as the one it replaces. 2023-05-25 18:31:27 -04:00
comfyanonymous
2b1fac9708 Merge branch 'master' of https://github.com/BlenderNeko/ComfyUI 2023-05-25 14:44:16 -04:00
comfyanonymous
e1278fa925 Support old pytorch versions that don't have weights_only. 2023-05-25 13:30:59 -04:00
BlenderNeko
8b4b0c3188 vecorized bislerp 2023-05-25 19:23:47 +02:00
comfyanonymous
9b1396e93a Fix issue importing other ui prompts. 2023-05-24 14:01:11 -04:00
comfyanonymous
7310290f17 Pull in latest upscale model code from chainner. 2023-05-23 22:26:50 -04:00
comfyanonymous
c00bb1a0b7 Add a latent upscale by node. 2023-05-23 12:53:38 -04:00
comfyanonymous
b8ccbec6d8 Various improvements to bislerp. 2023-05-23 11:40:24 -04:00
comfyanonymous
451fb4169a Fix 'git pull' not working on the standalones. 2023-05-23 11:35:32 -04:00
comfyanonymous
34887b8885 Add experimental bislerp algorithm for latent upscaling.
It's like bilinear but with slerp.
2023-05-23 03:12:56 -04:00
comfyanonymous
48fcc5b777 Parsing error crash. 2023-05-22 20:51:30 -04:00
comfyanonymous
bfb13f5eee Remove useless call to /object_info 2023-05-22 17:05:23 -04:00
comfyanonymous
db27b0405a object_info now returns if node is an output_node or not. 2023-05-22 13:25:50 -04:00
comfyanonymous
ffc56c53c9 Add a node_errors to the /prompt error json response.
"node_errors" contains a dict keyed by node ids. The contents are a message
and a list of dependent outputs.
2023-05-22 13:22:38 -04:00
comfyanonymous
6cc450579b Auto transpose images from exif data. 2023-05-22 00:22:24 -04:00
comfyanonymous
dc198650c0 sample_dpmpp_2m_sde no longer crashes when step == 1. 2023-05-21 11:34:29 -04:00
comfyanonymous
4796e615dd Revert DPI fix since it caused more issues than it solved. 2023-05-21 10:34:26 -04:00
comfyanonymous
069657fbf3 Add DPM-Solver++(2M) SDE and exponential scheduler.
exponential scheduler is the one recommended with this sampler.
2023-05-21 01:46:03 -04:00
comfyanonymous
516119ad83 Print min and max values in validation error message. 2023-05-21 00:24:28 -04:00
comfyanonymous
3c76f43057 Cleaner code. 2023-05-20 23:06:33 -04:00
comfyanonymous
b8636a44aa Make scaled_dot_product switch to sliced attention on OOM. 2023-05-20 16:01:02 -04:00
comfyanonymous
797c4e8d3b Simplify and improve some vae attention code. 2023-05-20 15:07:21 -04:00
comfyanonymous
71666f248f Fix padding in Blur. 2023-05-20 10:08:47 -04:00
BlenderNeko
36af98d755 improve sharpen and blur nodes 2023-05-20 15:23:28 +02:00
comfyanonymous
b9daf4e30f Add a /object_info/{node_class} route to get only the info of one node. 2023-05-19 22:40:28 -04:00
malern
e6e1999f96 Render UI at a higher resolution when viewing with a higher pixel ratio 2023-05-19 20:04:36 +01:00
malern
2998e232cb Make multiline widget work with different canvas dimensions.
It now scales the textarea positioning using the canvas height/width.
2023-05-19 19:57:15 +01:00
comfyanonymous
8bbd9815a9 Support loading fp16 latent files. 2023-05-19 02:15:32 -04:00
comfyanonymous
62a371e12b Load workflow from latent file. 2023-05-18 02:41:21 -04:00
comfyanonymous
faf899ad5a LoadLatent and SaveLatent should behave like the LoadImage and SaveImage. 2023-05-18 00:09:12 -04:00
comfyanonymous
a7375103b9 Some small changes to Load/SaveLatent. 2023-05-17 23:41:57 -04:00
Dr.Lt.Data
e7f2816c6f feat:Latent Save/Load (#662)
* wip

* latent dir

* fix

* fix

* now working

* mark todo

* remove server.py changes to separate PRt

---------

Co-authored-by: Lt.Dr.Data <lt.dr.data@gmail.com>
2023-05-17 23:40:28 -04:00
comfyanonymous
4088e61aa6 Update litegraph from upstream. 2023-05-16 15:35:07 -04:00
comfyanonymous
6a12094345 Merge branch 'patch/touch' of https://github.com/ltdrdata/ComfyUI 2023-05-16 11:55:20 -04:00
comfyanonymous
11e7168d56 Remove print. 2023-05-16 11:55:16 -04:00
ltdrdata
7ada9e7d85 allows touch drag 2023-05-16 22:55:00 +09:00
comfyanonymous
13d94caf49 Add control_after_generate to combo primitive. 2023-05-16 03:18:11 -04:00
comfyanonymous
5f7968f1fa Print the endpoint ip for localtunnel in the colab notebook. 2023-05-16 01:12:44 -04:00
525 changed files with 694270 additions and 54296 deletions

View File

@@ -1,3 +0,0 @@
..\python_embeded\python.exe .\update.py ..\ComfyUI\
..\python_embeded\python.exe -s -m pip install --upgrade --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cu121 -r ../ComfyUI/requirements.txt pygit2
pause

View File

@@ -1,6 +1,9 @@
import pygit2
from datetime import datetime
import sys
import os
import shutil
import filecmp
def pull(repo, remote_name='origin', branch='master'):
for remote in repo.remotes:
@@ -25,41 +28,124 @@ def pull(repo, remote_name='origin', branch='master'):
if repo.index.conflicts is not None:
for conflict in repo.index.conflicts:
print('Conflicts found in:', conflict[0].path)
print('Conflicts found in:', conflict[0].path) # noqa: T201
raise AssertionError('Conflicts, ahhhhh!!')
user = repo.default_signature
tree = repo.index.write_tree()
commit = repo.create_commit('HEAD',
user,
user,
'Merge!',
tree,
[repo.head.target, remote_master_id])
repo.create_commit('HEAD',
user,
user,
'Merge!',
tree,
[repo.head.target, remote_master_id])
# We need to do this or git CLI will think we are still merging.
repo.state_cleanup()
else:
raise AssertionError('Unknown merge analysis result')
repo = pygit2.Repository(str(sys.argv[1]))
pygit2.option(pygit2.GIT_OPT_SET_OWNER_VALIDATION, 0)
repo_path = str(sys.argv[1])
repo = pygit2.Repository(repo_path)
ident = pygit2.Signature('comfyui', 'comfy@ui')
try:
print("stashing current changes")
print("stashing current changes") # noqa: T201
repo.stash(ident)
except KeyError:
print("nothing to stash")
print("nothing to stash") # noqa: T201
backup_branch_name = 'backup_branch_{}'.format(datetime.today().strftime('%Y-%m-%d_%H_%M_%S'))
print("creating backup branch: {}".format(backup_branch_name))
repo.branches.local.create(backup_branch_name, repo.head.peel())
print("creating backup branch: {}".format(backup_branch_name)) # noqa: T201
try:
repo.branches.local.create(backup_branch_name, repo.head.peel())
except:
pass
print("checking out master branch")
print("checking out master branch") # noqa: T201
branch = repo.lookup_branch('master')
ref = repo.lookup_reference(branch.name)
repo.checkout(ref)
if branch is None:
try:
ref = repo.lookup_reference('refs/remotes/origin/master')
except:
print("pulling.") # noqa: T201
pull(repo)
ref = repo.lookup_reference('refs/remotes/origin/master')
repo.checkout(ref)
branch = repo.lookup_branch('master')
if branch is None:
repo.create_branch('master', repo.get(ref.target))
else:
ref = repo.lookup_reference(branch.name)
repo.checkout(ref)
print("pulling latest changes")
print("pulling latest changes") # noqa: T201
pull(repo)
print("Done!")
if "--stable" in sys.argv:
def latest_tag(repo):
versions = []
for k in repo.references:
try:
prefix = "refs/tags/v"
if k.startswith(prefix):
version = list(map(int, k[len(prefix):].split(".")))
versions.append((version[0] * 10000000000 + version[1] * 100000 + version[2], k))
except:
pass
versions.sort()
if len(versions) > 0:
return versions[-1][1]
return None
latest_tag = latest_tag(repo)
if latest_tag is not None:
repo.checkout(latest_tag)
print("Done!") # noqa: T201
self_update = True
if len(sys.argv) > 2:
self_update = '--skip_self_update' not in sys.argv
update_py_path = os.path.realpath(__file__)
repo_update_py_path = os.path.join(repo_path, ".ci/update_windows/update.py")
cur_path = os.path.dirname(update_py_path)
req_path = os.path.join(cur_path, "current_requirements.txt")
repo_req_path = os.path.join(repo_path, "requirements.txt")
def files_equal(file1, file2):
try:
return filecmp.cmp(file1, file2, shallow=False)
except:
return False
def file_size(f):
try:
return os.path.getsize(f)
except:
return 0
if self_update and not files_equal(update_py_path, repo_update_py_path) and file_size(repo_update_py_path) > 10:
shutil.copy(repo_update_py_path, os.path.join(cur_path, "update_new.py"))
exit()
if not os.path.exists(req_path) or not files_equal(repo_req_path, req_path):
import subprocess
try:
subprocess.check_call([sys.executable, '-s', '-m', 'pip', 'install', '-r', repo_req_path])
shutil.copy(repo_req_path, req_path)
except:
pass
stable_update_script = os.path.join(repo_path, ".ci/update_windows/update_comfyui_stable.bat")
stable_update_script_to = os.path.join(cur_path, "update_comfyui_stable.bat")
try:
if not file_size(stable_update_script_to) > 10:
shutil.copy(stable_update_script, stable_update_script_to)
except:
pass

View File

@@ -1,2 +1,8 @@
@echo off
..\python_embeded\python.exe .\update.py ..\ComfyUI\
pause
if exist update_new.py (
move /y update_new.py update.py
echo Running updater again since it got updated.
..\python_embeded\python.exe .\update.py ..\ComfyUI\ --skip_self_update
)
if "%~1"=="" pause

View File

@@ -1,3 +0,0 @@
..\python_embeded\python.exe .\update.py ..\ComfyUI\
..\python_embeded\python.exe -s -m pip install --upgrade torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117 xformers -r ../ComfyUI/requirements.txt pygit2
pause

View File

@@ -0,0 +1,8 @@
@echo off
..\python_embeded\python.exe .\update.py ..\ComfyUI\ --stable
if exist update_new.py (
move /y update_new.py update.py
echo Running updater again since it got updated.
..\python_embeded\python.exe .\update.py ..\ComfyUI\ --skip_self_update --stable
)
if "%~1"=="" pause

View File

@@ -1,11 +0,0 @@
@echo off
..\python_embeded\python.exe .\update.py ..\ComfyUI\
echo
echo This will try to update pytorch and all python dependencies, if you get an error wait for pytorch/xformers to fix their stuff
echo You should not be running this anyways unless you really have to
echo
echo If you just want to update normally, close this and run update_comfyui.bat instead.
echo
pause
..\python_embeded\python.exe -s -m pip install --upgrade torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu118 xformers -r ../ComfyUI/requirements.txt pygit2
pause

View File

@@ -14,7 +14,7 @@ run_cpu.bat
IF YOU GET A RED ERROR IN THE UI MAKE SURE YOU HAVE A MODEL/CHECKPOINT IN: ComfyUI\models\checkpoints
You can download the stable diffusion 1.5 one from: https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.ckpt
You can download the stable diffusion 1.5 one from: https://huggingface.co/Comfy-Org/stable-diffusion-v1-5-archive/blob/main/v1-5-pruned-emaonly-fp16.safetensors
RECOMMENDED WAY TO UPDATE:

View File

@@ -1,2 +1,2 @@
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --use-pytorch-cross-attention
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --fast fp16_accumulation
pause

View File

@@ -0,0 +1,2 @@
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --fast
pause

2
.gitattributes vendored Normal file
View File

@@ -0,0 +1,2 @@
/web/assets/** linguist-generated
/web/** linguist-vendored

56
.github/ISSUE_TEMPLATE/bug-report.yml vendored Normal file
View File

@@ -0,0 +1,56 @@
name: Bug Report
description: "Something is broken inside of ComfyUI. (Do not use this if you're just having issues and need help, or if the issue relates to a custom node)"
labels: ["Potential Bug"]
body:
- type: markdown
attributes:
value: |
Before submitting a **Bug Report**, please ensure the following:
- **1:** You are running the latest version of ComfyUI.
- **2:** You have looked at the existing bug reports and made sure this isn't already reported.
- **3:** You confirmed that the bug is not caused by a custom node. You can disable all custom nodes by passing
`--disable-all-custom-nodes` command line argument.
- **4:** This is an actual bug in ComfyUI, not just a support question. A bug is when you can specify exact
steps to replicate what went wrong and others will be able to repeat your steps and see the same issue happen.
If unsure, ask on the [ComfyUI Matrix Space](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) or the [Comfy Org Discord](https://discord.gg/comfyorg) first.
- type: checkboxes
id: custom-nodes-test
attributes:
label: Custom Node Testing
description: Please confirm you have tried to reproduce the issue with all custom nodes disabled.
options:
- label: I have tried disabling custom nodes and the issue persists (see [how to disable custom nodes](https://docs.comfy.org/troubleshooting/custom-node-issues#step-1%3A-test-with-all-custom-nodes-disabled) if you need help)
required: true
- type: textarea
attributes:
label: Expected Behavior
description: "What you expected to happen."
validations:
required: true
- type: textarea
attributes:
label: Actual Behavior
description: "What actually happened. Please include a screenshot of the issue if possible."
validations:
required: true
- type: textarea
attributes:
label: Steps to Reproduce
description: "Describe how to reproduce the issue. Please be sure to attach a workflow JSON or PNG, ideally one that doesn't require custom nodes to test. If the bug open happens when certain custom nodes are used, most likely that custom node is what has the bug rather than ComfyUI, in which case it should be reported to the node's author."
validations:
required: true
- type: textarea
attributes:
label: Debug Logs
description: "Please copy the output from your terminal logs here."
render: powershell
validations:
required: true
- type: textarea
attributes:
label: Other
description: "Any other additional information you think might be helpful."
validations:
required: false

11
.github/ISSUE_TEMPLATE/config.yml vendored Normal file
View File

@@ -0,0 +1,11 @@
blank_issues_enabled: true
contact_links:
- name: ComfyUI Frontend Issues
url: https://github.com/Comfy-Org/ComfyUI_frontend/issues
about: Issues related to the ComfyUI frontend (display issues, user interaction bugs), please go to the frontend repo to file the issue
- name: ComfyUI Matrix Space
url: https://app.element.io/#/room/%23comfyui_space%3Amatrix.org
about: The ComfyUI Matrix Space is available for support and general discussion related to ComfyUI (Matrix is like Discord but open source).
- name: Comfy Org Discord
url: https://discord.gg/comfyorg
about: The Comfy Org Discord is available for support and general discussion related to ComfyUI.

View File

@@ -0,0 +1,32 @@
name: Feature Request
description: "You have an idea for something new you would like to see added to ComfyUI's core."
labels: [ "Feature" ]
body:
- type: markdown
attributes:
value: |
Before submitting a **Feature Request**, please ensure the following:
**1:** You are running the latest version of ComfyUI.
**2:** You have looked to make sure there is not already a feature that does what you need, and there is not already a Feature Request listed for the same idea.
**3:** This is something that makes sense to add to ComfyUI Core, and wouldn't make more sense as a custom node.
If unsure, ask on the [ComfyUI Matrix Space](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) or the [Comfy Org Discord](https://discord.gg/comfyorg) first.
- type: textarea
attributes:
label: Feature Idea
description: "Describe the feature you want to see."
validations:
required: true
- type: textarea
attributes:
label: Existing Solutions
description: "Please search through available custom nodes / extensions to see if there are existing custom solutions for this. If so, please link the options you found here as a reference."
validations:
required: false
- type: textarea
attributes:
label: Other
description: "Any other additional information you think might be helpful."
validations:
required: false

40
.github/ISSUE_TEMPLATE/user-support.yml vendored Normal file
View File

@@ -0,0 +1,40 @@
name: User Support
description: "Use this if you need help with something, or you're experiencing an issue."
labels: [ "User Support" ]
body:
- type: markdown
attributes:
value: |
Before submitting a **User Report** issue, please ensure the following:
**1:** You are running the latest version of ComfyUI.
**2:** You have made an effort to find public answers to your question before asking here. In other words, you googled it first, and scrolled through recent help topics.
If unsure, ask on the [ComfyUI Matrix Space](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) or the [Comfy Org Discord](https://discord.gg/comfyorg) first.
- type: checkboxes
id: custom-nodes-test
attributes:
label: Custom Node Testing
description: Please confirm you have tried to reproduce the issue with all custom nodes disabled.
options:
- label: I have tried disabling custom nodes and the issue persists (see [how to disable custom nodes](https://docs.comfy.org/troubleshooting/custom-node-issues#step-1%3A-test-with-all-custom-nodes-disabled) if you need help)
required: true
- type: textarea
attributes:
label: Your question
description: "Post your question here. Please be as detailed as possible."
validations:
required: true
- type: textarea
attributes:
label: Logs
description: "If your question relates to an issue you're experiencing, please go to `Server` -> `Logs` -> potentially set `View Type` to `Debug` as well, then copypaste all the text into here."
render: powershell
validations:
required: false
- type: textarea
attributes:
label: Other
description: "Any other additional information you think might be helpful."
validations:
required: false

View File

@@ -0,0 +1,53 @@
# This is the GitHub Workflow that drives full-GPU-enabled tests of pull requests to ComfyUI, when the 'Run-CI-Test' label is added
# Results are reported as checkmarks on the commits, as well as onto https://ci.comfy.org/
name: Pull Request CI Workflow Runs
on:
pull_request_target:
types: [labeled]
jobs:
pr-test-stable:
if: ${{ github.event.label.name == 'Run-CI-Test' }}
strategy:
fail-fast: false
matrix:
os: [macos, linux, windows]
python_version: ["3.9", "3.10", "3.11", "3.12"]
cuda_version: ["12.1"]
torch_version: ["stable"]
include:
- os: macos
runner_label: [self-hosted, macOS]
flags: "--use-pytorch-cross-attention"
- os: linux
runner_label: [self-hosted, Linux]
flags: ""
- os: windows
runner_label: [self-hosted, Windows]
flags: ""
runs-on: ${{ matrix.runner_label }}
steps:
- name: Test Workflows
uses: comfy-org/comfy-action@main
with:
os: ${{ matrix.os }}
python_version: ${{ matrix.python_version }}
torch_version: ${{ matrix.torch_version }}
google_credentials: ${{ secrets.GCS_SERVICE_ACCOUNT_JSON }}
comfyui_flags: ${{ matrix.flags }}
use_prior_commit: 'true'
comment:
if: ${{ github.event.label.name == 'Run-CI-Test' }}
runs-on: ubuntu-latest
permissions:
pull-requests: write
steps:
- uses: actions/github-script@v6
with:
script: |
github.rest.issues.createComment({
issue_number: context.issue.number,
owner: context.repo.owner,
repo: context.repo.repo,
body: '(Automated Bot Message) CI Tests are running, you can view the results at https://ci.comfy.org/?branch=${{ github.event.pull_request.number }}%2Fmerge'
})

23
.github/workflows/ruff.yml vendored Normal file
View File

@@ -0,0 +1,23 @@
name: Python Linting
on: [push, pull_request]
jobs:
ruff:
name: Run Ruff
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v2
with:
python-version: 3.x
- name: Install Ruff
run: pip install ruff
- name: Run Ruff
run: ruff check .

106
.github/workflows/stable-release.yml vendored Normal file
View File

@@ -0,0 +1,106 @@
name: "Release Stable Version"
on:
workflow_dispatch:
inputs:
git_tag:
description: 'Git tag'
required: true
type: string
cu:
description: 'CUDA version'
required: true
type: string
default: "128"
python_minor:
description: 'Python minor version'
required: true
type: string
default: "12"
python_patch:
description: 'Python patch version'
required: true
type: string
default: "10"
jobs:
package_comfy_windows:
permissions:
contents: "write"
packages: "write"
pull-requests: "read"
runs-on: windows-latest
steps:
- uses: actions/checkout@v4
with:
ref: ${{ inputs.git_tag }}
fetch-depth: 150
persist-credentials: false
- uses: actions/cache/restore@v4
id: cache
with:
path: |
cu${{ inputs.cu }}_python_deps.tar
update_comfyui_and_python_dependencies.bat
key: ${{ runner.os }}-build-cu${{ inputs.cu }}-${{ inputs.python_minor }}
- shell: bash
run: |
mv cu${{ inputs.cu }}_python_deps.tar ../
mv update_comfyui_and_python_dependencies.bat ../
cd ..
tar xf cu${{ inputs.cu }}_python_deps.tar
pwd
ls
- shell: bash
run: |
cd ..
cp -r ComfyUI ComfyUI_copy
curl https://www.python.org/ftp/python/3.${{ inputs.python_minor }}.${{ inputs.python_patch }}/python-3.${{ inputs.python_minor }}.${{ inputs.python_patch }}-embed-amd64.zip -o python_embeded.zip
unzip python_embeded.zip -d python_embeded
cd python_embeded
echo ${{ env.MINOR_VERSION }}
echo 'import site' >> ./python3${{ inputs.python_minor }}._pth
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
./python.exe get-pip.py
./python.exe -s -m pip install ../cu${{ inputs.cu }}_python_deps/*
sed -i '1i../ComfyUI' ./python3${{ inputs.python_minor }}._pth
cd ..
git clone --depth 1 https://github.com/comfyanonymous/taesd
cp taesd/*.safetensors ./ComfyUI_copy/models/vae_approx/
mkdir ComfyUI_windows_portable
mv python_embeded ComfyUI_windows_portable
mv ComfyUI_copy ComfyUI_windows_portable/ComfyUI
cd ComfyUI_windows_portable
mkdir update
cp -r ComfyUI/.ci/update_windows/* ./update/
cp -r ComfyUI/.ci/windows_base_files/* ./
cp ../update_comfyui_and_python_dependencies.bat ./update/
cd ..
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=512m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
mv ComfyUI_windows_portable.7z ComfyUI/ComfyUI_windows_portable_nvidia.7z
cd ComfyUI_windows_portable
python_embeded/python.exe -s ComfyUI/main.py --quick-test-for-ci --cpu
python_embeded/python.exe -s ./update/update.py ComfyUI/
ls
- name: Upload binaries to release
uses: svenstaro/upload-release-action@v2
with:
repo_token: ${{ secrets.GITHUB_TOKEN }}
file: ComfyUI_windows_portable_nvidia.7z
tag: ${{ inputs.git_tag }}
overwrite: true
prerelease: true
make_latest: false

21
.github/workflows/stale-issues.yml vendored Normal file
View File

@@ -0,0 +1,21 @@
name: 'Close stale issues'
on:
schedule:
# Run daily at 430 am PT
- cron: '30 11 * * *'
permissions:
issues: write
jobs:
stale:
runs-on: ubuntu-latest
steps:
- uses: actions/stale@v9
with:
stale-issue-message: "This issue is being marked stale because it has not had any activity for 30 days. Reply below within 7 days if your issue still isn't solved, and it will be left open. Otherwise, the issue will be closed automatically."
days-before-stale: 30
days-before-close: 7
stale-issue-label: 'Stale'
only-labels: 'User Support'
exempt-all-assignees: true
exempt-all-milestones: true

31
.github/workflows/test-build.yml vendored Normal file
View File

@@ -0,0 +1,31 @@
name: Build package
#
# This workflow is a test of the python package build.
# Install Python dependencies across different Python versions.
#
on:
push:
paths:
- "requirements.txt"
- ".github/workflows/test-build.yml"
jobs:
build:
name: Build Test
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
python-version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install -r requirements.txt

96
.github/workflows/test-ci.yml vendored Normal file
View File

@@ -0,0 +1,96 @@
# This is the GitHub Workflow that drives automatic full-GPU-enabled tests of all new commits to the master branch of ComfyUI
# Results are reported as checkmarks on the commits, as well as onto https://ci.comfy.org/
name: Full Comfy CI Workflow Runs
on:
push:
branches:
- master
paths-ignore:
- 'app/**'
- 'input/**'
- 'output/**'
- 'notebooks/**'
- 'script_examples/**'
- '.github/**'
- 'web/**'
workflow_dispatch:
jobs:
test-stable:
strategy:
fail-fast: false
matrix:
# os: [macos, linux, windows]
os: [macos, linux]
python_version: ["3.9", "3.10", "3.11", "3.12"]
cuda_version: ["12.1"]
torch_version: ["stable"]
include:
- os: macos
runner_label: [self-hosted, macOS]
flags: "--use-pytorch-cross-attention"
- os: linux
runner_label: [self-hosted, Linux]
flags: ""
# - os: windows
# runner_label: [self-hosted, Windows]
# flags: ""
runs-on: ${{ matrix.runner_label }}
steps:
- name: Test Workflows
uses: comfy-org/comfy-action@main
with:
os: ${{ matrix.os }}
python_version: ${{ matrix.python_version }}
torch_version: ${{ matrix.torch_version }}
google_credentials: ${{ secrets.GCS_SERVICE_ACCOUNT_JSON }}
comfyui_flags: ${{ matrix.flags }}
# test-win-nightly:
# strategy:
# fail-fast: true
# matrix:
# os: [windows]
# python_version: ["3.9", "3.10", "3.11", "3.12"]
# cuda_version: ["12.1"]
# torch_version: ["nightly"]
# include:
# - os: windows
# runner_label: [self-hosted, Windows]
# flags: ""
# runs-on: ${{ matrix.runner_label }}
# steps:
# - name: Test Workflows
# uses: comfy-org/comfy-action@main
# with:
# os: ${{ matrix.os }}
# python_version: ${{ matrix.python_version }}
# torch_version: ${{ matrix.torch_version }}
# google_credentials: ${{ secrets.GCS_SERVICE_ACCOUNT_JSON }}
# comfyui_flags: ${{ matrix.flags }}
test-unix-nightly:
strategy:
fail-fast: false
matrix:
os: [macos, linux]
python_version: ["3.11"]
cuda_version: ["12.1"]
torch_version: ["nightly"]
include:
- os: macos
runner_label: [self-hosted, macOS]
flags: "--use-pytorch-cross-attention"
- os: linux
runner_label: [self-hosted, Linux]
flags: ""
runs-on: ${{ matrix.runner_label }}
steps:
- name: Test Workflows
uses: comfy-org/comfy-action@main
with:
os: ${{ matrix.os }}
python_version: ${{ matrix.python_version }}
torch_version: ${{ matrix.torch_version }}
google_credentials: ${{ secrets.GCS_SERVICE_ACCOUNT_JSON }}
comfyui_flags: ${{ matrix.flags }}

45
.github/workflows/test-launch.yml vendored Normal file
View File

@@ -0,0 +1,45 @@
name: Test server launches without errors
on:
push:
branches: [ main, master ]
pull_request:
branches: [ main, master ]
jobs:
test:
runs-on: ubuntu-latest
steps:
- name: Checkout ComfyUI
uses: actions/checkout@v4
with:
repository: "comfyanonymous/ComfyUI"
path: "ComfyUI"
- uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Install requirements
run: |
python -m pip install --upgrade pip
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
pip install -r requirements.txt
pip install wait-for-it
working-directory: ComfyUI
- name: Start ComfyUI server
run: |
python main.py --cpu 2>&1 | tee console_output.log &
wait-for-it --service 127.0.0.1:8188 -t 30
working-directory: ComfyUI
- name: Check for unhandled exceptions in server log
run: |
if grep -qE "Exception|Error" console_output.log; then
echo "Unhandled exception/error found in server log."
exit 1
fi
working-directory: ComfyUI
- uses: actions/upload-artifact@v4
if: always()
with:
name: console-output
path: ComfyUI/console_output.log
retention-days: 30

34
.github/workflows/test-unit.yml vendored Normal file
View File

@@ -0,0 +1,34 @@
name: Unit Tests
on:
push:
branches: [ main, master ]
pull_request:
branches: [ main, master ]
jobs:
test:
strategy:
matrix:
os: [ubuntu-latest, windows-latest, macos-latest]
runs-on: ${{ matrix.os }}
continue-on-error: true
steps:
- uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.12'
- name: Install requirements
run: |
python -m pip install --upgrade pip
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu
pip install -r requirements.txt
- name: Run Unit Tests
run: |
pip install -r tests-unit/requirements.txt
python -m pytest tests-unit
- name: Run Execution Model Tests
run: |
python -m pytest tests/inference/test_execution.py

56
.github/workflows/update-api-stubs.yml vendored Normal file
View File

@@ -0,0 +1,56 @@
name: Generate Pydantic Stubs from api.comfy.org
on:
schedule:
- cron: '0 0 * * 1'
workflow_dispatch:
jobs:
generate-models:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: '3.10'
- name: Install dependencies
run: |
python -m pip install --upgrade pip
pip install 'datamodel-code-generator[http]'
npm install @redocly/cli
- name: Download OpenAPI spec
run: |
curl -o openapi.yaml https://api.comfy.org/openapi
- name: Filter OpenAPI spec with Redocly
run: |
npx @redocly/cli bundle openapi.yaml --output filtered-openapi.yaml --config comfy_api_nodes/redocly.yaml --remove-unused-components
- name: Generate API models
run: |
datamodel-codegen --use-subclass-enum --input filtered-openapi.yaml --output comfy_api_nodes/apis --output-model-type pydantic_v2.BaseModel
- name: Check for changes
id: git-check
run: |
git diff --exit-code comfy_api_nodes/apis || echo "changes=true" >> $GITHUB_OUTPUT
- name: Create Pull Request
if: steps.git-check.outputs.changes == 'true'
uses: peter-evans/create-pull-request@v5
with:
commit-message: 'chore: update API models from OpenAPI spec'
title: 'Update API models from api.comfy.org'
body: |
This PR updates the API models based on the latest api.comfy.org OpenAPI specification.
Generated automatically by the a Github workflow.
branch: update-api-stubs
delete-branch: true
base: master

58
.github/workflows/update-version.yml vendored Normal file
View File

@@ -0,0 +1,58 @@
name: Update Version File
on:
pull_request:
paths:
- "pyproject.toml"
branches:
- master
jobs:
update-version:
runs-on: ubuntu-latest
# Don't run on fork PRs
if: github.event.pull_request.head.repo.full_name == github.repository
permissions:
pull-requests: write
contents: write
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: "3.11"
- name: Install dependencies
run: |
python -m pip install --upgrade pip
- name: Update comfyui_version.py
run: |
# Read version from pyproject.toml and update comfyui_version.py
python -c '
import tomllib
# Read version from pyproject.toml
with open("pyproject.toml", "rb") as f:
config = tomllib.load(f)
version = config["project"]["version"]
# Write version to comfyui_version.py
with open("comfyui_version.py", "w") as f:
f.write("# This file is automatically generated by the build process when version is\n")
f.write("# updated in pyproject.toml.\n")
f.write(f"__version__ = \"{version}\"\n")
'
- name: Commit changes
run: |
git config --local user.name "github-actions"
git config --local user.email "github-actions@github.com"
git fetch origin ${{ github.head_ref }}
git checkout -B ${{ github.head_ref }} origin/${{ github.head_ref }}
git add comfyui_version.py
git diff --quiet && git diff --staged --quiet || git commit -m "chore: Update comfyui_version.py to match pyproject.toml"
git push origin HEAD:${{ github.head_ref }}

View File

@@ -1,71 +0,0 @@
name: "Windows Release cu118 dependencies"
on:
workflow_dispatch:
# push:
# branches:
# - master
jobs:
build_dependencies:
env:
# you need at least cuda 5.0 for some of the stuff compiled here.
TORCH_CUDA_ARCH_LIST: "5.0+PTX 6.0 6.1 7.0 7.5 8.0 8.6 8.9"
FORCE_CUDA: 1
MAX_JOBS: 1 # will crash otherwise
DISTUTILS_USE_SDK: 1 # otherwise distutils will complain on windows about multiple versions of msvc
XFORMERS_BUILD_TYPE: "Release"
runs-on: windows-latest
steps:
- name: Cache Built Dependencies
uses: actions/cache@v3
id: cache-cu118_python_stuff
with:
path: cu118_python_deps.tar
key: ${{ runner.os }}-build-cu118
- if: steps.cache-cu118_python_stuff.outputs.cache-hit != 'true'
uses: actions/checkout@v3
- if: steps.cache-cu118_python_stuff.outputs.cache-hit != 'true'
uses: actions/setup-python@v4
with:
python-version: '3.10.9'
- if: steps.cache-cu118_python_stuff.outputs.cache-hit != 'true'
uses: comfyanonymous/cuda-toolkit@test
id: cuda-toolkit
with:
cuda: '11.8.0'
# copied from xformers github
- name: Setup MSVC
uses: ilammy/msvc-dev-cmd@v1
- name: Configure Pagefile
# windows runners will OOM with many CUDA architectures
# we cheat here with a page file
uses: al-cheb/configure-pagefile-action@v1.3
with:
minimum-size: 2GB
# really unfortunate: https://github.com/ilammy/msvc-dev-cmd#name-conflicts-with-shell-bash
- name: Remove link.exe
shell: bash
run: rm /usr/bin/link
- if: steps.cache-cu118_python_stuff.outputs.cache-hit != 'true'
shell: bash
run: |
python -m pip wheel --no-cache-dir torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu118 -r requirements.txt pygit2 -w ./temp_wheel_dir
python -m pip install --no-cache-dir ./temp_wheel_dir/*
echo installed basic
git clone --recurse-submodules https://github.com/facebookresearch/xformers.git
cd xformers
python -m pip install --no-cache-dir wheel setuptools twine
echo building xformers
python setup.py bdist_wheel -d ../temp_wheel_dir/
cd ..
rm -rf xformers
ls -lah temp_wheel_dir
mv temp_wheel_dir cu118_python_deps
tar cf cu118_python_deps.tar cu118_python_deps

View File

@@ -1,30 +0,0 @@
name: "Windows Release cu118 dependencies 2"
on:
workflow_dispatch:
# push:
# branches:
# - master
jobs:
build_dependencies:
runs-on: windows-latest
steps:
- uses: actions/checkout@v3
- uses: actions/setup-python@v4
with:
python-version: '3.10.9'
- shell: bash
run: |
python -m pip wheel --no-cache-dir torch torchvision torchaudio xformers --extra-index-url https://download.pytorch.org/whl/cu118 -r requirements.txt pygit2 -w ./temp_wheel_dir
python -m pip install --no-cache-dir ./temp_wheel_dir/*
echo installed basic
ls -lah temp_wheel_dir
mv temp_wheel_dir cu118_python_deps
tar cf cu118_python_deps.tar cu118_python_deps
- uses: actions/cache/save@v3
with:
path: cu118_python_deps.tar
key: ${{ runner.os }}-build-cu118

View File

@@ -1,76 +0,0 @@
name: "Windows Release cu118 packaging"
on:
workflow_dispatch:
# push:
# branches:
# - master
jobs:
package_comfyui:
permissions:
contents: "write"
packages: "write"
pull-requests: "read"
runs-on: windows-latest
steps:
- uses: actions/cache/restore@v3
id: cache
with:
path: cu118_python_deps.tar
key: ${{ runner.os }}-build-cu118
- shell: bash
run: |
mv cu118_python_deps.tar ../
cd ..
tar xf cu118_python_deps.tar
pwd
ls
- uses: actions/checkout@v3
with:
fetch-depth: 0
- shell: bash
run: |
cd ..
cp -r ComfyUI ComfyUI_copy
curl https://www.python.org/ftp/python/3.10.9/python-3.10.9-embed-amd64.zip -o python_embeded.zip
unzip python_embeded.zip -d python_embeded
cd python_embeded
echo 'import site' >> ./python310._pth
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
./python.exe get-pip.py
./python.exe -s -m pip install ../cu118_python_deps/*
sed -i '1i../ComfyUI' ./python310._pth
cd ..
mkdir ComfyUI_windows_portable
mv python_embeded ComfyUI_windows_portable
mv ComfyUI_copy ComfyUI_windows_portable/ComfyUI
cd ComfyUI_windows_portable
mkdir update
cp -r ComfyUI/.ci/update_windows/* ./update/
cp -r ComfyUI/.ci/update_windows_cu118/* ./update/
cp -r ComfyUI/.ci/windows_base_files/* ./
cd ..
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma -mx=8 -mfb=64 -md=32m -ms=on ComfyUI_windows_portable.7z ComfyUI_windows_portable
mv ComfyUI_windows_portable.7z ComfyUI/new_ComfyUI_windows_portable_nvidia_cu118_or_cpu.7z
cd ComfyUI_windows_portable
python_embeded/python.exe -s ComfyUI/main.py --quick-test-for-ci --cpu
ls
- name: Upload binaries to release
uses: svenstaro/upload-release-action@v2
with:
repo_token: ${{ secrets.GITHUB_TOKEN }}
file: new_ComfyUI_windows_portable_nvidia_cu118_or_cpu.7z
tag: "latest"
overwrite: true

View File

@@ -0,0 +1,71 @@
name: "Windows Release dependencies"
on:
workflow_dispatch:
inputs:
xformers:
description: 'xformers version'
required: false
type: string
default: ""
extra_dependencies:
description: 'extra dependencies'
required: false
type: string
default: ""
cu:
description: 'cuda version'
required: true
type: string
default: "128"
python_minor:
description: 'python minor version'
required: true
type: string
default: "12"
python_patch:
description: 'python patch version'
required: true
type: string
default: "10"
# push:
# branches:
# - master
jobs:
build_dependencies:
runs-on: windows-latest
steps:
- uses: actions/checkout@v4
- uses: actions/setup-python@v5
with:
python-version: 3.${{ inputs.python_minor }}.${{ inputs.python_patch }}
- shell: bash
run: |
echo "@echo off
call update_comfyui.bat nopause
echo -
echo This will try to update pytorch and all python dependencies.
echo -
echo If you just want to update normally, close this and run update_comfyui.bat instead.
echo -
pause
..\python_embeded\python.exe -s -m pip install --upgrade torch torchvision torchaudio ${{ inputs.xformers }} --extra-index-url https://download.pytorch.org/whl/cu${{ inputs.cu }} -r ../ComfyUI/requirements.txt pygit2
pause" > update_comfyui_and_python_dependencies.bat
python -m pip wheel --no-cache-dir torch torchvision torchaudio ${{ inputs.xformers }} ${{ inputs.extra_dependencies }} --extra-index-url https://download.pytorch.org/whl/cu${{ inputs.cu }} -r requirements.txt pygit2 -w ./temp_wheel_dir
python -m pip install --no-cache-dir ./temp_wheel_dir/*
echo installed basic
ls -lah temp_wheel_dir
mv temp_wheel_dir cu${{ inputs.cu }}_python_deps
tar cf cu${{ inputs.cu }}_python_deps.tar cu${{ inputs.cu }}_python_deps
- uses: actions/cache/save@v4
with:
path: |
cu${{ inputs.cu }}_python_deps.tar
update_comfyui_and_python_dependencies.bat
key: ${{ runner.os }}-build-cu${{ inputs.cu }}-${{ inputs.python_minor }}

View File

@@ -2,6 +2,24 @@ name: "Windows Release Nightly pytorch"
on:
workflow_dispatch:
inputs:
cu:
description: 'cuda version'
required: true
type: string
default: "128"
python_minor:
description: 'python minor version'
required: true
type: string
default: "13"
python_patch:
description: 'python patch version'
required: true
type: string
default: "2"
# push:
# branches:
# - master
@@ -14,28 +32,31 @@ jobs:
pull-requests: "read"
runs-on: windows-latest
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
fetch-depth: 0
- uses: actions/setup-python@v4
fetch-depth: 30
persist-credentials: false
- uses: actions/setup-python@v5
with:
python-version: '3.11.3'
python-version: 3.${{ inputs.python_minor }}.${{ inputs.python_patch }}
- shell: bash
run: |
cd ..
cp -r ComfyUI ComfyUI_copy
curl https://www.python.org/ftp/python/3.11.3/python-3.11.3-embed-amd64.zip -o python_embeded.zip
curl https://www.python.org/ftp/python/3.${{ inputs.python_minor }}.${{ inputs.python_patch }}/python-3.${{ inputs.python_minor }}.${{ inputs.python_patch }}-embed-amd64.zip -o python_embeded.zip
unzip python_embeded.zip -d python_embeded
cd python_embeded
echo 'import site' >> ./python311._pth
echo 'import site' >> ./python3${{ inputs.python_minor }}._pth
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
./python.exe get-pip.py
python -m pip wheel torch torchvision torchaudio --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu121 -r ../ComfyUI/requirements.txt pygit2 -w ../temp_wheel_dir
python -m pip wheel torch torchvision torchaudio --pre --extra-index-url https://download.pytorch.org/whl/nightly/cu${{ inputs.cu }} -r ../ComfyUI/requirements.txt pygit2 -w ../temp_wheel_dir
ls ../temp_wheel_dir
./python.exe -s -m pip install --pre ../temp_wheel_dir/*
sed -i '1i../ComfyUI' ./python311._pth
sed -i '1i../ComfyUI' ./python3${{ inputs.python_minor }}._pth
cd ..
git clone --depth 1 https://github.com/comfyanonymous/taesd
cp taesd/*.safetensors ./ComfyUI_copy/models/vae_approx/
mkdir ComfyUI_windows_portable_nightly_pytorch
mv python_embeded ComfyUI_windows_portable_nightly_pytorch
@@ -46,12 +67,14 @@ jobs:
mkdir update
cp -r ComfyUI/.ci/update_windows/* ./update/
cp -r ComfyUI/.ci/windows_base_files/* ./
cp -r ComfyUI/.ci/nightly/update_windows/* ./update/
cp -r ComfyUI/.ci/nightly/windows_base_files/* ./
cp -r ComfyUI/.ci/windows_nightly_base_files/* ./
echo "call update_comfyui.bat nopause
..\python_embeded\python.exe -s -m pip install --upgrade --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cu${{ inputs.cu }} -r ../ComfyUI/requirements.txt pygit2
pause" > ./update/update_comfyui_and_python_dependencies.bat
cd ..
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma -mx=8 -mfb=64 -md=32m -ms=on ComfyUI_windows_portable_nightly_pytorch.7z ComfyUI_windows_portable_nightly_pytorch
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=512m -ms=on -mf=BCJ2 ComfyUI_windows_portable_nightly_pytorch.7z ComfyUI_windows_portable_nightly_pytorch
mv ComfyUI_windows_portable_nightly_pytorch.7z ComfyUI/ComfyUI_windows_portable_nvidia_or_cpu_nightly_pytorch.7z
cd ComfyUI_windows_portable_nightly_pytorch

View File

@@ -0,0 +1,102 @@
name: "Windows Release packaging"
on:
workflow_dispatch:
inputs:
cu:
description: 'cuda version'
required: true
type: string
default: "128"
python_minor:
description: 'python minor version'
required: true
type: string
default: "12"
python_patch:
description: 'python patch version'
required: true
type: string
default: "10"
# push:
# branches:
# - master
jobs:
package_comfyui:
permissions:
contents: "write"
packages: "write"
pull-requests: "read"
runs-on: windows-latest
steps:
- uses: actions/cache/restore@v4
id: cache
with:
path: |
cu${{ inputs.cu }}_python_deps.tar
update_comfyui_and_python_dependencies.bat
key: ${{ runner.os }}-build-cu${{ inputs.cu }}-${{ inputs.python_minor }}
- shell: bash
run: |
mv cu${{ inputs.cu }}_python_deps.tar ../
mv update_comfyui_and_python_dependencies.bat ../
cd ..
tar xf cu${{ inputs.cu }}_python_deps.tar
pwd
ls
- uses: actions/checkout@v4
with:
fetch-depth: 150
persist-credentials: false
- shell: bash
run: |
cd ..
cp -r ComfyUI ComfyUI_copy
curl https://www.python.org/ftp/python/3.${{ inputs.python_minor }}.${{ inputs.python_patch }}/python-3.${{ inputs.python_minor }}.${{ inputs.python_patch }}-embed-amd64.zip -o python_embeded.zip
unzip python_embeded.zip -d python_embeded
cd python_embeded
echo 'import site' >> ./python3${{ inputs.python_minor }}._pth
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
./python.exe get-pip.py
./python.exe -s -m pip install ../cu${{ inputs.cu }}_python_deps/*
sed -i '1i../ComfyUI' ./python3${{ inputs.python_minor }}._pth
cd ..
git clone --depth 1 https://github.com/comfyanonymous/taesd
cp taesd/*.safetensors ./ComfyUI_copy/models/vae_approx/
mkdir ComfyUI_windows_portable
mv python_embeded ComfyUI_windows_portable
mv ComfyUI_copy ComfyUI_windows_portable/ComfyUI
cd ComfyUI_windows_portable
mkdir update
cp -r ComfyUI/.ci/update_windows/* ./update/
cp -r ComfyUI/.ci/windows_base_files/* ./
cp ../update_comfyui_and_python_dependencies.bat ./update/
cd ..
"C:\Program Files\7-Zip\7z.exe" a -t7z -m0=lzma2 -mx=9 -mfb=128 -md=512m -ms=on -mf=BCJ2 ComfyUI_windows_portable.7z ComfyUI_windows_portable
mv ComfyUI_windows_portable.7z ComfyUI/new_ComfyUI_windows_portable_nvidia_cu${{ inputs.cu }}_or_cpu.7z
cd ComfyUI_windows_portable
python_embeded/python.exe -s ComfyUI/main.py --quick-test-for-ci --cpu
python_embeded/python.exe -s ./update/update.py ComfyUI/
ls
- name: Upload binaries to release
uses: svenstaro/upload-release-action@v2
with:
repo_token: ${{ secrets.GITHUB_TOKEN }}
file: new_ComfyUI_windows_portable_nvidia_cu${{ inputs.cu }}_or_cpu.7z
tag: "latest"
overwrite: true

27
.gitignore vendored
View File

@@ -1,11 +1,26 @@
__pycache__/
*.py[cod]
output/
input/
!input/example.png
models/
temp/
custom_nodes/
/output/
/input/
!/input/example.png
/models/
/temp/
/custom_nodes/
!custom_nodes/example_node.py.example
extra_model_paths.yaml
/.vs
.vscode/
.idea/
venv/
.venv/
/web/extensions/*
!/web/extensions/logging.js.example
!/web/extensions/core/
/tests-ui/data/object_info.json
/user/
*.log
web_custom_versions/
.DS_Store
openapi.yaml
filtered-openapi.yaml
uv.lock

24
CODEOWNERS Normal file
View File

@@ -0,0 +1,24 @@
# Admins
* @comfyanonymous
# Note: Github teams syntax cannot be used here as the repo is not owned by Comfy-Org.
# Inlined the team members for now.
# Maintainers
*.md @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/tests/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/tests-unit/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/notebooks/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/script_examples/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/.github/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/requirements.txt @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
/pyproject.toml @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @Kosinkadink @christian-byrne
# Python web server
/api_server/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne
/app/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne
/utils/ @yoland68 @robinjhuang @webfiltered @pythongosssss @ltdrdata @christian-byrne
# Node developers
/comfy_extras/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne
/comfy/comfy_types/ @yoland68 @robinjhuang @pythongosssss @ltdrdata @Kosinkadink @webfiltered @christian-byrne

41
CONTRIBUTING.md Normal file
View File

@@ -0,0 +1,41 @@
# Contributing to ComfyUI
Welcome, and thank you for your interest in contributing to ComfyUI!
There are several ways in which you can contribute, beyond writing code. The goal of this document is to provide a high-level overview of how you can get involved.
## Asking Questions
Have a question? Instead of opening an issue, please ask on [Discord](https://comfy.org/discord) or [Matrix](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) channels. Our team and the community will help you.
## Providing Feedback
Your comments and feedback are welcome, and the development team is available via a handful of different channels.
See the `#bug-report`, `#feature-request` and `#feedback` channels on Discord.
## Reporting Issues
Have you identified a reproducible problem in ComfyUI? Do you have a feature request? We want to hear about it! Here's how you can report your issue as effectively as possible.
### Look For an Existing Issue
Before you create a new issue, please do a search in [open issues](https://github.com/comfyanonymous/ComfyUI/issues) to see if the issue or feature request has already been filed.
If you find your issue already exists, make relevant comments and add your [reaction](https://github.com/blog/2119-add-reactions-to-pull-requests-issues-and-comments). Use a reaction in place of a "+1" comment:
* 👍 - upvote
* 👎 - downvote
If you cannot find an existing issue that describes your bug or feature, create a new issue. We have an issue template in place to organize new issues.
### Creating Pull Requests
* Please refer to the article on [creating pull requests](https://github.com/comfyanonymous/ComfyUI/wiki/How-to-Contribute-Code) and contributing to this project.
## Thank You
Your contributions to open source, large or small, make great projects like this possible. Thank you for taking the time to contribute.

346
README.md
View File

@@ -1,26 +1,91 @@
ComfyUI
=======
A powerful and modular stable diffusion GUI and backend.
-----------
![ComfyUI Screenshot](comfyui_screenshot.png)
<div align="center">
This ui will let you design and execute advanced stable diffusion pipelines using a graph/nodes/flowchart based interface. For some workflow examples and see what ComfyUI can do you can check out:
### [ComfyUI Examples](https://comfyanonymous.github.io/ComfyUI_examples/)
# ComfyUI
**The most powerful and modular visual AI engine and application.**
### [Installing ComfyUI](#installing)
[![Website][website-shield]][website-url]
[![Dynamic JSON Badge][discord-shield]][discord-url]
[![Twitter][twitter-shield]][twitter-url]
[![Matrix][matrix-shield]][matrix-url]
<br>
[![][github-release-shield]][github-release-link]
[![][github-release-date-shield]][github-release-link]
[![][github-downloads-shield]][github-downloads-link]
[![][github-downloads-latest-shield]][github-downloads-link]
[matrix-shield]: https://img.shields.io/badge/Matrix-000000?style=flat&logo=matrix&logoColor=white
[matrix-url]: https://app.element.io/#/room/%23comfyui_space%3Amatrix.org
[website-shield]: https://img.shields.io/badge/ComfyOrg-4285F4?style=flat
[website-url]: https://www.comfy.org/
<!-- Workaround to display total user from https://github.com/badges/shields/issues/4500#issuecomment-2060079995 -->
[discord-shield]: https://img.shields.io/badge/dynamic/json?url=https%3A%2F%2Fdiscord.com%2Fapi%2Finvites%2Fcomfyorg%3Fwith_counts%3Dtrue&query=%24.approximate_member_count&logo=discord&logoColor=white&label=Discord&color=green&suffix=%20total
[discord-url]: https://www.comfy.org/discord
[twitter-shield]: https://img.shields.io/twitter/follow/ComfyUI
[twitter-url]: https://x.com/ComfyUI
[github-release-shield]: https://img.shields.io/github/v/release/comfyanonymous/ComfyUI?style=flat&sort=semver
[github-release-link]: https://github.com/comfyanonymous/ComfyUI/releases
[github-release-date-shield]: https://img.shields.io/github/release-date/comfyanonymous/ComfyUI?style=flat
[github-downloads-shield]: https://img.shields.io/github/downloads/comfyanonymous/ComfyUI/total?style=flat
[github-downloads-latest-shield]: https://img.shields.io/github/downloads/comfyanonymous/ComfyUI/latest/total?style=flat&label=downloads%40latest
[github-downloads-link]: https://github.com/comfyanonymous/ComfyUI/releases
![ComfyUI Screenshot](https://github.com/user-attachments/assets/7ccaf2c1-9b72-41ae-9a89-5688c94b7abe)
</div>
ComfyUI lets you design and execute advanced stable diffusion pipelines using a graph/nodes/flowchart based interface. Available on Windows, Linux, and macOS.
## Get Started
#### [Desktop Application](https://www.comfy.org/download)
- The easiest way to get started.
- Available on Windows & macOS.
#### [Windows Portable Package](#installing)
- Get the latest commits and completely portable.
- Available on Windows.
#### [Manual Install](#manual-install-windows-linux)
Supports all operating systems and GPU types (NVIDIA, AMD, Intel, Apple Silicon, Ascend).
## [Examples](https://comfyanonymous.github.io/ComfyUI_examples/)
See what ComfyUI can do with the [example workflows](https://comfyanonymous.github.io/ComfyUI_examples/).
## Features
- Nodes/graph/flowchart interface to experiment and create complex Stable Diffusion workflows without needing to code anything.
- Fully supports SD1.x and SD2.x
- Image Models
- SD1.x, SD2.x,
- [SDXL](https://comfyanonymous.github.io/ComfyUI_examples/sdxl/), [SDXL Turbo](https://comfyanonymous.github.io/ComfyUI_examples/sdturbo/)
- [Stable Cascade](https://comfyanonymous.github.io/ComfyUI_examples/stable_cascade/)
- [SD3 and SD3.5](https://comfyanonymous.github.io/ComfyUI_examples/sd3/)
- Pixart Alpha and Sigma
- [AuraFlow](https://comfyanonymous.github.io/ComfyUI_examples/aura_flow/)
- [HunyuanDiT](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_dit/)
- [Flux](https://comfyanonymous.github.io/ComfyUI_examples/flux/)
- [Lumina Image 2.0](https://comfyanonymous.github.io/ComfyUI_examples/lumina2/)
- [HiDream](https://comfyanonymous.github.io/ComfyUI_examples/hidream/)
- Video Models
- [Stable Video Diffusion](https://comfyanonymous.github.io/ComfyUI_examples/video/)
- [Mochi](https://comfyanonymous.github.io/ComfyUI_examples/mochi/)
- [LTX-Video](https://comfyanonymous.github.io/ComfyUI_examples/ltxv/)
- [Hunyuan Video](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_video/)
- [Nvidia Cosmos](https://comfyanonymous.github.io/ComfyUI_examples/cosmos/)
- [Wan 2.1](https://comfyanonymous.github.io/ComfyUI_examples/wan/)
- Audio Models
- [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
- [ACE Step](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
- 3D Models
- [Hunyuan3D 2.0](https://docs.comfy.org/tutorials/3d/hunyuan3D-2)
- Asynchronous Queue system
- Many optimizations: Only re-executes the parts of the workflow that changes between executions.
- Command line option: ```--lowvram``` to make it work on GPUs with less than 3GB vram (enabled automatically on GPUs with low vram)
- Smart memory management: can automatically run models on GPUs with as low as 1GB vram.
- Works even if you don't have a GPU with: ```--cpu``` (slow)
- Can load ckpt, safetensors and diffusers models/checkpoints. Standalone VAEs and CLIP models.
- Embeddings/Textual inversion
- [Loras (regular, locon and loha)](https://comfyanonymous.github.io/ComfyUI_examples/lora/)
- [Hypernetworks](https://comfyanonymous.github.io/ComfyUI_examples/hypernetworks/)
- Loading full workflows (with seeds) from generated PNG files.
- Loading full workflows (with seeds) from generated PNG, WebP and FLAC files.
- Saving/Loading workflows as Json files.
- Nodes interface can be used to create complex workflows like one for [Hires fix](https://comfyanonymous.github.io/ComfyUI_examples/2_pass_txt2img/) or much more advanced ones.
- [Area Composition](https://comfyanonymous.github.io/ComfyUI_examples/area_composition/)
@@ -29,76 +94,152 @@ This ui will let you design and execute advanced stable diffusion pipelines usin
- [Upscale Models (ESRGAN, ESRGAN variants, SwinIR, Swin2SR, etc...)](https://comfyanonymous.github.io/ComfyUI_examples/upscale_models/)
- [unCLIP Models](https://comfyanonymous.github.io/ComfyUI_examples/unclip/)
- [GLIGEN](https://comfyanonymous.github.io/ComfyUI_examples/gligen/)
- [Model Merging](https://comfyanonymous.github.io/ComfyUI_examples/model_merging/)
- [LCM models and Loras](https://comfyanonymous.github.io/ComfyUI_examples/lcm/)
- Latent previews with [TAESD](#how-to-show-high-quality-previews)
- Starts up very fast.
- Works fully offline: will never download anything.
- Works fully offline: core will never download anything unless you want to.
- Optional API nodes to use paid models from external providers through the online [Comfy API](https://docs.comfy.org/tutorials/api-nodes/overview).
- [Config file](extra_model_paths.yaml.example) to set the search paths for models.
Workflow examples can be found on the [Examples page](https://comfyanonymous.github.io/ComfyUI_examples/)
## Release Process
ComfyUI follows a weekly release cycle every Friday, with three interconnected repositories:
1. **[ComfyUI Core](https://github.com/comfyanonymous/ComfyUI)**
- Releases a new stable version (e.g., v0.7.0)
- Serves as the foundation for the desktop release
2. **[ComfyUI Desktop](https://github.com/Comfy-Org/desktop)**
- Builds a new release using the latest stable core version
3. **[ComfyUI Frontend](https://github.com/Comfy-Org/ComfyUI_frontend)**
- Weekly frontend updates are merged into the core repository
- Features are frozen for the upcoming core release
- Development continues for the next release cycle
## Shortcuts
| Keybind | Explanation |
| - | - |
| Ctrl + Enter | Queue up current graph for generation |
| Ctrl + Shift + Enter | Queue up current graph as first for generation |
| Ctrl + S | Save workflow |
| Ctrl + O | Load workflow |
| Ctrl + A | Select all nodes |
| Ctrl + M | Mute/unmute selected nodes |
| Delete/Backspace | Delete selected nodes |
| Ctrl + Delete/Backspace | Delete the current graph |
| Space | Move the canvas around when held and moving the cursor |
| Ctrl/Shift + Click | Add clicked node to selection |
| Ctrl + C/Ctrl + V | Copy and paste selected nodes (without maintaining connections to outputs of unselected nodes) |
| Ctrl + C/Ctrl + Shift + V| Copy and paste selected nodes (maintaining connections from outputs of unselected nodes to inputs of pasted nodes) |
| Shift + Drag | Move multiple selected nodes at the same time |
| Ctrl + D | Load default graph |
| Q | Toggle visibility of the queue |
| H | Toggle visibility of history |
| R | Refresh graph |
| Double-Click LMB | Open node quick search palette |
| Keybind | Explanation |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| `Ctrl` + `Enter` | Queue up current graph for generation |
| `Ctrl` + `Shift` + `Enter` | Queue up current graph as first for generation |
| `Ctrl` + `Alt` + `Enter` | Cancel current generation |
| `Ctrl` + `Z`/`Ctrl` + `Y` | Undo/Redo |
| `Ctrl` + `S` | Save workflow |
| `Ctrl` + `O` | Load workflow |
| `Ctrl` + `A` | Select all nodes |
| `Alt `+ `C` | Collapse/uncollapse selected nodes |
| `Ctrl` + `M` | Mute/unmute selected nodes |
| `Ctrl` + `B` | Bypass selected nodes (acts like the node was removed from the graph and the wires reconnected through) |
| `Delete`/`Backspace` | Delete selected nodes |
| `Ctrl` + `Backspace` | Delete the current graph |
| `Space` | Move the canvas around when held and moving the cursor |
| `Ctrl`/`Shift` + `Click` | Add clicked node to selection |
| `Ctrl` + `C`/`Ctrl` + `V` | Copy and paste selected nodes (without maintaining connections to outputs of unselected nodes) |
| `Ctrl` + `C`/`Ctrl` + `Shift` + `V` | Copy and paste selected nodes (maintaining connections from outputs of unselected nodes to inputs of pasted nodes) |
| `Shift` + `Drag` | Move multiple selected nodes at the same time |
| `Ctrl` + `D` | Load default graph |
| `Alt` + `+` | Canvas Zoom in |
| `Alt` + `-` | Canvas Zoom out |
| `Ctrl` + `Shift` + LMB + Vertical drag | Canvas Zoom in/out |
| `P` | Pin/Unpin selected nodes |
| `Ctrl` + `G` | Group selected nodes |
| `Q` | Toggle visibility of the queue |
| `H` | Toggle visibility of history |
| `R` | Refresh graph |
| `F` | Show/Hide menu |
| `.` | Fit view to selection (Whole graph when nothing is selected) |
| Double-Click LMB | Open node quick search palette |
| `Shift` + Drag | Move multiple wires at once |
| `Ctrl` + `Alt` + LMB | Disconnect all wires from clicked slot |
Ctrl can also be replaced with Cmd instead for MacOS users
`Ctrl` can also be replaced with `Cmd` instead for macOS users
# Installing
## Windows
## Windows Portable
There is a portable standalone build for Windows that should work for running on Nvidia GPUs or for running on your CPU only on the [releases page](https://github.com/comfyanonymous/ComfyUI/releases).
### [Direct link to download](https://github.com/comfyanonymous/ComfyUI/releases/download/latest/ComfyUI_windows_portable_nvidia_cu118_or_cpu.7z)
### [Direct link to download](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia.7z)
Just download, extract and run. Make sure you put your Stable Diffusion checkpoints/models (the huge ckpt/safetensors files) in: ComfyUI\models\checkpoints
Simply download, extract with [7-Zip](https://7-zip.org) and run. Make sure you put your Stable Diffusion checkpoints/models (the huge ckpt/safetensors files) in: ComfyUI\models\checkpoints
If you have trouble extracting it, right click the file -> properties -> unblock
#### How do I share models between another UI and ComfyUI?
See the [Config file](extra_model_paths.yaml.example) to set the search paths for models. In the standalone windows build you can find this file in the ComfyUI directory. Rename this file to extra_model_paths.yaml and edit it with your favorite text editor.
## Colab Notebook
## Jupyter Notebook
To run it on colab or paperspace you can use my [Colab Notebook](notebooks/comfyui_colab.ipynb) here: [Link to open with google colab](https://colab.research.google.com/github/comfyanonymous/ComfyUI/blob/master/notebooks/comfyui_colab.ipynb)
To run it on services like paperspace, kaggle or colab you can use my [Jupyter Notebook](notebooks/comfyui_colab.ipynb)
## [comfy-cli](https://docs.comfy.org/comfy-cli/getting-started)
You can install and start ComfyUI using comfy-cli:
```bash
pip install comfy-cli
comfy install
```
## Manual Install (Windows, Linux)
python 3.13 is supported but using 3.12 is recommended because some custom nodes and their dependencies might not support it yet.
Git clone this repo.
Put your SD checkpoints (the huge ckpt/safetensors files) in: models/checkpoints
Put your VAE in: models/vae
At the time of writing this pytorch has issues with python versions higher than 3.10 so make sure your python/pip versions are 3.10.
### AMD GPUs (Linux only)
AMD users can install rocm and pytorch with pip if you don't have it already installed, this is the command to install the stable version:
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/rocm5.4.2```
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.3```
This is the command to install the nightly with ROCm 6.4 which might have some performance improvements:
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm6.4```
### Intel GPUs (Windows and Linux)
(Option 1) Intel Arc GPU users can install native PyTorch with torch.xpu support using pip (currently available in PyTorch nightly builds). More information can be found [here](https://pytorch.org/docs/main/notes/get_start_xpu.html)
1. To install PyTorch nightly, use the following command:
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/xpu```
2. Launch ComfyUI by running `python main.py`
(Option 2) Alternatively, Intel GPUs supported by Intel Extension for PyTorch (IPEX) can leverage IPEX for improved performance.
1. For Intel® Arc™ A-Series Graphics utilizing IPEX, create a conda environment and use the commands below:
```
conda install libuv
pip install torch==2.3.1.post0+cxx11.abi torchvision==0.18.1.post0+cxx11.abi torchaudio==2.3.1.post0+cxx11.abi intel-extension-for-pytorch==2.3.110.post0+xpu --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/cn/
```
For other supported Intel GPUs with IPEX, visit [Installation](https://intel.github.io/intel-extension-for-pytorch/index.html#installation?platform=gpu) for more information.
Additional discussion and help can be found [here](https://github.com/comfyanonymous/ComfyUI/discussions/476).
### NVIDIA
Nvidia users should install torch and xformers using this command:
Nvidia users should install stable pytorch using this command:
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu118 xformers```
```pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu128```
This is the command to install pytorch nightly instead which might have performance improvements.
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu128```
#### Troubleshooting
@@ -118,33 +259,57 @@ After this you should have everything installed and can proceed to running Comfy
### Others:
[Intel Arc](https://github.com/comfyanonymous/ComfyUI/discussions/476)
#### Apple Mac silicon
Mac/MPS: There is basic support in the code but until someone makes some install instruction you are on your own.
You can install ComfyUI in Apple Mac silicon (M1 or M2) with any recent macOS version.
### I already have another UI for Stable Diffusion installed do I really have to install all of these dependencies?
1. Install pytorch nightly. For instructions, read the [Accelerated PyTorch training on Mac](https://developer.apple.com/metal/pytorch/) Apple Developer guide (make sure to install the latest pytorch nightly).
1. Follow the [ComfyUI manual installation](#manual-install-windows-linux) instructions for Windows and Linux.
1. Install the ComfyUI [dependencies](#dependencies). If you have another Stable Diffusion UI [you might be able to reuse the dependencies](#i-already-have-another-ui-for-stable-diffusion-installed-do-i-really-have-to-install-all-of-these-dependencies).
1. Launch ComfyUI by running `python main.py`
You don't. If you have another UI installed and working with it's own python venv you can use that venv to run ComfyUI. You can open up your favorite terminal and activate it:
> **Note**: Remember to add your models, VAE, LoRAs etc. to the corresponding Comfy folders, as discussed in [ComfyUI manual installation](#manual-install-windows-linux).
```source path_to_other_sd_gui/venv/bin/activate```
#### DirectML (AMD Cards on Windows)
or on Windows:
```pip install torch-directml``` Then you can launch ComfyUI with: ```python main.py --directml```
With Powershell: ```"path_to_other_sd_gui\venv\Scripts\Activate.ps1"```
#### Ascend NPUs
With cmd.exe: ```"path_to_other_sd_gui\venv\Scripts\activate.bat"```
For models compatible with Ascend Extension for PyTorch (torch_npu). To get started, ensure your environment meets the prerequisites outlined on the [installation](https://ascend.github.io/docs/sources/ascend/quick_install.html) page. Here's a step-by-step guide tailored to your platform and installation method:
And then you can use that terminal to run Comfyui without installing any dependencies. Note that the venv folder might be called something else depending on the SD UI.
1. Begin by installing the recommended or newer kernel version for Linux as specified in the Installation page of torch-npu, if necessary.
2. Proceed with the installation of Ascend Basekit, which includes the driver, firmware, and CANN, following the instructions provided for your specific platform.
3. Next, install the necessary packages for torch-npu by adhering to the platform-specific instructions on the [Installation](https://ascend.github.io/docs/sources/pytorch/install.html#pytorch) page.
4. Finally, adhere to the [ComfyUI manual installation](#manual-install-windows-linux) guide for Linux. Once all components are installed, you can run ComfyUI as described earlier.
#### Cambricon MLUs
For models compatible with Cambricon Extension for PyTorch (torch_mlu). Here's a step-by-step guide tailored to your platform and installation method:
1. Install the Cambricon CNToolkit by adhering to the platform-specific instructions on the [Installation](https://www.cambricon.com/docs/sdk_1.15.0/cntoolkit_3.7.2/cntoolkit_install_3.7.2/index.html)
2. Next, install the PyTorch(torch_mlu) following the instructions on the [Installation](https://www.cambricon.com/docs/sdk_1.15.0/cambricon_pytorch_1.17.0/user_guide_1.9/index.html)
3. Launch ComfyUI by running `python main.py`
# Running
```python main.py```
### For AMD 6700, 6600 and maybe others
### For AMD cards not officially supported by ROCm
Try running it with this command if you have issues:
```HSA_OVERRIDE_GFX_VERSION=10.3.0 python main.py```
For 6700, 6600 and maybe other RDNA2 or older: ```HSA_OVERRIDE_GFX_VERSION=10.3.0 python main.py```
For AMD 7600 and maybe other RDNA3 cards: ```HSA_OVERRIDE_GFX_VERSION=11.0.0 python main.py```
### AMD ROCm Tips
You can enable experimental memory efficient attention on recent pytorch in ComfyUI on some AMD GPUs using this command, it should already be enabled by default on RDNA3. If this improves speed for you on latest pytorch on your GPU please report it so that I can enable it by default.
```TORCH_ROCM_AOTRITON_ENABLE_EXPERIMENTAL=1 python main.py --use-pytorch-cross-attention```
You can also try setting this env variable `PYTORCH_TUNABLEOP_ENABLED=1` which might speed things up at the cost of a very slow initial run.
# Notes
@@ -158,39 +323,78 @@ You can use () to change emphasis of a word or phrase like: (good code:1.2) or (
You can use {day|night}, for wildcard/dynamic prompts. With this syntax "{wild|card|test}" will be randomly replaced by either "wild", "card" or "test" by the frontend every time you queue the prompt. To use {} characters in your actual prompt escape them like: \\{ or \\}.
Dynamic prompts also support C-style comments, like `// comment` or `/* comment */`.
To use a textual inversion concepts/embeddings in a text prompt put them in the models/embeddings directory and use them in the CLIPTextEncode node like this (you can omit the .pt extension):
```embedding:embedding_filename.pt```
### Fedora
To get python 3.10 on fedora:
```dnf install python3.10```
## How to show high-quality previews?
Then you can:
Use ```--preview-method auto``` to enable previews.
```python3.10 -m ensurepip```
The default installation includes a fast latent preview method that's low-resolution. To enable higher-quality previews with [TAESD](https://github.com/madebyollin/taesd), download the [taesd_decoder.pth, taesdxl_decoder.pth, taesd3_decoder.pth and taef1_decoder.pth](https://github.com/madebyollin/taesd/) and place them in the `models/vae_approx` folder. Once they're installed, restart ComfyUI and launch it with `--preview-method taesd` to enable high-quality previews.
This will let you use: pip3.10 to install all the dependencies.
## How to use TLS/SSL?
Generate a self-signed certificate (not appropriate for shared/production use) and key by running the command: `openssl req -x509 -newkey rsa:4096 -keyout key.pem -out cert.pem -sha256 -days 3650 -nodes -subj "/C=XX/ST=StateName/L=CityName/O=CompanyName/OU=CompanySectionName/CN=CommonNameOrHostname"`
## How to increase generation speed?
Use `--tls-keyfile key.pem --tls-certfile cert.pem` to enable TLS/SSL, the app will now be accessible with `https://...` instead of `http://...`.
Make sure you use the regular loaders/Load Checkpoint node to load checkpoints. It will auto pick the right settings depending on your GPU.
You can set this command line setting to disable the upcasting to fp32 in some cross attention operations which will increase your speed. Note that this will very likely give you black images on SD2.x models. If you use xformers this option does not do anything.
```--dont-upcast-attention```
> Note: Windows users can use [alexisrolland/docker-openssl](https://github.com/alexisrolland/docker-openssl) or one of the [3rd party binary distributions](https://wiki.openssl.org/index.php/Binaries) to run the command example above.
<br/><br/>If you use a container, note that the volume mount `-v` can be a relative path so `... -v ".\:/openssl-certs" ...` would create the key & cert files in the current directory of your command prompt or powershell terminal.
## Support and dev channel
[Discord](https://comfy.org/discord): Try the #help or #feedback channels.
[Matrix space: #comfyui_space:matrix.org](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) (it's like discord but open source).
See also: [https://www.comfy.org/](https://www.comfy.org/)
## Frontend Development
As of August 15, 2024, we have transitioned to a new frontend, which is now hosted in a separate repository: [ComfyUI Frontend](https://github.com/Comfy-Org/ComfyUI_frontend). This repository now hosts the compiled JS (from TS/Vue) under the `web/` directory.
### Reporting Issues and Requesting Features
For any bugs, issues, or feature requests related to the frontend, please use the [ComfyUI Frontend repository](https://github.com/Comfy-Org/ComfyUI_frontend). This will help us manage and address frontend-specific concerns more efficiently.
### Using the Latest Frontend
The new frontend is now the default for ComfyUI. However, please note:
1. The frontend in the main ComfyUI repository is updated fortnightly.
2. Daily releases are available in the separate frontend repository.
To use the most up-to-date frontend version:
1. For the latest daily release, launch ComfyUI with this command line argument:
```
--front-end-version Comfy-Org/ComfyUI_frontend@latest
```
2. For a specific version, replace `latest` with the desired version number:
```
--front-end-version Comfy-Org/ComfyUI_frontend@1.2.2
```
This approach allows you to easily switch between the stable fortnightly release and the cutting-edge daily updates, or even specific versions for testing purposes.
### Accessing the Legacy Frontend
If you need to use the legacy frontend for any reason, you can access it using the following command line argument:
```
--front-end-version Comfy-Org/ComfyUI_legacy_frontend@latest
```
This will use a snapshot of the legacy frontend preserved in the [ComfyUI Legacy Frontend repository](https://github.com/Comfy-Org/ComfyUI_legacy_frontend).
# QA
### Why did you make this?
### Which GPU should I buy for this?
I wanted to learn how Stable Diffusion worked in detail. I also wanted something clean and powerful that would let me experiment with SD without restrictions.
### Who is this for?
This is for anyone that wants to make complex workflows with SD or that wants to learn more how SD works. The interface follows closely how SD works and the code should be much more simple to understand than other SD UIs.
[See this page for some recommendations](https://github.com/comfyanonymous/ComfyUI/wiki/Which-GPU-should-I-buy-for-ComfyUI)

84
alembic.ini Normal file
View File

@@ -0,0 +1,84 @@
# A generic, single database configuration.
[alembic]
# path to migration scripts
# Use forward slashes (/) also on windows to provide an os agnostic path
script_location = alembic_db
# template used to generate migration file names; The default value is %%(rev)s_%%(slug)s
# Uncomment the line below if you want the files to be prepended with date and time
# see https://alembic.sqlalchemy.org/en/latest/tutorial.html#editing-the-ini-file
# for all available tokens
# file_template = %%(year)d_%%(month).2d_%%(day).2d_%%(hour).2d%%(minute).2d-%%(rev)s_%%(slug)s
# sys.path path, will be prepended to sys.path if present.
# defaults to the current working directory.
prepend_sys_path = .
# timezone to use when rendering the date within the migration file
# as well as the filename.
# If specified, requires the python>=3.9 or backports.zoneinfo library and tzdata library.
# Any required deps can installed by adding `alembic[tz]` to the pip requirements
# string value is passed to ZoneInfo()
# leave blank for localtime
# timezone =
# max length of characters to apply to the "slug" field
# truncate_slug_length = 40
# set to 'true' to run the environment during
# the 'revision' command, regardless of autogenerate
# revision_environment = false
# set to 'true' to allow .pyc and .pyo files without
# a source .py file to be detected as revisions in the
# versions/ directory
# sourceless = false
# version location specification; This defaults
# to alembic_db/versions. When using multiple version
# directories, initial revisions must be specified with --version-path.
# The path separator used here should be the separator specified by "version_path_separator" below.
# version_locations = %(here)s/bar:%(here)s/bat:alembic_db/versions
# version path separator; As mentioned above, this is the character used to split
# version_locations. The default within new alembic.ini files is "os", which uses os.pathsep.
# If this key is omitted entirely, it falls back to the legacy behavior of splitting on spaces and/or commas.
# Valid values for version_path_separator are:
#
# version_path_separator = :
# version_path_separator = ;
# version_path_separator = space
# version_path_separator = newline
#
# Use os.pathsep. Default configuration used for new projects.
version_path_separator = os
# set to 'true' to search source files recursively
# in each "version_locations" directory
# new in Alembic version 1.10
# recursive_version_locations = false
# the output encoding used when revision files
# are written from script.py.mako
# output_encoding = utf-8
sqlalchemy.url = sqlite:///user/comfyui.db
[post_write_hooks]
# post_write_hooks defines scripts or Python functions that are run
# on newly generated revision scripts. See the documentation for further
# detail and examples
# format using "black" - use the console_scripts runner, against the "black" entrypoint
# hooks = black
# black.type = console_scripts
# black.entrypoint = black
# black.options = -l 79 REVISION_SCRIPT_FILENAME
# lint with attempts to fix using "ruff" - use the exec runner, execute a binary
# hooks = ruff
# ruff.type = exec
# ruff.executable = %(here)s/.venv/bin/ruff
# ruff.options = check --fix REVISION_SCRIPT_FILENAME

4
alembic_db/README.md Normal file
View File

@@ -0,0 +1,4 @@
## Generate new revision
1. Update models in `/app/database/models.py`
2. Run `alembic revision --autogenerate -m "{your message}"`

64
alembic_db/env.py Normal file
View File

@@ -0,0 +1,64 @@
from sqlalchemy import engine_from_config
from sqlalchemy import pool
from alembic import context
# this is the Alembic Config object, which provides
# access to the values within the .ini file in use.
config = context.config
from app.database.models import Base
target_metadata = Base.metadata
# other values from the config, defined by the needs of env.py,
# can be acquired:
# my_important_option = config.get_main_option("my_important_option")
# ... etc.
def run_migrations_offline() -> None:
"""Run migrations in 'offline' mode.
This configures the context with just a URL
and not an Engine, though an Engine is acceptable
here as well. By skipping the Engine creation
we don't even need a DBAPI to be available.
Calls to context.execute() here emit the given string to the
script output.
"""
url = config.get_main_option("sqlalchemy.url")
context.configure(
url=url,
target_metadata=target_metadata,
literal_binds=True,
dialect_opts={"paramstyle": "named"},
)
with context.begin_transaction():
context.run_migrations()
def run_migrations_online() -> None:
"""Run migrations in 'online' mode.
In this scenario we need to create an Engine
and associate a connection with the context.
"""
connectable = engine_from_config(
config.get_section(config.config_ini_section, {}),
prefix="sqlalchemy.",
poolclass=pool.NullPool,
)
with connectable.connect() as connection:
context.configure(
connection=connection, target_metadata=target_metadata
)
with context.begin_transaction():
context.run_migrations()
if context.is_offline_mode():
run_migrations_offline()
else:
run_migrations_online()

28
alembic_db/script.py.mako Normal file
View File

@@ -0,0 +1,28 @@
"""${message}
Revision ID: ${up_revision}
Revises: ${down_revision | comma,n}
Create Date: ${create_date}
"""
from typing import Sequence, Union
from alembic import op
import sqlalchemy as sa
${imports if imports else ""}
# revision identifiers, used by Alembic.
revision: str = ${repr(up_revision)}
down_revision: Union[str, None] = ${repr(down_revision)}
branch_labels: Union[str, Sequence[str], None] = ${repr(branch_labels)}
depends_on: Union[str, Sequence[str], None] = ${repr(depends_on)}
def upgrade() -> None:
"""Upgrade schema."""
${upgrades if upgrades else "pass"}
def downgrade() -> None:
"""Downgrade schema."""
${downgrades if downgrades else "pass"}

View File

@@ -0,0 +1,3 @@
# ComfyUI Internal Routes
All routes under the `/internal` path are designated for **internal use by ComfyUI only**. These routes are not intended for use by external applications may change at any time without notice.

View File

@@ -0,0 +1,73 @@
from aiohttp import web
from typing import Optional
from folder_paths import folder_names_and_paths, get_directory_by_type
from api_server.services.terminal_service import TerminalService
import app.logger
import os
class InternalRoutes:
'''
The top level web router for internal routes: /internal/*
The endpoints here should NOT be depended upon. It is for ComfyUI frontend use only.
Check README.md for more information.
'''
def __init__(self, prompt_server):
self.routes: web.RouteTableDef = web.RouteTableDef()
self._app: Optional[web.Application] = None
self.prompt_server = prompt_server
self.terminal_service = TerminalService(prompt_server)
def setup_routes(self):
@self.routes.get('/logs')
async def get_logs(request):
return web.json_response("".join([(l["t"] + " - " + l["m"]) for l in app.logger.get_logs()]))
@self.routes.get('/logs/raw')
async def get_raw_logs(request):
self.terminal_service.update_size()
return web.json_response({
"entries": list(app.logger.get_logs()),
"size": {"cols": self.terminal_service.cols, "rows": self.terminal_service.rows}
})
@self.routes.patch('/logs/subscribe')
async def subscribe_logs(request):
json_data = await request.json()
client_id = json_data["clientId"]
enabled = json_data["enabled"]
if enabled:
self.terminal_service.subscribe(client_id)
else:
self.terminal_service.unsubscribe(client_id)
return web.Response(status=200)
@self.routes.get('/folder_paths')
async def get_folder_paths(request):
response = {}
for key in folder_names_and_paths:
response[key] = folder_names_and_paths[key][0]
return web.json_response(response)
@self.routes.get('/files/{directory_type}')
async def get_files(request: web.Request) -> web.Response:
directory_type = request.match_info['directory_type']
if directory_type not in ("output", "input", "temp"):
return web.json_response({"error": "Invalid directory type"}, status=400)
directory = get_directory_by_type(directory_type)
sorted_files = sorted(
(entry for entry in os.scandir(directory) if entry.is_file()),
key=lambda entry: -entry.stat().st_mtime
)
return web.json_response([entry.name for entry in sorted_files], status=200)
def get_app(self):
if self._app is None:
self._app = web.Application()
self.setup_routes()
self._app.add_routes(self.routes)
return self._app

View File

@@ -0,0 +1,60 @@
from app.logger import on_flush
import os
import shutil
class TerminalService:
def __init__(self, server):
self.server = server
self.cols = None
self.rows = None
self.subscriptions = set()
on_flush(self.send_messages)
def get_terminal_size(self):
try:
size = os.get_terminal_size()
return (size.columns, size.lines)
except OSError:
try:
size = shutil.get_terminal_size()
return (size.columns, size.lines)
except OSError:
return (80, 24) # fallback to 80x24
def update_size(self):
columns, lines = self.get_terminal_size()
changed = False
if columns != self.cols:
self.cols = columns
changed = True
if lines != self.rows:
self.rows = lines
changed = True
if changed:
return {"cols": self.cols, "rows": self.rows}
return None
def subscribe(self, client_id):
self.subscriptions.add(client_id)
def unsubscribe(self, client_id):
self.subscriptions.discard(client_id)
def send_messages(self, entries):
if not len(entries) or not len(self.subscriptions):
return
new_size = self.update_size()
for client_id in self.subscriptions.copy(): # prevent: Set changed size during iteration
if client_id not in self.server.sockets:
# Automatically unsub if the socket has disconnected
self.unsubscribe(client_id)
continue
self.server.send_sync("logs", {"entries": entries, "size": new_size}, client_id)

View File

@@ -0,0 +1,42 @@
import os
from typing import List, Union, TypedDict, Literal
from typing_extensions import TypeGuard
class FileInfo(TypedDict):
name: str
path: str
type: Literal["file"]
size: int
class DirectoryInfo(TypedDict):
name: str
path: str
type: Literal["directory"]
FileSystemItem = Union[FileInfo, DirectoryInfo]
def is_file_info(item: FileSystemItem) -> TypeGuard[FileInfo]:
return item["type"] == "file"
class FileSystemOperations:
@staticmethod
def walk_directory(directory: str) -> List[FileSystemItem]:
file_list: List[FileSystemItem] = []
for root, dirs, files in os.walk(directory):
for name in files:
file_path = os.path.join(root, name)
relative_path = os.path.relpath(file_path, directory)
file_list.append({
"name": name,
"path": relative_path,
"type": "file",
"size": os.path.getsize(file_path)
})
for name in dirs:
dir_path = os.path.join(root, name)
relative_path = os.path.relpath(dir_path, directory)
file_list.append({
"name": name,
"path": relative_path,
"type": "directory"
})
return file_list

65
app/app_settings.py Normal file
View File

@@ -0,0 +1,65 @@
import os
import json
from aiohttp import web
import logging
class AppSettings():
def __init__(self, user_manager):
self.user_manager = user_manager
def get_settings(self, request):
try:
file = self.user_manager.get_request_user_filepath(
request,
"comfy.settings.json"
)
except KeyError as e:
logging.error("User settings not found.")
raise web.HTTPUnauthorized() from e
if os.path.isfile(file):
try:
with open(file) as f:
return json.load(f)
except:
logging.error(f"The user settings file is corrupted: {file}")
return {}
else:
return {}
def save_settings(self, request, settings):
file = self.user_manager.get_request_user_filepath(
request, "comfy.settings.json")
with open(file, "w") as f:
f.write(json.dumps(settings, indent=4))
def add_routes(self, routes):
@routes.get("/settings")
async def get_settings(request):
return web.json_response(self.get_settings(request))
@routes.get("/settings/{id}")
async def get_setting(request):
value = None
settings = self.get_settings(request)
setting_id = request.match_info.get("id", None)
if setting_id and setting_id in settings:
value = settings[setting_id]
return web.json_response(value)
@routes.post("/settings")
async def post_settings(request):
settings = self.get_settings(request)
new_settings = await request.json()
self.save_settings(request, {**settings, **new_settings})
return web.Response(status=200)
@routes.post("/settings/{id}")
async def post_setting(request):
setting_id = request.match_info.get("id", None)
if not setting_id:
return web.Response(status=400)
settings = self.get_settings(request)
settings[setting_id] = await request.json()
self.save_settings(request, settings)
return web.Response(status=200)

145
app/custom_node_manager.py Normal file
View File

@@ -0,0 +1,145 @@
from __future__ import annotations
import os
import folder_paths
import glob
from aiohttp import web
import json
import logging
from functools import lru_cache
from utils.json_util import merge_json_recursive
# Extra locale files to load into main.json
EXTRA_LOCALE_FILES = [
"nodeDefs.json",
"commands.json",
"settings.json",
]
def safe_load_json_file(file_path: str) -> dict:
if not os.path.exists(file_path):
return {}
try:
with open(file_path, "r", encoding="utf-8") as f:
return json.load(f)
except json.JSONDecodeError:
logging.error(f"Error loading {file_path}")
return {}
class CustomNodeManager:
@lru_cache(maxsize=1)
def build_translations(self):
"""Load all custom nodes translations during initialization. Translations are
expected to be loaded from `locales/` folder.
The folder structure is expected to be the following:
- custom_nodes/
- custom_node_1/
- locales/
- en/
- main.json
- commands.json
- settings.json
returned translations are expected to be in the following format:
{
"en": {
"nodeDefs": {...},
"commands": {...},
"settings": {...},
...{other main.json keys}
}
}
"""
translations = {}
for folder in folder_paths.get_folder_paths("custom_nodes"):
# Sort glob results for deterministic ordering
for custom_node_dir in sorted(glob.glob(os.path.join(folder, "*/"))):
locales_dir = os.path.join(custom_node_dir, "locales")
if not os.path.exists(locales_dir):
continue
for lang_dir in glob.glob(os.path.join(locales_dir, "*/")):
lang_code = os.path.basename(os.path.dirname(lang_dir))
if lang_code not in translations:
translations[lang_code] = {}
# Load main.json
main_file = os.path.join(lang_dir, "main.json")
node_translations = safe_load_json_file(main_file)
# Load extra locale files
for extra_file in EXTRA_LOCALE_FILES:
extra_file_path = os.path.join(lang_dir, extra_file)
key = extra_file.split(".")[0]
json_data = safe_load_json_file(extra_file_path)
if json_data:
node_translations[key] = json_data
if node_translations:
translations[lang_code] = merge_json_recursive(
translations[lang_code], node_translations
)
return translations
def add_routes(self, routes, webapp, loadedModules):
example_workflow_folder_names = ["example_workflows", "example", "examples", "workflow", "workflows"]
@routes.get("/workflow_templates")
async def get_workflow_templates(request):
"""Returns a web response that contains the map of custom_nodes names and their associated workflow templates. The ones without templates are omitted."""
files = []
for folder in folder_paths.get_folder_paths("custom_nodes"):
for folder_name in example_workflow_folder_names:
pattern = os.path.join(folder, f"*/{folder_name}/*.json")
matched_files = glob.glob(pattern)
files.extend(matched_files)
workflow_templates_dict = (
{}
) # custom_nodes folder name -> example workflow names
for file in files:
custom_nodes_name = os.path.basename(
os.path.dirname(os.path.dirname(file))
)
workflow_name = os.path.splitext(os.path.basename(file))[0]
workflow_templates_dict.setdefault(custom_nodes_name, []).append(
workflow_name
)
return web.json_response(workflow_templates_dict)
# Serve workflow templates from custom nodes.
for module_name, module_dir in loadedModules:
for folder_name in example_workflow_folder_names:
workflows_dir = os.path.join(module_dir, folder_name)
if os.path.exists(workflows_dir):
if folder_name != "example_workflows":
logging.debug(
"Found example workflow folder '%s' for custom node '%s', consider renaming it to 'example_workflows'",
folder_name, module_name)
webapp.add_routes(
[
web.static(
"/api/workflow_templates/" + module_name, workflows_dir
)
]
)
@routes.get("/i18n")
async def get_i18n(request):
"""Returns translations from all custom nodes' locales folders."""
return web.json_response(self.build_translations())

112
app/database/db.py Normal file
View File

@@ -0,0 +1,112 @@
import logging
import os
import shutil
from app.logger import log_startup_warning
from utils.install_util import get_missing_requirements_message
from comfy.cli_args import args
_DB_AVAILABLE = False
Session = None
try:
from alembic import command
from alembic.config import Config
from alembic.runtime.migration import MigrationContext
from alembic.script import ScriptDirectory
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
_DB_AVAILABLE = True
except ImportError as e:
log_startup_warning(
f"""
------------------------------------------------------------------------
Error importing dependencies: {e}
{get_missing_requirements_message()}
This error is happening because ComfyUI now uses a local sqlite database.
------------------------------------------------------------------------
""".strip()
)
def dependencies_available():
"""
Temporary function to check if the dependencies are available
"""
return _DB_AVAILABLE
def can_create_session():
"""
Temporary function to check if the database is available to create a session
During initial release there may be environmental issues (or missing dependencies) that prevent the database from being created
"""
return dependencies_available() and Session is not None
def get_alembic_config():
root_path = os.path.join(os.path.dirname(__file__), "../..")
config_path = os.path.abspath(os.path.join(root_path, "alembic.ini"))
scripts_path = os.path.abspath(os.path.join(root_path, "alembic_db"))
config = Config(config_path)
config.set_main_option("script_location", scripts_path)
config.set_main_option("sqlalchemy.url", args.database_url)
return config
def get_db_path():
url = args.database_url
if url.startswith("sqlite:///"):
return url.split("///")[1]
else:
raise ValueError(f"Unsupported database URL '{url}'.")
def init_db():
db_url = args.database_url
logging.debug(f"Database URL: {db_url}")
db_path = get_db_path()
db_exists = os.path.exists(db_path)
config = get_alembic_config()
# Check if we need to upgrade
engine = create_engine(db_url)
conn = engine.connect()
context = MigrationContext.configure(conn)
current_rev = context.get_current_revision()
script = ScriptDirectory.from_config(config)
target_rev = script.get_current_head()
if target_rev is None:
logging.warning("No target revision found.")
elif current_rev != target_rev:
# Backup the database pre upgrade
backup_path = db_path + ".bkp"
if db_exists:
shutil.copy(db_path, backup_path)
else:
backup_path = None
try:
command.upgrade(config, target_rev)
logging.info(f"Database upgraded from {current_rev} to {target_rev}")
except Exception as e:
if backup_path:
# Restore the database from backup if upgrade fails
shutil.copy(backup_path, db_path)
os.remove(backup_path)
logging.exception("Error upgrading database: ")
raise e
global Session
Session = sessionmaker(bind=engine)
def create_session():
return Session()

14
app/database/models.py Normal file
View File

@@ -0,0 +1,14 @@
from sqlalchemy.orm import declarative_base
Base = declarative_base()
def to_dict(obj):
fields = obj.__table__.columns.keys()
return {
field: (val.to_dict() if hasattr(val, "to_dict") else val)
for field in fields
if (val := getattr(obj, field))
}
# TODO: Define models here

326
app/frontend_management.py Normal file
View File

@@ -0,0 +1,326 @@
from __future__ import annotations
import argparse
import logging
import os
import re
import sys
import tempfile
import zipfile
import importlib
from dataclasses import dataclass
from functools import cached_property
from pathlib import Path
from typing import TypedDict, Optional
from importlib.metadata import version
import requests
from typing_extensions import NotRequired
from utils.install_util import get_missing_requirements_message, requirements_path
from comfy.cli_args import DEFAULT_VERSION_STRING
import app.logger
def frontend_install_warning_message():
return f"""
{get_missing_requirements_message()}
This error is happening because the ComfyUI frontend is no longer shipped as part of the main repo but as a pip package instead.
""".strip()
def check_frontend_version():
"""Check if the frontend version is up to date."""
def parse_version(version: str) -> tuple[int, int, int]:
return tuple(map(int, version.split(".")))
try:
frontend_version_str = version("comfyui-frontend-package")
frontend_version = parse_version(frontend_version_str)
with open(requirements_path, "r", encoding="utf-8") as f:
required_frontend = parse_version(f.readline().split("=")[-1])
if frontend_version < required_frontend:
app.logger.log_startup_warning(
f"""
________________________________________________________________________
WARNING WARNING WARNING WARNING WARNING
Installed frontend version {".".join(map(str, frontend_version))} is lower than the recommended version {".".join(map(str, required_frontend))}.
{frontend_install_warning_message()}
________________________________________________________________________
""".strip()
)
else:
logging.info("ComfyUI frontend version: {}".format(frontend_version_str))
except Exception as e:
logging.error(f"Failed to check frontend version: {e}")
REQUEST_TIMEOUT = 10 # seconds
class Asset(TypedDict):
url: str
class Release(TypedDict):
id: int
tag_name: str
name: str
prerelease: bool
created_at: str
published_at: str
body: str
assets: NotRequired[list[Asset]]
@dataclass
class FrontEndProvider:
owner: str
repo: str
@property
def folder_name(self) -> str:
return f"{self.owner}_{self.repo}"
@property
def release_url(self) -> str:
return f"https://api.github.com/repos/{self.owner}/{self.repo}/releases"
@cached_property
def all_releases(self) -> list[Release]:
releases = []
api_url = self.release_url
while api_url:
response = requests.get(api_url, timeout=REQUEST_TIMEOUT)
response.raise_for_status() # Raises an HTTPError if the response was an error
releases.extend(response.json())
# GitHub uses the Link header to provide pagination links. Check if it exists and update api_url accordingly.
if "next" in response.links:
api_url = response.links["next"]["url"]
else:
api_url = None
return releases
@cached_property
def latest_release(self) -> Release:
latest_release_url = f"{self.release_url}/latest"
response = requests.get(latest_release_url, timeout=REQUEST_TIMEOUT)
response.raise_for_status() # Raises an HTTPError if the response was an error
return response.json()
@cached_property
def latest_prerelease(self) -> Release:
"""Get the latest pre-release version - even if it's older than the latest release"""
release = [release for release in self.all_releases if release["prerelease"]]
if not release:
raise ValueError("No pre-releases found")
# GitHub returns releases in reverse chronological order, so first is latest
return release[0]
def get_release(self, version: str) -> Release:
if version == "latest":
return self.latest_release
elif version == "prerelease":
return self.latest_prerelease
else:
for release in self.all_releases:
if release["tag_name"] in [version, f"v{version}"]:
return release
raise ValueError(f"Version {version} not found in releases")
def download_release_asset_zip(release: Release, destination_path: str) -> None:
"""Download dist.zip from github release."""
asset_url = None
for asset in release.get("assets", []):
if asset["name"] == "dist.zip":
asset_url = asset["url"]
break
if not asset_url:
raise ValueError("dist.zip not found in the release assets")
# Use a temporary file to download the zip content
with tempfile.TemporaryFile() as tmp_file:
headers = {"Accept": "application/octet-stream"}
response = requests.get(
asset_url, headers=headers, allow_redirects=True, timeout=REQUEST_TIMEOUT
)
response.raise_for_status() # Ensure we got a successful response
# Write the content to the temporary file
tmp_file.write(response.content)
# Go back to the beginning of the temporary file
tmp_file.seek(0)
# Extract the zip file content to the destination path
with zipfile.ZipFile(tmp_file, "r") as zip_ref:
zip_ref.extractall(destination_path)
class FrontendManager:
CUSTOM_FRONTENDS_ROOT = str(Path(__file__).parents[1] / "web_custom_versions")
@classmethod
def default_frontend_path(cls) -> str:
try:
import comfyui_frontend_package
return str(importlib.resources.files(comfyui_frontend_package) / "static")
except ImportError:
logging.error(
f"""
********** ERROR ***********
comfyui-frontend-package is not installed.
{frontend_install_warning_message()}
********** ERROR ***********
""".strip()
)
sys.exit(-1)
@classmethod
def templates_path(cls) -> str:
try:
import comfyui_workflow_templates
return str(
importlib.resources.files(comfyui_workflow_templates) / "templates"
)
except ImportError:
logging.error(
f"""
********** ERROR ***********
comfyui-workflow-templates is not installed.
{frontend_install_warning_message()}
********** ERROR ***********
""".strip()
)
@classmethod
def embedded_docs_path(cls) -> str:
"""Get the path to embedded documentation"""
try:
import comfyui_embedded_docs
return str(
importlib.resources.files(comfyui_embedded_docs) / "docs"
)
except ImportError:
logging.info("comfyui-embedded-docs package not found")
return None
@classmethod
def parse_version_string(cls, value: str) -> tuple[str, str, str]:
"""
Args:
value (str): The version string to parse.
Returns:
tuple[str, str]: A tuple containing provider name and version.
Raises:
argparse.ArgumentTypeError: If the version string is invalid.
"""
VERSION_PATTERN = r"^([a-zA-Z0-9][a-zA-Z0-9-]{0,38})/([a-zA-Z0-9_.-]+)@(v?\d+\.\d+\.\d+[-._a-zA-Z0-9]*|latest|prerelease)$"
match_result = re.match(VERSION_PATTERN, value)
if match_result is None:
raise argparse.ArgumentTypeError(f"Invalid version string: {value}")
return match_result.group(1), match_result.group(2), match_result.group(3)
@classmethod
def init_frontend_unsafe(
cls, version_string: str, provider: Optional[FrontEndProvider] = None
) -> str:
"""
Initializes the frontend for the specified version.
Args:
version_string (str): The version string.
provider (FrontEndProvider, optional): The provider to use. Defaults to None.
Returns:
str: The path to the initialized frontend.
Raises:
Exception: If there is an error during the initialization process.
main error source might be request timeout or invalid URL.
"""
if version_string == DEFAULT_VERSION_STRING:
check_frontend_version()
return cls.default_frontend_path()
repo_owner, repo_name, version = cls.parse_version_string(version_string)
if version.startswith("v"):
expected_path = str(
Path(cls.CUSTOM_FRONTENDS_ROOT)
/ f"{repo_owner}_{repo_name}"
/ version.lstrip("v")
)
if os.path.exists(expected_path):
logging.info(
f"Using existing copy of specific frontend version tag: {repo_owner}/{repo_name}@{version}"
)
return expected_path
logging.info(
f"Initializing frontend: {repo_owner}/{repo_name}@{version}, requesting version details from GitHub..."
)
provider = provider or FrontEndProvider(repo_owner, repo_name)
release = provider.get_release(version)
semantic_version = release["tag_name"].lstrip("v")
web_root = str(
Path(cls.CUSTOM_FRONTENDS_ROOT) / provider.folder_name / semantic_version
)
if not os.path.exists(web_root):
try:
os.makedirs(web_root, exist_ok=True)
logging.info(
"Downloading frontend(%s) version(%s) to (%s)",
provider.folder_name,
semantic_version,
web_root,
)
logging.debug(release)
download_release_asset_zip(release, destination_path=web_root)
finally:
# Clean up the directory if it is empty, i.e. the download failed
if not os.listdir(web_root):
os.rmdir(web_root)
return web_root
@classmethod
def init_frontend(cls, version_string: str) -> str:
"""
Initializes the frontend with the specified version string.
Args:
version_string (str): The version string to initialize the frontend with.
Returns:
str: The path of the initialized frontend.
"""
try:
return cls.init_frontend_unsafe(version_string)
except Exception as e:
logging.error("Failed to initialize frontend: %s", e)
logging.info("Falling back to the default frontend.")
check_frontend_version()
return cls.default_frontend_path()

98
app/logger.py Normal file
View File

@@ -0,0 +1,98 @@
from collections import deque
from datetime import datetime
import io
import logging
import sys
import threading
logs = None
stdout_interceptor = None
stderr_interceptor = None
class LogInterceptor(io.TextIOWrapper):
def __init__(self, stream, *args, **kwargs):
buffer = stream.buffer
encoding = stream.encoding
super().__init__(buffer, *args, **kwargs, encoding=encoding, line_buffering=stream.line_buffering)
self._lock = threading.Lock()
self._flush_callbacks = []
self._logs_since_flush = []
def write(self, data):
entry = {"t": datetime.now().isoformat(), "m": data}
with self._lock:
self._logs_since_flush.append(entry)
# Simple handling for cr to overwrite the last output if it isnt a full line
# else logs just get full of progress messages
if isinstance(data, str) and data.startswith("\r") and not logs[-1]["m"].endswith("\n"):
logs.pop()
logs.append(entry)
super().write(data)
def flush(self):
super().flush()
for cb in self._flush_callbacks:
cb(self._logs_since_flush)
self._logs_since_flush = []
def on_flush(self, callback):
self._flush_callbacks.append(callback)
def get_logs():
return logs
def on_flush(callback):
if stdout_interceptor is not None:
stdout_interceptor.on_flush(callback)
if stderr_interceptor is not None:
stderr_interceptor.on_flush(callback)
def setup_logger(log_level: str = 'INFO', capacity: int = 300, use_stdout: bool = False):
global logs
if logs:
return
# Override output streams and log to buffer
logs = deque(maxlen=capacity)
global stdout_interceptor
global stderr_interceptor
stdout_interceptor = sys.stdout = LogInterceptor(sys.stdout)
stderr_interceptor = sys.stderr = LogInterceptor(sys.stderr)
# Setup default global logger
logger = logging.getLogger()
logger.setLevel(log_level)
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(logging.Formatter("%(message)s"))
if use_stdout:
# Only errors and critical to stderr
stream_handler.addFilter(lambda record: not record.levelno < logging.ERROR)
# Lesser to stdout
stdout_handler = logging.StreamHandler(sys.stdout)
stdout_handler.setFormatter(logging.Formatter("%(message)s"))
stdout_handler.addFilter(lambda record: record.levelno < logging.ERROR)
logger.addHandler(stdout_handler)
logger.addHandler(stream_handler)
STARTUP_WARNINGS = []
def log_startup_warning(msg):
logging.warning(msg)
STARTUP_WARNINGS.append(msg)
def print_startup_warnings():
for s in STARTUP_WARNINGS:
logging.warning(s)
STARTUP_WARNINGS.clear()

184
app/model_manager.py Normal file
View File

@@ -0,0 +1,184 @@
from __future__ import annotations
import os
import base64
import json
import time
import logging
import folder_paths
import glob
import comfy.utils
from aiohttp import web
from PIL import Image
from io import BytesIO
from folder_paths import map_legacy, filter_files_extensions, filter_files_content_types
class ModelFileManager:
def __init__(self) -> None:
self.cache: dict[str, tuple[list[dict], dict[str, float], float]] = {}
def get_cache(self, key: str, default=None) -> tuple[list[dict], dict[str, float], float] | None:
return self.cache.get(key, default)
def set_cache(self, key: str, value: tuple[list[dict], dict[str, float], float]):
self.cache[key] = value
def clear_cache(self):
self.cache.clear()
def add_routes(self, routes):
# NOTE: This is an experiment to replace `/models`
@routes.get("/experiment/models")
async def get_model_folders(request):
model_types = list(folder_paths.folder_names_and_paths.keys())
folder_black_list = ["configs", "custom_nodes"]
output_folders: list[dict] = []
for folder in model_types:
if folder in folder_black_list:
continue
output_folders.append({"name": folder, "folders": folder_paths.get_folder_paths(folder)})
return web.json_response(output_folders)
# NOTE: This is an experiment to replace `/models/{folder}`
@routes.get("/experiment/models/{folder}")
async def get_all_models(request):
folder = request.match_info.get("folder", None)
if not folder in folder_paths.folder_names_and_paths:
return web.Response(status=404)
files = self.get_model_file_list(folder)
return web.json_response(files)
@routes.get("/experiment/models/preview/{folder}/{path_index}/{filename:.*}")
async def get_model_preview(request):
folder_name = request.match_info.get("folder", None)
path_index = int(request.match_info.get("path_index", None))
filename = request.match_info.get("filename", None)
if not folder_name in folder_paths.folder_names_and_paths:
return web.Response(status=404)
folders = folder_paths.folder_names_and_paths[folder_name]
folder = folders[0][path_index]
full_filename = os.path.join(folder, filename)
previews = self.get_model_previews(full_filename)
default_preview = previews[0] if len(previews) > 0 else None
if default_preview is None or (isinstance(default_preview, str) and not os.path.isfile(default_preview)):
return web.Response(status=404)
try:
with Image.open(default_preview) as img:
img_bytes = BytesIO()
img.save(img_bytes, format="WEBP")
img_bytes.seek(0)
return web.Response(body=img_bytes.getvalue(), content_type="image/webp")
except:
return web.Response(status=404)
def get_model_file_list(self, folder_name: str):
folder_name = map_legacy(folder_name)
folders = folder_paths.folder_names_and_paths[folder_name]
output_list: list[dict] = []
for index, folder in enumerate(folders[0]):
if not os.path.isdir(folder):
continue
out = self.cache_model_file_list_(folder)
if out is None:
out = self.recursive_search_models_(folder, index)
self.set_cache(folder, out)
output_list.extend(out[0])
return output_list
def cache_model_file_list_(self, folder: str):
model_file_list_cache = self.get_cache(folder)
if model_file_list_cache is None:
return None
if not os.path.isdir(folder):
return None
if os.path.getmtime(folder) != model_file_list_cache[1]:
return None
for x in model_file_list_cache[1]:
time_modified = model_file_list_cache[1][x]
folder = x
if os.path.getmtime(folder) != time_modified:
return None
return model_file_list_cache
def recursive_search_models_(self, directory: str, pathIndex: int) -> tuple[list[str], dict[str, float], float]:
if not os.path.isdir(directory):
return [], {}, time.perf_counter()
excluded_dir_names = [".git"]
# TODO use settings
include_hidden_files = False
result: list[str] = []
dirs: dict[str, float] = {}
for dirpath, subdirs, filenames in os.walk(directory, followlinks=True, topdown=True):
subdirs[:] = [d for d in subdirs if d not in excluded_dir_names]
if not include_hidden_files:
subdirs[:] = [d for d in subdirs if not d.startswith(".")]
filenames = [f for f in filenames if not f.startswith(".")]
filenames = filter_files_extensions(filenames, folder_paths.supported_pt_extensions)
for file_name in filenames:
try:
relative_path = os.path.relpath(os.path.join(dirpath, file_name), directory)
result.append(relative_path)
except:
logging.warning(f"Warning: Unable to access {file_name}. Skipping this file.")
continue
for d in subdirs:
path: str = os.path.join(dirpath, d)
try:
dirs[path] = os.path.getmtime(path)
except FileNotFoundError:
logging.warning(f"Warning: Unable to access {path}. Skipping this path.")
continue
return [{"name": f, "pathIndex": pathIndex} for f in result], dirs, time.perf_counter()
def get_model_previews(self, filepath: str) -> list[str | BytesIO]:
dirname = os.path.dirname(filepath)
if not os.path.exists(dirname):
return []
basename = os.path.splitext(filepath)[0]
match_files = glob.glob(f"{basename}.*", recursive=False)
image_files = filter_files_content_types(match_files, "image")
safetensors_file = next(filter(lambda x: x.endswith(".safetensors"), match_files), None)
safetensors_metadata = {}
result: list[str | BytesIO] = []
for filename in image_files:
_basename = os.path.splitext(filename)[0]
if _basename == basename:
result.append(filename)
if _basename == f"{basename}.preview":
result.append(filename)
if safetensors_file:
safetensors_filepath = os.path.join(dirname, safetensors_file)
header = comfy.utils.safetensors_header(safetensors_filepath, max_size=8*1024*1024)
if header:
safetensors_metadata = json.loads(header)
safetensors_images = safetensors_metadata.get("__metadata__", {}).get("ssmd_cover_images", None)
if safetensors_images:
safetensors_images = json.loads(safetensors_images)
for image in safetensors_images:
result.append(BytesIO(base64.b64decode(image)))
return result
def __exit__(self, exc_type, exc_value, traceback):
self.clear_cache()

436
app/user_manager.py Normal file
View File

@@ -0,0 +1,436 @@
from __future__ import annotations
import json
import os
import re
import uuid
import glob
import shutil
import logging
from aiohttp import web
from urllib import parse
from comfy.cli_args import args
import folder_paths
from .app_settings import AppSettings
from typing import TypedDict
default_user = "default"
class FileInfo(TypedDict):
path: str
size: int
modified: int
def get_file_info(path: str, relative_to: str) -> FileInfo:
return {
"path": os.path.relpath(path, relative_to).replace(os.sep, '/'),
"size": os.path.getsize(path),
"modified": os.path.getmtime(path)
}
class UserManager():
def __init__(self):
user_directory = folder_paths.get_user_directory()
self.settings = AppSettings(self)
if not os.path.exists(user_directory):
os.makedirs(user_directory, exist_ok=True)
if not args.multi_user:
logging.warning("****** User settings have been changed to be stored on the server instead of browser storage. ******")
logging.warning("****** For multi-user setups add the --multi-user CLI argument to enable multiple user profiles. ******")
if args.multi_user:
if os.path.isfile(self.get_users_file()):
with open(self.get_users_file()) as f:
self.users = json.load(f)
else:
self.users = {}
else:
self.users = {"default": "default"}
def get_users_file(self):
return os.path.join(folder_paths.get_user_directory(), "users.json")
def get_request_user_id(self, request):
user = "default"
if args.multi_user and "comfy-user" in request.headers:
user = request.headers["comfy-user"]
if user not in self.users:
raise KeyError("Unknown user: " + user)
return user
def get_request_user_filepath(self, request, file, type="userdata", create_dir=True):
user_directory = folder_paths.get_user_directory()
if type == "userdata":
root_dir = user_directory
else:
raise KeyError("Unknown filepath type:" + type)
user = self.get_request_user_id(request)
path = user_root = os.path.abspath(os.path.join(root_dir, user))
# prevent leaving /{type}
if os.path.commonpath((root_dir, user_root)) != root_dir:
return None
if file is not None:
# Check if filename is url encoded
if "%" in file:
file = parse.unquote(file)
# prevent leaving /{type}/{user}
path = os.path.abspath(os.path.join(user_root, file))
if os.path.commonpath((user_root, path)) != user_root:
return None
parent = os.path.split(path)[0]
if create_dir and not os.path.exists(parent):
os.makedirs(parent, exist_ok=True)
return path
def add_user(self, name):
name = name.strip()
if not name:
raise ValueError("username not provided")
user_id = re.sub("[^a-zA-Z0-9-_]+", '-', name)
user_id = user_id + "_" + str(uuid.uuid4())
self.users[user_id] = name
with open(self.get_users_file(), "w") as f:
json.dump(self.users, f)
return user_id
def add_routes(self, routes):
self.settings.add_routes(routes)
@routes.get("/users")
async def get_users(request):
if args.multi_user:
return web.json_response({"storage": "server", "users": self.users})
else:
user_dir = self.get_request_user_filepath(request, None, create_dir=False)
return web.json_response({
"storage": "server",
"migrated": os.path.exists(user_dir)
})
@routes.post("/users")
async def post_users(request):
body = await request.json()
username = body["username"]
if username in self.users.values():
return web.json_response({"error": "Duplicate username."}, status=400)
user_id = self.add_user(username)
return web.json_response(user_id)
@routes.get("/userdata")
async def listuserdata(request):
"""
List user data files in a specified directory.
This endpoint allows listing files in a user's data directory, with options for recursion,
full file information, and path splitting.
Query Parameters:
- dir (required): The directory to list files from.
- recurse (optional): If "true", recursively list files in subdirectories.
- full_info (optional): If "true", return detailed file information (path, size, modified time).
- split (optional): If "true", split file paths into components (only applies when full_info is false).
Returns:
- 400: If 'dir' parameter is missing.
- 403: If the requested path is not allowed.
- 404: If the requested directory does not exist.
- 200: JSON response with the list of files or file information.
The response format depends on the query parameters:
- Default: List of relative file paths.
- full_info=true: List of dictionaries with file details.
- split=true (and full_info=false): List of lists, each containing path components.
"""
directory = request.rel_url.query.get('dir', '')
if not directory:
return web.Response(status=400, text="Directory not provided")
path = self.get_request_user_filepath(request, directory)
if not path:
return web.Response(status=403, text="Invalid directory")
if not os.path.exists(path):
return web.Response(status=404, text="Directory not found")
recurse = request.rel_url.query.get('recurse', '').lower() == "true"
full_info = request.rel_url.query.get('full_info', '').lower() == "true"
split_path = request.rel_url.query.get('split', '').lower() == "true"
# Use different patterns based on whether we're recursing or not
if recurse:
pattern = os.path.join(glob.escape(path), '**', '*')
else:
pattern = os.path.join(glob.escape(path), '*')
def process_full_path(full_path: str) -> FileInfo | str | list[str]:
if full_info:
return get_file_info(full_path, path)
rel_path = os.path.relpath(full_path, path).replace(os.sep, '/')
if split_path:
return [rel_path] + rel_path.split('/')
return rel_path
results = [
process_full_path(full_path)
for full_path in glob.glob(pattern, recursive=recurse)
if os.path.isfile(full_path)
]
return web.json_response(results)
@routes.get("/v2/userdata")
async def list_userdata_v2(request):
"""
List files and directories in a user's data directory.
This endpoint provides a structured listing of contents within a specified
subdirectory of the user's data storage.
Query Parameters:
- path (optional): The relative path within the user's data directory
to list. Defaults to the root ('').
Returns:
- 400: If the requested path is invalid, outside the user's data directory, or is not a directory.
- 404: If the requested path does not exist.
- 403: If the user is invalid.
- 500: If there is an error reading the directory contents.
- 200: JSON response containing a list of file and directory objects.
Each object includes:
- name: The name of the file or directory.
- type: 'file' or 'directory'.
- path: The relative path from the user's data root.
- size (for files): The size in bytes.
- modified (for files): The last modified timestamp (Unix epoch).
"""
requested_rel_path = request.rel_url.query.get('path', '')
# URL-decode the path parameter
try:
requested_rel_path = parse.unquote(requested_rel_path)
except Exception as e:
logging.warning(f"Failed to decode path parameter: {requested_rel_path}, Error: {e}")
return web.Response(status=400, text="Invalid characters in path parameter")
# Check user validity and get the absolute path for the requested directory
try:
base_user_path = self.get_request_user_filepath(request, None, create_dir=False)
if requested_rel_path:
target_abs_path = self.get_request_user_filepath(request, requested_rel_path, create_dir=False)
else:
target_abs_path = base_user_path
except KeyError as e:
# Invalid user detected by get_request_user_id inside get_request_user_filepath
logging.warning(f"Access denied for user: {e}")
return web.Response(status=403, text="Invalid user specified in request")
if not target_abs_path:
# Path traversal or other issue detected by get_request_user_filepath
return web.Response(status=400, text="Invalid path requested")
# Handle cases where the user directory or target path doesn't exist
if not os.path.exists(target_abs_path):
# Check if it's the base user directory that's missing (new user case)
if target_abs_path == base_user_path:
# It's okay if the base user directory doesn't exist yet, return empty list
return web.json_response([])
else:
# A specific subdirectory was requested but doesn't exist
return web.Response(status=404, text="Requested path not found")
if not os.path.isdir(target_abs_path):
return web.Response(status=400, text="Requested path is not a directory")
results = []
try:
for root, dirs, files in os.walk(target_abs_path, topdown=True):
# Process directories
for dir_name in dirs:
dir_path = os.path.join(root, dir_name)
rel_path = os.path.relpath(dir_path, base_user_path).replace(os.sep, '/')
results.append({
"name": dir_name,
"path": rel_path,
"type": "directory"
})
# Process files
for file_name in files:
file_path = os.path.join(root, file_name)
rel_path = os.path.relpath(file_path, base_user_path).replace(os.sep, '/')
entry_info = {
"name": file_name,
"path": rel_path,
"type": "file"
}
try:
stats = os.stat(file_path) # Use os.stat for potentially better performance with os.walk
entry_info["size"] = stats.st_size
entry_info["modified"] = stats.st_mtime
except OSError as stat_error:
logging.warning(f"Could not stat file {file_path}: {stat_error}")
pass # Include file with available info
results.append(entry_info)
except OSError as e:
logging.error(f"Error listing directory {target_abs_path}: {e}")
return web.Response(status=500, text="Error reading directory contents")
# Sort results alphabetically, directories first then files
results.sort(key=lambda x: (x['type'] != 'directory', x['name'].lower()))
return web.json_response(results)
def get_user_data_path(request, check_exists = False, param = "file"):
file = request.match_info.get(param, None)
if not file:
return web.Response(status=400)
path = self.get_request_user_filepath(request, file)
if not path:
return web.Response(status=403)
if check_exists and not os.path.exists(path):
return web.Response(status=404)
return path
@routes.get("/userdata/{file}")
async def getuserdata(request):
path = get_user_data_path(request, check_exists=True)
if not isinstance(path, str):
return path
return web.FileResponse(path)
@routes.post("/userdata/{file}")
async def post_userdata(request):
"""
Upload or update a user data file.
This endpoint handles file uploads to a user's data directory, with options for
controlling overwrite behavior and response format.
Query Parameters:
- overwrite (optional): If "false", prevents overwriting existing files. Defaults to "true".
- full_info (optional): If "true", returns detailed file information (path, size, modified time).
If "false", returns only the relative file path.
Path Parameters:
- file: The target file path (URL encoded if necessary).
Returns:
- 400: If 'file' parameter is missing.
- 403: If the requested path is not allowed.
- 409: If overwrite=false and the file already exists.
- 200: JSON response with either:
- Full file information (if full_info=true)
- Relative file path (if full_info=false)
The request body should contain the raw file content to be written.
"""
path = get_user_data_path(request)
if not isinstance(path, str):
return path
overwrite = request.query.get("overwrite", 'true') != "false"
full_info = request.query.get('full_info', 'false').lower() == "true"
if not overwrite and os.path.exists(path):
return web.Response(status=409, text="File already exists")
body = await request.read()
with open(path, "wb") as f:
f.write(body)
user_path = self.get_request_user_filepath(request, None)
if full_info:
resp = get_file_info(path, user_path)
else:
resp = os.path.relpath(path, user_path)
return web.json_response(resp)
@routes.delete("/userdata/{file}")
async def delete_userdata(request):
path = get_user_data_path(request, check_exists=True)
if not isinstance(path, str):
return path
os.remove(path)
return web.Response(status=204)
@routes.post("/userdata/{file}/move/{dest}")
async def move_userdata(request):
"""
Move or rename a user data file.
This endpoint handles moving or renaming files within a user's data directory, with options for
controlling overwrite behavior and response format.
Path Parameters:
- file: The source file path (URL encoded if necessary)
- dest: The destination file path (URL encoded if necessary)
Query Parameters:
- overwrite (optional): If "false", prevents overwriting existing files. Defaults to "true".
- full_info (optional): If "true", returns detailed file information (path, size, modified time).
If "false", returns only the relative file path.
Returns:
- 400: If either 'file' or 'dest' parameter is missing
- 403: If either requested path is not allowed
- 404: If the source file does not exist
- 409: If overwrite=false and the destination file already exists
- 200: JSON response with either:
- Full file information (if full_info=true)
- Relative file path (if full_info=false)
"""
source = get_user_data_path(request, check_exists=True)
if not isinstance(source, str):
return source
dest = get_user_data_path(request, check_exists=False, param="dest")
if not isinstance(source, str):
return dest
overwrite = request.query.get("overwrite", 'true') != "false"
full_info = request.query.get('full_info', 'false').lower() == "true"
if not overwrite and os.path.exists(dest):
return web.Response(status=409, text="File already exists")
logging.info(f"moving '{source}' -> '{dest}'")
shutil.move(source, dest)
user_path = self.get_request_user_filepath(request, None)
if full_info:
resp = get_file_info(dest, user_path)
else:
resp = os.path.relpath(dest, user_path)
return web.json_response(resp)

View File

@@ -0,0 +1,13 @@
import pickle
load = pickle.load
class Empty:
pass
class Unpickler(pickle.Unpickler):
def find_class(self, module, name):
#TODO: safe unpickle
if module.startswith("pytorch_lightning"):
return Empty
return super().find_class(module, name)

View File

@@ -2,21 +2,56 @@
#and modified
import torch
import torch as th
import torch.nn as nn
from ..ldm.modules.diffusionmodules.util import (
conv_nd,
linear,
zero_module,
timestep_embedding,
)
from ..ldm.modules.attention import SpatialTransformer
from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock
from ..ldm.models.diffusion.ddpm import LatentDiffusion
from ..ldm.util import log_txt_as_img, exists, instantiate_from_config
from ..ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample
from ..ldm.util import exists
from .control_types import UNION_CONTROLNET_TYPES
from collections import OrderedDict
import comfy.ops
from comfy.ldm.modules.attention import optimized_attention
class OptimizedAttention(nn.Module):
def __init__(self, c, nhead, dropout=0.0, dtype=None, device=None, operations=None):
super().__init__()
self.heads = nhead
self.c = c
self.in_proj = operations.Linear(c, c * 3, bias=True, dtype=dtype, device=device)
self.out_proj = operations.Linear(c, c, bias=True, dtype=dtype, device=device)
def forward(self, x):
x = self.in_proj(x)
q, k, v = x.split(self.c, dim=2)
out = optimized_attention(q, k, v, self.heads)
return self.out_proj(out)
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResBlockUnionControlnet(nn.Module):
def __init__(self, dim, nhead, dtype=None, device=None, operations=None):
super().__init__()
self.attn = OptimizedAttention(dim, nhead, dtype=dtype, device=device, operations=operations)
self.ln_1 = operations.LayerNorm(dim, dtype=dtype, device=device)
self.mlp = nn.Sequential(
OrderedDict([("c_fc", operations.Linear(dim, dim * 4, dtype=dtype, device=device)), ("gelu", QuickGELU()),
("c_proj", operations.Linear(dim * 4, dim, dtype=dtype, device=device))]))
self.ln_2 = operations.LayerNorm(dim, dtype=dtype, device=device)
def attention(self, x: torch.Tensor):
return self.attn(x)
def forward(self, x: torch.Tensor):
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class ControlledUnetModel(UNetModel):
#implemented in the ldm unet
@@ -30,13 +65,13 @@ class ControlNet(nn.Module):
model_channels,
hint_channels,
num_res_blocks,
attention_resolutions,
dropout=0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
num_classes=None,
use_checkpoint=False,
use_fp16=False,
dtype=torch.float32,
num_heads=-1,
num_head_channels=-1,
num_heads_upsample=-1,
@@ -52,8 +87,17 @@ class ControlNet(nn.Module):
num_attention_blocks=None,
disable_middle_self_attn=False,
use_linear_in_transformer=False,
adm_in_channels=None,
transformer_depth_middle=None,
transformer_depth_output=None,
attn_precision=None,
union_controlnet_num_control_type=None,
device=None,
operations=comfy.ops.disable_weight_init,
**kwargs,
):
super().__init__()
assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
if use_spatial_transformer:
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
@@ -76,6 +120,7 @@ class ControlNet(nn.Module):
self.image_size = image_size
self.in_channels = in_channels
self.model_channels = model_channels
if isinstance(num_res_blocks, int):
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
else:
@@ -83,23 +128,22 @@ class ControlNet(nn.Module):
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
"as a list/tuple (per-level) with the same length as channel_mult")
self.num_res_blocks = num_res_blocks
if disable_self_attentions is not None:
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
assert len(disable_self_attentions) == len(channel_mult)
if num_attention_blocks is not None:
assert len(num_attention_blocks) == len(self.num_res_blocks)
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
f"attention will still not be set.")
self.attention_resolutions = attention_resolutions
transformer_depth = transformer_depth[:]
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.num_classes = num_classes
self.use_checkpoint = use_checkpoint
self.dtype = th.float16 if use_fp16 else th.float32
self.dtype = dtype
self.num_heads = num_heads
self.num_head_channels = num_head_channels
self.num_heads_upsample = num_heads_upsample
@@ -107,36 +151,53 @@ class ControlNet(nn.Module):
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
operations.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
)
if self.num_classes is not None:
if isinstance(self.num_classes, int):
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
elif self.num_classes == "continuous":
self.label_emb = nn.Linear(1, time_embed_dim)
elif self.num_classes == "sequential":
assert adm_in_channels is not None
self.label_emb = nn.Sequential(
nn.Sequential(
operations.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
nn.SiLU(),
operations.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
)
)
else:
raise ValueError()
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequential(
conv_nd(dims, in_channels, model_channels, 3, padding=1)
operations.conv_nd(dims, in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
)
]
)
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)])
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, operations=operations, dtype=self.dtype, device=device)])
self.input_hint_block = TimestepEmbedSequential(
conv_nd(dims, hint_channels, 16, 3, padding=1),
operations.conv_nd(dims, hint_channels, 16, 3, padding=1, dtype=self.dtype, device=device),
nn.SiLU(),
conv_nd(dims, 16, 16, 3, padding=1),
operations.conv_nd(dims, 16, 16, 3, padding=1, dtype=self.dtype, device=device),
nn.SiLU(),
conv_nd(dims, 16, 32, 3, padding=1, stride=2),
operations.conv_nd(dims, 16, 32, 3, padding=1, stride=2, dtype=self.dtype, device=device),
nn.SiLU(),
conv_nd(dims, 32, 32, 3, padding=1),
operations.conv_nd(dims, 32, 32, 3, padding=1, dtype=self.dtype, device=device),
nn.SiLU(),
conv_nd(dims, 32, 96, 3, padding=1, stride=2),
operations.conv_nd(dims, 32, 96, 3, padding=1, stride=2, dtype=self.dtype, device=device),
nn.SiLU(),
conv_nd(dims, 96, 96, 3, padding=1),
operations.conv_nd(dims, 96, 96, 3, padding=1, dtype=self.dtype, device=device),
nn.SiLU(),
conv_nd(dims, 96, 256, 3, padding=1, stride=2),
operations.conv_nd(dims, 96, 256, 3, padding=1, stride=2, dtype=self.dtype, device=device),
nn.SiLU(),
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1))
operations.conv_nd(dims, 256, model_channels, 3, padding=1, dtype=self.dtype, device=device)
)
self._feature_size = model_channels
@@ -154,10 +215,14 @@ class ControlNet(nn.Module):
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
dtype=self.dtype,
device=device,
operations=operations,
)
]
ch = mult * model_channels
if ds in attention_resolutions:
num_transformers = transformer_depth.pop(0)
if num_transformers > 0:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
@@ -173,20 +238,14 @@ class ControlNet(nn.Module):
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
layers.append(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
SpatialTransformer(
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
)
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
self.zero_convs.append(self.make_zero_conv(ch))
self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
@@ -202,16 +261,19 @@ class ControlNet(nn.Module):
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
dtype=self.dtype,
device=device,
operations=operations
)
if resblock_updown
else Downsample(
ch, conv_resample, dims=dims, out_channels=out_ch
ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device, operations=operations
)
)
)
ch = out_ch
input_block_chans.append(ch)
self.zero_convs.append(self.make_zero_conv(ch))
self.zero_convs.append(self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device))
ds *= 2
self._feature_size += ch
@@ -223,7 +285,7 @@ class ControlNet(nn.Module):
if legacy:
#num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
self.middle_block = TimestepEmbedSequential(
mid_block = [
ResBlock(
ch,
time_embed_dim,
@@ -231,17 +293,15 @@ class ControlNet(nn.Module):
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
dtype=self.dtype,
device=device,
operations=operations
)]
if transformer_depth_middle >= 0:
mid_block += [SpatialTransformer( # always uses a self-attn
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
use_checkpoint=use_checkpoint, attn_precision=attn_precision, dtype=self.dtype, device=device, operations=operations
),
ResBlock(
ch,
@@ -250,23 +310,113 @@ class ControlNet(nn.Module):
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
)
self.middle_block_out = self.make_zero_conv(ch)
dtype=self.dtype,
device=device,
operations=operations
)]
self.middle_block = TimestepEmbedSequential(*mid_block)
self.middle_block_out = self.make_zero_conv(ch, operations=operations, dtype=self.dtype, device=device)
self._feature_size += ch
def make_zero_conv(self, channels):
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))
if union_controlnet_num_control_type is not None:
self.num_control_type = union_controlnet_num_control_type
num_trans_channel = 320
num_trans_head = 8
num_trans_layer = 1
num_proj_channel = 320
# task_scale_factor = num_trans_channel ** 0.5
self.task_embedding = nn.Parameter(torch.empty(self.num_control_type, num_trans_channel, dtype=self.dtype, device=device))
def forward(self, x, hint, timesteps, context, **kwargs):
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
self.transformer_layes = nn.Sequential(*[ResBlockUnionControlnet(num_trans_channel, num_trans_head, dtype=self.dtype, device=device, operations=operations) for _ in range(num_trans_layer)])
self.spatial_ch_projs = operations.Linear(num_trans_channel, num_proj_channel, dtype=self.dtype, device=device)
#-----------------------------------------------------------------------------------------------------
control_add_embed_dim = 256
class ControlAddEmbedding(nn.Module):
def __init__(self, in_dim, out_dim, num_control_type, dtype=None, device=None, operations=None):
super().__init__()
self.num_control_type = num_control_type
self.in_dim = in_dim
self.linear_1 = operations.Linear(in_dim * num_control_type, out_dim, dtype=dtype, device=device)
self.linear_2 = operations.Linear(out_dim, out_dim, dtype=dtype, device=device)
def forward(self, control_type, dtype, device):
c_type = torch.zeros((self.num_control_type,), device=device)
c_type[control_type] = 1.0
c_type = timestep_embedding(c_type.flatten(), self.in_dim, repeat_only=False).to(dtype).reshape((-1, self.num_control_type * self.in_dim))
return self.linear_2(torch.nn.functional.silu(self.linear_1(c_type)))
self.control_add_embedding = ControlAddEmbedding(control_add_embed_dim, time_embed_dim, self.num_control_type, dtype=self.dtype, device=device, operations=operations)
else:
self.task_embedding = None
self.control_add_embedding = None
def union_controlnet_merge(self, hint, control_type, emb, context):
# Equivalent to: https://github.com/xinsir6/ControlNetPlus/tree/main
inputs = []
condition_list = []
for idx in range(min(1, len(control_type))):
controlnet_cond = self.input_hint_block(hint[idx], emb, context)
feat_seq = torch.mean(controlnet_cond, dim=(2, 3))
if idx < len(control_type):
feat_seq += self.task_embedding[control_type[idx]].to(dtype=feat_seq.dtype, device=feat_seq.device)
inputs.append(feat_seq.unsqueeze(1))
condition_list.append(controlnet_cond)
x = torch.cat(inputs, dim=1)
x = self.transformer_layes(x)
controlnet_cond_fuser = None
for idx in range(len(control_type)):
alpha = self.spatial_ch_projs(x[:, idx])
alpha = alpha.unsqueeze(-1).unsqueeze(-1)
o = condition_list[idx] + alpha
if controlnet_cond_fuser is None:
controlnet_cond_fuser = o
else:
controlnet_cond_fuser += o
return controlnet_cond_fuser
def make_zero_conv(self, channels, operations=None, dtype=None, device=None):
return TimestepEmbedSequential(operations.conv_nd(self.dims, channels, channels, 1, padding=0, dtype=dtype, device=device))
def forward(self, x, hint, timesteps, context, y=None, **kwargs):
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
emb = self.time_embed(t_emb)
guided_hint = self.input_hint_block(hint, emb, context)
guided_hint = None
if self.control_add_embedding is not None: #Union Controlnet
control_type = kwargs.get("control_type", [])
outs = []
if any([c >= self.num_control_type for c in control_type]):
max_type = max(control_type)
max_type_name = {
v: k for k, v in UNION_CONTROLNET_TYPES.items()
}[max_type]
raise ValueError(
f"Control type {max_type_name}({max_type}) is out of range for the number of control types" +
f"({self.num_control_type}) supported.\n" +
"Please consider using the ProMax ControlNet Union model.\n" +
"https://huggingface.co/xinsir/controlnet-union-sdxl-1.0/tree/main"
)
h = x.type(self.dtype)
emb += self.control_add_embedding(control_type, emb.dtype, emb.device)
if len(control_type) > 0:
if len(hint.shape) < 5:
hint = hint.unsqueeze(dim=0)
guided_hint = self.union_controlnet_merge(hint, control_type, emb, context)
if guided_hint is None:
guided_hint = self.input_hint_block(hint, emb, context)
out_output = []
out_middle = []
if self.num_classes is not None:
assert y.shape[0] == x.shape[0]
emb = emb + self.label_emb(y)
h = x
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
if guided_hint is not None:
h = module(h, emb, context)
@@ -274,10 +424,10 @@ class ControlNet(nn.Module):
guided_hint = None
else:
h = module(h, emb, context)
outs.append(zero_conv(h, emb, context))
out_output.append(zero_conv(h, emb, context))
h = self.middle_block(h, emb, context)
outs.append(self.middle_block_out(h, emb, context))
out_middle.append(self.middle_block_out(h, emb, context))
return outs
return {"middle": out_middle, "output": out_output}

View File

@@ -0,0 +1,10 @@
UNION_CONTROLNET_TYPES = {
"openpose": 0,
"depth": 1,
"hed/pidi/scribble/ted": 2,
"canny/lineart/anime_lineart/mlsd": 3,
"normal": 4,
"segment": 5,
"tile": 6,
"repaint": 7,
}

120
comfy/cldm/dit_embedder.py Normal file
View File

@@ -0,0 +1,120 @@
import math
from typing import List, Optional, Tuple
import torch
import torch.nn as nn
from torch import Tensor
from comfy.ldm.modules.diffusionmodules.mmdit import DismantledBlock, PatchEmbed, VectorEmbedder, TimestepEmbedder, get_2d_sincos_pos_embed_torch
class ControlNetEmbedder(nn.Module):
def __init__(
self,
img_size: int,
patch_size: int,
in_chans: int,
attention_head_dim: int,
num_attention_heads: int,
adm_in_channels: int,
num_layers: int,
main_model_double: int,
double_y_emb: bool,
device: torch.device,
dtype: torch.dtype,
pos_embed_max_size: Optional[int] = None,
operations = None,
):
super().__init__()
self.main_model_double = main_model_double
self.dtype = dtype
self.hidden_size = num_attention_heads * attention_head_dim
self.patch_size = patch_size
self.x_embedder = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=self.hidden_size,
strict_img_size=pos_embed_max_size is None,
device=device,
dtype=dtype,
operations=operations,
)
self.t_embedder = TimestepEmbedder(self.hidden_size, dtype=dtype, device=device, operations=operations)
self.double_y_emb = double_y_emb
if self.double_y_emb:
self.orig_y_embedder = VectorEmbedder(
adm_in_channels, self.hidden_size, dtype, device, operations=operations
)
self.y_embedder = VectorEmbedder(
self.hidden_size, self.hidden_size, dtype, device, operations=operations
)
else:
self.y_embedder = VectorEmbedder(
adm_in_channels, self.hidden_size, dtype, device, operations=operations
)
self.transformer_blocks = nn.ModuleList(
DismantledBlock(
hidden_size=self.hidden_size, num_heads=num_attention_heads, qkv_bias=True,
dtype=dtype, device=device, operations=operations
)
for _ in range(num_layers)
)
# self.use_y_embedder = pooled_projection_dim != self.time_text_embed.text_embedder.linear_1.in_features
# TODO double check this logic when 8b
self.use_y_embedder = True
self.controlnet_blocks = nn.ModuleList([])
for _ in range(len(self.transformer_blocks)):
controlnet_block = operations.Linear(self.hidden_size, self.hidden_size, dtype=dtype, device=device)
self.controlnet_blocks.append(controlnet_block)
self.pos_embed_input = PatchEmbed(
img_size=img_size,
patch_size=patch_size,
in_chans=in_chans,
embed_dim=self.hidden_size,
strict_img_size=False,
device=device,
dtype=dtype,
operations=operations,
)
def forward(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
y: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
hint = None,
) -> Tuple[Tensor, List[Tensor]]:
x_shape = list(x.shape)
x = self.x_embedder(x)
if not self.double_y_emb:
h = (x_shape[-2] + 1) // self.patch_size
w = (x_shape[-1] + 1) // self.patch_size
x += get_2d_sincos_pos_embed_torch(self.hidden_size, w, h, device=x.device)
c = self.t_embedder(timesteps, dtype=x.dtype)
if y is not None and self.y_embedder is not None:
if self.double_y_emb:
y = self.orig_y_embedder(y)
y = self.y_embedder(y)
c = c + y
x = x + self.pos_embed_input(hint)
block_out = ()
repeat = math.ceil(self.main_model_double / len(self.transformer_blocks))
for i in range(len(self.transformer_blocks)):
out = self.transformer_blocks[i](x, c)
if not self.double_y_emb:
x = out
block_out += (self.controlnet_blocks[i](out),) * repeat
return {"output": block_out}

81
comfy/cldm/mmdit.py Normal file
View File

@@ -0,0 +1,81 @@
import torch
from typing import Optional
import comfy.ldm.modules.diffusionmodules.mmdit
class ControlNet(comfy.ldm.modules.diffusionmodules.mmdit.MMDiT):
def __init__(
self,
num_blocks = None,
control_latent_channels = None,
dtype = None,
device = None,
operations = None,
**kwargs,
):
super().__init__(dtype=dtype, device=device, operations=operations, final_layer=False, num_blocks=num_blocks, **kwargs)
# controlnet_blocks
self.controlnet_blocks = torch.nn.ModuleList([])
for _ in range(len(self.joint_blocks)):
self.controlnet_blocks.append(operations.Linear(self.hidden_size, self.hidden_size, device=device, dtype=dtype))
if control_latent_channels is None:
control_latent_channels = self.in_channels
self.pos_embed_input = comfy.ldm.modules.diffusionmodules.mmdit.PatchEmbed(
None,
self.patch_size,
control_latent_channels,
self.hidden_size,
bias=True,
strict_img_size=False,
dtype=dtype,
device=device,
operations=operations
)
def forward(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
y: Optional[torch.Tensor] = None,
context: Optional[torch.Tensor] = None,
hint = None,
) -> torch.Tensor:
#weird sd3 controlnet specific stuff
y = torch.zeros_like(y)
if self.context_processor is not None:
context = self.context_processor(context)
hw = x.shape[-2:]
x = self.x_embedder(x) + self.cropped_pos_embed(hw, device=x.device).to(dtype=x.dtype, device=x.device)
x += self.pos_embed_input(hint)
c = self.t_embedder(timesteps, dtype=x.dtype)
if y is not None and self.y_embedder is not None:
y = self.y_embedder(y)
c = c + y
if context is not None:
context = self.context_embedder(context)
output = []
blocks = len(self.joint_blocks)
for i in range(blocks):
context, x = self.joint_blocks[i](
context,
x,
c=c,
use_checkpoint=self.use_checkpoint,
)
out = self.controlnet_blocks[i](x)
count = self.depth // blocks
if i == blocks - 1:
count -= 1
for j in range(count):
output.append(out)
return {"output": output}

View File

@@ -1,36 +1,234 @@
import argparse
import enum
import os
import comfy.options
class EnumAction(argparse.Action):
"""
Argparse action for handling Enums
"""
def __init__(self, **kwargs):
# Pop off the type value
enum_type = kwargs.pop("type", None)
# Ensure an Enum subclass is provided
if enum_type is None:
raise ValueError("type must be assigned an Enum when using EnumAction")
if not issubclass(enum_type, enum.Enum):
raise TypeError("type must be an Enum when using EnumAction")
# Generate choices from the Enum
choices = tuple(e.value for e in enum_type)
kwargs.setdefault("choices", choices)
kwargs.setdefault("metavar", f"[{','.join(list(choices))}]")
super(EnumAction, self).__init__(**kwargs)
self._enum = enum_type
def __call__(self, parser, namespace, values, option_string=None):
# Convert value back into an Enum
value = self._enum(values)
setattr(namespace, self.dest, value)
parser = argparse.ArgumentParser()
parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0", help="Specify the IP address to listen on (default: 127.0.0.1). If --listen is provided without an argument, it defaults to 0.0.0.0. (listens on all)")
parser.add_argument("--listen", type=str, default="127.0.0.1", metavar="IP", nargs="?", const="0.0.0.0,::", help="Specify the IP address to listen on (default: 127.0.0.1). You can give a list of ip addresses by separating them with a comma like: 127.2.2.2,127.3.3.3 If --listen is provided without an argument, it defaults to 0.0.0.0,:: (listens on all ipv4 and ipv6)")
parser.add_argument("--port", type=int, default=8188, help="Set the listen port.")
parser.add_argument("--tls-keyfile", type=str, help="Path to TLS (SSL) key file. Enables TLS, makes app accessible at https://... requires --tls-certfile to function")
parser.add_argument("--tls-certfile", type=str, help="Path to TLS (SSL) certificate file. Enables TLS, makes app accessible at https://... requires --tls-keyfile to function")
parser.add_argument("--enable-cors-header", type=str, default=None, metavar="ORIGIN", nargs="?", const="*", help="Enable CORS (Cross-Origin Resource Sharing) with optional origin or allow all with default '*'.")
parser.add_argument("--max-upload-size", type=float, default=100, help="Set the maximum upload size in MB.")
parser.add_argument("--base-directory", type=str, default=None, help="Set the ComfyUI base directory for models, custom_nodes, input, output, temp, and user directories.")
parser.add_argument("--extra-model-paths-config", type=str, default=None, metavar="PATH", nargs='+', action='append', help="Load one or more extra_model_paths.yaml files.")
parser.add_argument("--output-directory", type=str, default=None, help="Set the ComfyUI output directory.")
parser.add_argument("--output-directory", type=str, default=None, help="Set the ComfyUI output directory. Overrides --base-directory.")
parser.add_argument("--temp-directory", type=str, default=None, help="Set the ComfyUI temp directory (default is in the ComfyUI directory). Overrides --base-directory.")
parser.add_argument("--input-directory", type=str, default=None, help="Set the ComfyUI input directory. Overrides --base-directory.")
parser.add_argument("--auto-launch", action="store_true", help="Automatically launch ComfyUI in the default browser.")
parser.add_argument("--disable-auto-launch", action="store_true", help="Disable auto launching the browser.")
parser.add_argument("--cuda-device", type=int, default=None, metavar="DEVICE_ID", help="Set the id of the cuda device this instance will use.")
parser.add_argument("--dont-upcast-attention", action="store_true", help="Disable upcasting of attention. Can boost speed but increase the chances of black images.")
parser.add_argument("--force-fp32", action="store_true", help="Force fp32 (If this makes your GPU work better please report it).")
cm_group = parser.add_mutually_exclusive_group()
cm_group.add_argument("--cuda-malloc", action="store_true", help="Enable cudaMallocAsync (enabled by default for torch 2.0 and up).")
cm_group.add_argument("--disable-cuda-malloc", action="store_true", help="Disable cudaMallocAsync.")
fp_group = parser.add_mutually_exclusive_group()
fp_group.add_argument("--force-fp32", action="store_true", help="Force fp32 (If this makes your GPU work better please report it).")
fp_group.add_argument("--force-fp16", action="store_true", help="Force fp16.")
fpunet_group = parser.add_mutually_exclusive_group()
fpunet_group.add_argument("--fp32-unet", action="store_true", help="Run the diffusion model in fp32.")
fpunet_group.add_argument("--fp64-unet", action="store_true", help="Run the diffusion model in fp64.")
fpunet_group.add_argument("--bf16-unet", action="store_true", help="Run the diffusion model in bf16.")
fpunet_group.add_argument("--fp16-unet", action="store_true", help="Run the diffusion model in fp16")
fpunet_group.add_argument("--fp8_e4m3fn-unet", action="store_true", help="Store unet weights in fp8_e4m3fn.")
fpunet_group.add_argument("--fp8_e5m2-unet", action="store_true", help="Store unet weights in fp8_e5m2.")
fpunet_group.add_argument("--fp8_e8m0fnu-unet", action="store_true", help="Store unet weights in fp8_e8m0fnu.")
fpvae_group = parser.add_mutually_exclusive_group()
fpvae_group.add_argument("--fp16-vae", action="store_true", help="Run the VAE in fp16, might cause black images.")
fpvae_group.add_argument("--fp32-vae", action="store_true", help="Run the VAE in full precision fp32.")
fpvae_group.add_argument("--bf16-vae", action="store_true", help="Run the VAE in bf16.")
parser.add_argument("--cpu-vae", action="store_true", help="Run the VAE on the CPU.")
fpte_group = parser.add_mutually_exclusive_group()
fpte_group.add_argument("--fp8_e4m3fn-text-enc", action="store_true", help="Store text encoder weights in fp8 (e4m3fn variant).")
fpte_group.add_argument("--fp8_e5m2-text-enc", action="store_true", help="Store text encoder weights in fp8 (e5m2 variant).")
fpte_group.add_argument("--fp16-text-enc", action="store_true", help="Store text encoder weights in fp16.")
fpte_group.add_argument("--fp32-text-enc", action="store_true", help="Store text encoder weights in fp32.")
fpte_group.add_argument("--bf16-text-enc", action="store_true", help="Store text encoder weights in bf16.")
parser.add_argument("--force-channels-last", action="store_true", help="Force channels last format when inferencing the models.")
parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.")
parser.add_argument("--oneapi-device-selector", type=str, default=None, metavar="SELECTOR_STRING", help="Sets the oneAPI device(s) this instance will use.")
parser.add_argument("--disable-ipex-optimize", action="store_true", help="Disables ipex.optimize default when loading models with Intel's Extension for Pytorch.")
parser.add_argument("--supports-fp8-compute", action="store_true", help="ComfyUI will act like if the device supports fp8 compute.")
class LatentPreviewMethod(enum.Enum):
NoPreviews = "none"
Auto = "auto"
Latent2RGB = "latent2rgb"
TAESD = "taesd"
parser.add_argument("--preview-method", type=LatentPreviewMethod, default=LatentPreviewMethod.NoPreviews, help="Default preview method for sampler nodes.", action=EnumAction)
parser.add_argument("--preview-size", type=int, default=512, help="Sets the maximum preview size for sampler nodes.")
cache_group = parser.add_mutually_exclusive_group()
cache_group.add_argument("--cache-classic", action="store_true", help="Use the old style (aggressive) caching.")
cache_group.add_argument("--cache-lru", type=int, default=0, help="Use LRU caching with a maximum of N node results cached. May use more RAM/VRAM.")
cache_group.add_argument("--cache-none", action="store_true", help="Reduced RAM/VRAM usage at the expense of executing every node for each run.")
attn_group = parser.add_mutually_exclusive_group()
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization instead of the sub-quadratic one. Ignored when xformers is used.")
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization. Ignored when xformers is used.")
attn_group.add_argument("--use-quad-cross-attention", action="store_true", help="Use the sub-quadratic cross attention optimization . Ignored when xformers is used.")
attn_group.add_argument("--use-pytorch-cross-attention", action="store_true", help="Use the new pytorch 2.0 cross attention function.")
attn_group.add_argument("--use-sage-attention", action="store_true", help="Use sage attention.")
attn_group.add_argument("--use-flash-attention", action="store_true", help="Use FlashAttention.")
parser.add_argument("--disable-xformers", action="store_true", help="Disable xformers.")
upcast = parser.add_mutually_exclusive_group()
upcast.add_argument("--force-upcast-attention", action="store_true", help="Force enable attention upcasting, please report if it fixes black images.")
upcast.add_argument("--dont-upcast-attention", action="store_true", help="Disable all upcasting of attention. Should be unnecessary except for debugging.")
vram_group = parser.add_mutually_exclusive_group()
vram_group.add_argument("--gpu-only", action="store_true", help="Store and run everything (text encoders/CLIP models, etc... on the GPU).")
vram_group.add_argument("--highvram", action="store_true", help="By default models will be unloaded to CPU memory after being used. This option keeps them in GPU memory.")
vram_group.add_argument("--normalvram", action="store_true", help="Used to force normal vram use if lowvram gets automatically enabled.")
vram_group.add_argument("--lowvram", action="store_true", help="Split the unet in parts to use less vram.")
vram_group.add_argument("--novram", action="store_true", help="When lowvram isn't enough.")
vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for everything (slow).")
parser.add_argument("--reserve-vram", type=float, default=None, help="Set the amount of vram in GB you want to reserve for use by your OS/other software. By default some amount is reserved depending on your OS.")
parser.add_argument("--async-offload", action="store_true", help="Use async weight offloading.")
parser.add_argument("--default-hashing-function", type=str, choices=['md5', 'sha1', 'sha256', 'sha512'], default='sha256', help="Allows you to choose the hash function to use for duplicate filename / contents comparison. Default is sha256.")
parser.add_argument("--disable-smart-memory", action="store_true", help="Force ComfyUI to agressively offload to regular ram instead of keeping models in vram when it can.")
parser.add_argument("--deterministic", action="store_true", help="Make pytorch use slower deterministic algorithms when it can. Note that this might not make images deterministic in all cases.")
class PerformanceFeature(enum.Enum):
Fp16Accumulation = "fp16_accumulation"
Fp8MatrixMultiplication = "fp8_matrix_mult"
CublasOps = "cublas_ops"
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: fp16_accumulation fp8_matrix_mult cublas_ops")
parser.add_argument("--mmap-torch-files", action="store_true", help="Use mmap when loading ckpt/pt files.")
parser.add_argument("--dont-print-server", action="store_true", help="Don't print server output.")
parser.add_argument("--quick-test-for-ci", action="store_true", help="Quick test for CI.")
parser.add_argument("--windows-standalone-build", action="store_true", help="Windows standalone build: Enable convenient things that most people using the standalone windows build will probably enjoy (like auto opening the page on startup).")
args = parser.parse_args()
parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.")
parser.add_argument("--disable-all-custom-nodes", action="store_true", help="Disable loading all custom nodes.")
parser.add_argument("--disable-api-nodes", action="store_true", help="Disable loading all api nodes.")
parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")
parser.add_argument("--verbose", default='INFO', const='DEBUG', nargs="?", choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Set the logging level')
parser.add_argument("--log-stdout", action="store_true", help="Send normal process output to stdout instead of stderr (default).")
# The default built-in provider hosted under web/
DEFAULT_VERSION_STRING = "comfyanonymous/ComfyUI@latest"
parser.add_argument(
"--front-end-version",
type=str,
default=DEFAULT_VERSION_STRING,
help="""
Specifies the version of the frontend to be used. This command needs internet connectivity to query and
download available frontend implementations from GitHub releases.
The version string should be in the format of:
[repoOwner]/[repoName]@[version]
where version is one of: "latest" or a valid version number (e.g. "1.0.0")
""",
)
def is_valid_directory(path: str) -> str:
"""Validate if the given path is a directory, and check permissions."""
if not os.path.exists(path):
raise argparse.ArgumentTypeError(f"The path '{path}' does not exist.")
if not os.path.isdir(path):
raise argparse.ArgumentTypeError(f"'{path}' is not a directory.")
if not os.access(path, os.R_OK):
raise argparse.ArgumentTypeError(f"You do not have read permissions for '{path}'.")
return path
parser.add_argument(
"--front-end-root",
type=is_valid_directory,
default=None,
help="The local filesystem path to the directory where the frontend is located. Overrides --front-end-version.",
)
parser.add_argument("--user-directory", type=is_valid_directory, default=None, help="Set the ComfyUI user directory with an absolute path. Overrides --base-directory.")
parser.add_argument("--enable-compress-response-body", action="store_true", help="Enable compressing response body.")
parser.add_argument(
"--comfy-api-base",
type=str,
default="https://api.comfy.org",
help="Set the base URL for the ComfyUI API. (default: https://api.comfy.org)",
)
database_default_path = os.path.abspath(
os.path.join(os.path.dirname(__file__), "..", "user", "comfyui.db")
)
parser.add_argument("--database-url", type=str, default=f"sqlite:///{database_default_path}", help="Specify the database URL, e.g. for an in-memory database you can use 'sqlite:///:memory:'.")
if comfy.options.args_parsing:
args = parser.parse_args()
else:
args = parser.parse_args([])
if args.windows_standalone_build:
args.auto_launch = True
if args.disable_auto_launch:
args.auto_launch = False
if args.force_fp16:
args.fp16_unet = True
# '--fast' is not provided, use an empty set
if args.fast is None:
args.fast = set()
# '--fast' is provided with an empty list, enable all optimizations
elif args.fast == []:
args.fast = set(PerformanceFeature)
# '--fast' is provided with a list of performance features, use that list
else:
args.fast = set(args.fast)

View File

@@ -0,0 +1,23 @@
{
"architectures": [
"CLIPTextModel"
],
"attention_dropout": 0.0,
"bos_token_id": 0,
"dropout": 0.0,
"eos_token_id": 49407,
"hidden_act": "gelu",
"hidden_size": 1280,
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 5120,
"layer_norm_eps": 1e-05,
"max_position_embeddings": 77,
"model_type": "clip_text_model",
"num_attention_heads": 20,
"num_hidden_layers": 32,
"pad_token_id": 1,
"projection_dim": 1280,
"torch_dtype": "float32",
"vocab_size": 49408
}

244
comfy/clip_model.py Normal file
View File

@@ -0,0 +1,244 @@
import torch
from comfy.ldm.modules.attention import optimized_attention_for_device
import comfy.ops
class CLIPAttention(torch.nn.Module):
def __init__(self, embed_dim, heads, dtype, device, operations):
super().__init__()
self.heads = heads
self.q_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
self.k_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
self.v_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
self.out_proj = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device)
def forward(self, x, mask=None, optimized_attention=None):
q = self.q_proj(x)
k = self.k_proj(x)
v = self.v_proj(x)
out = optimized_attention(q, k, v, self.heads, mask)
return self.out_proj(out)
ACTIVATIONS = {"quick_gelu": lambda a: a * torch.sigmoid(1.702 * a),
"gelu": torch.nn.functional.gelu,
"gelu_pytorch_tanh": lambda a: torch.nn.functional.gelu(a, approximate="tanh"),
}
class CLIPMLP(torch.nn.Module):
def __init__(self, embed_dim, intermediate_size, activation, dtype, device, operations):
super().__init__()
self.fc1 = operations.Linear(embed_dim, intermediate_size, bias=True, dtype=dtype, device=device)
self.activation = ACTIVATIONS[activation]
self.fc2 = operations.Linear(intermediate_size, embed_dim, bias=True, dtype=dtype, device=device)
def forward(self, x):
x = self.fc1(x)
x = self.activation(x)
x = self.fc2(x)
return x
class CLIPLayer(torch.nn.Module):
def __init__(self, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations):
super().__init__()
self.layer_norm1 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
self.self_attn = CLIPAttention(embed_dim, heads, dtype, device, operations)
self.layer_norm2 = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
self.mlp = CLIPMLP(embed_dim, intermediate_size, intermediate_activation, dtype, device, operations)
def forward(self, x, mask=None, optimized_attention=None):
x += self.self_attn(self.layer_norm1(x), mask, optimized_attention)
x += self.mlp(self.layer_norm2(x))
return x
class CLIPEncoder(torch.nn.Module):
def __init__(self, num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations):
super().__init__()
self.layers = torch.nn.ModuleList([CLIPLayer(embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations) for i in range(num_layers)])
def forward(self, x, mask=None, intermediate_output=None):
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
if intermediate_output is not None:
if intermediate_output < 0:
intermediate_output = len(self.layers) + intermediate_output
intermediate = None
for i, l in enumerate(self.layers):
x = l(x, mask, optimized_attention)
if i == intermediate_output:
intermediate = x.clone()
return x, intermediate
class CLIPEmbeddings(torch.nn.Module):
def __init__(self, embed_dim, vocab_size=49408, num_positions=77, dtype=None, device=None, operations=None):
super().__init__()
self.token_embedding = operations.Embedding(vocab_size, embed_dim, dtype=dtype, device=device)
self.position_embedding = operations.Embedding(num_positions, embed_dim, dtype=dtype, device=device)
def forward(self, input_tokens, dtype=torch.float32):
return self.token_embedding(input_tokens, out_dtype=dtype) + comfy.ops.cast_to(self.position_embedding.weight, dtype=dtype, device=input_tokens.device)
class CLIPTextModel_(torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
num_layers = config_dict["num_hidden_layers"]
embed_dim = config_dict["hidden_size"]
heads = config_dict["num_attention_heads"]
intermediate_size = config_dict["intermediate_size"]
intermediate_activation = config_dict["hidden_act"]
num_positions = config_dict["max_position_embeddings"]
self.eos_token_id = config_dict["eos_token_id"]
super().__init__()
self.embeddings = CLIPEmbeddings(embed_dim, num_positions=num_positions, dtype=dtype, device=device, operations=operations)
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
def forward(self, input_tokens=None, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32):
if embeds is not None:
x = embeds + comfy.ops.cast_to(self.embeddings.position_embedding.weight, dtype=dtype, device=embeds.device)
else:
x = self.embeddings(input_tokens, dtype=dtype)
mask = None
if attention_mask is not None:
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
mask = mask.masked_fill(mask.to(torch.bool), -torch.finfo(x.dtype).max)
causal_mask = torch.full((x.shape[1], x.shape[1]), -torch.finfo(x.dtype).max, dtype=x.dtype, device=x.device).triu_(1)
if mask is not None:
mask += causal_mask
else:
mask = causal_mask
x, i = self.encoder(x, mask=mask, intermediate_output=intermediate_output)
x = self.final_layer_norm(x)
if i is not None and final_layer_norm_intermediate:
i = self.final_layer_norm(i)
if num_tokens is not None:
pooled_output = x[list(range(x.shape[0])), list(map(lambda a: a - 1, num_tokens))]
else:
pooled_output = x[torch.arange(x.shape[0], device=x.device), (torch.round(input_tokens).to(dtype=torch.int, device=x.device) == self.eos_token_id).int().argmax(dim=-1),]
return x, i, pooled_output
class CLIPTextModel(torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
self.num_layers = config_dict["num_hidden_layers"]
self.text_model = CLIPTextModel_(config_dict, dtype, device, operations)
embed_dim = config_dict["hidden_size"]
self.text_projection = operations.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device)
self.dtype = dtype
def get_input_embeddings(self):
return self.text_model.embeddings.token_embedding
def set_input_embeddings(self, embeddings):
self.text_model.embeddings.token_embedding = embeddings
def forward(self, *args, **kwargs):
x = self.text_model(*args, **kwargs)
out = self.text_projection(x[2])
return (x[0], x[1], out, x[2])
class CLIPVisionEmbeddings(torch.nn.Module):
def __init__(self, embed_dim, num_channels=3, patch_size=14, image_size=224, model_type="", dtype=None, device=None, operations=None):
super().__init__()
num_patches = (image_size // patch_size) ** 2
if model_type == "siglip_vision_model":
self.class_embedding = None
patch_bias = True
else:
num_patches = num_patches + 1
self.class_embedding = torch.nn.Parameter(torch.empty(embed_dim, dtype=dtype, device=device))
patch_bias = False
self.patch_embedding = operations.Conv2d(
in_channels=num_channels,
out_channels=embed_dim,
kernel_size=patch_size,
stride=patch_size,
bias=patch_bias,
dtype=dtype,
device=device
)
self.position_embedding = operations.Embedding(num_patches, embed_dim, dtype=dtype, device=device)
def forward(self, pixel_values):
embeds = self.patch_embedding(pixel_values).flatten(2).transpose(1, 2)
if self.class_embedding is not None:
embeds = torch.cat([comfy.ops.cast_to_input(self.class_embedding, embeds).expand(pixel_values.shape[0], 1, -1), embeds], dim=1)
return embeds + comfy.ops.cast_to_input(self.position_embedding.weight, embeds)
class CLIPVision(torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
num_layers = config_dict["num_hidden_layers"]
embed_dim = config_dict["hidden_size"]
heads = config_dict["num_attention_heads"]
intermediate_size = config_dict["intermediate_size"]
intermediate_activation = config_dict["hidden_act"]
model_type = config_dict["model_type"]
self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], model_type=model_type, dtype=dtype, device=device, operations=operations)
if model_type == "siglip_vision_model":
self.pre_layrnorm = lambda a: a
self.output_layernorm = True
else:
self.pre_layrnorm = operations.LayerNorm(embed_dim)
self.output_layernorm = False
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
self.post_layernorm = operations.LayerNorm(embed_dim)
def forward(self, pixel_values, attention_mask=None, intermediate_output=None):
x = self.embeddings(pixel_values)
x = self.pre_layrnorm(x)
#TODO: attention_mask?
x, i = self.encoder(x, mask=None, intermediate_output=intermediate_output)
if self.output_layernorm:
x = self.post_layernorm(x)
pooled_output = x
else:
pooled_output = self.post_layernorm(x[:, 0, :])
return x, i, pooled_output
class LlavaProjector(torch.nn.Module):
def __init__(self, in_dim, out_dim, dtype, device, operations):
super().__init__()
self.linear_1 = operations.Linear(in_dim, out_dim, bias=True, device=device, dtype=dtype)
self.linear_2 = operations.Linear(out_dim, out_dim, bias=True, device=device, dtype=dtype)
def forward(self, x):
return self.linear_2(torch.nn.functional.gelu(self.linear_1(x[:, 1:])))
class CLIPVisionModelProjection(torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
self.vision_model = CLIPVision(config_dict, dtype, device, operations)
if "projection_dim" in config_dict:
self.visual_projection = operations.Linear(config_dict["hidden_size"], config_dict["projection_dim"], bias=False)
else:
self.visual_projection = lambda a: a
if "llava3" == config_dict.get("projector_type", None):
self.multi_modal_projector = LlavaProjector(config_dict["hidden_size"], 4096, dtype, device, operations)
else:
self.multi_modal_projector = None
def forward(self, *args, **kwargs):
x = self.vision_model(*args, **kwargs)
out = self.visual_projection(x[2])
projected = None
if self.multi_modal_projector is not None:
projected = self.multi_modal_projector(x[1])
return (x[0], x[1], out, projected)

View File

@@ -1,64 +1,148 @@
from transformers import CLIPVisionModelWithProjection, CLIPVisionConfig, CLIPImageProcessor
from .utils import load_torch_file, transformers_convert
from .utils import load_torch_file, transformers_convert, state_dict_prefix_replace
import os
import torch
import json
import logging
import comfy.ops
import comfy.model_patcher
import comfy.model_management
import comfy.utils
import comfy.clip_model
import comfy.image_encoders.dino2
class Output:
def __getitem__(self, key):
return getattr(self, key)
def __setitem__(self, key, item):
setattr(self, key, item)
def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True):
image = image[:, :, :, :3] if image.shape[3] > 3 else image
mean = torch.tensor(mean, device=image.device, dtype=image.dtype)
std = torch.tensor(std, device=image.device, dtype=image.dtype)
image = image.movedim(-1, 1)
if not (image.shape[2] == size and image.shape[3] == size):
if crop:
scale = (size / min(image.shape[2], image.shape[3]))
scale_size = (round(scale * image.shape[2]), round(scale * image.shape[3]))
else:
scale_size = (size, size)
image = torch.nn.functional.interpolate(image, size=scale_size, mode="bicubic", antialias=True)
h = (image.shape[2] - size)//2
w = (image.shape[3] - size)//2
image = image[:,:,h:h+size,w:w+size]
image = torch.clip((255. * image), 0, 255).round() / 255.0
return (image - mean.view([3,1,1])) / std.view([3,1,1])
IMAGE_ENCODERS = {
"clip_vision_model": comfy.clip_model.CLIPVisionModelProjection,
"siglip_vision_model": comfy.clip_model.CLIPVisionModelProjection,
"dinov2": comfy.image_encoders.dino2.Dinov2Model,
}
class ClipVisionModel():
def __init__(self, json_config):
config = CLIPVisionConfig.from_json_file(json_config)
self.model = CLIPVisionModelWithProjection(config)
self.processor = CLIPImageProcessor(crop_size=224,
do_center_crop=True,
do_convert_rgb=True,
do_normalize=True,
do_resize=True,
image_mean=[ 0.48145466,0.4578275,0.40821073],
image_std=[0.26862954,0.26130258,0.27577711],
resample=3, #bicubic
size=224)
with open(json_config) as f:
config = json.load(f)
self.image_size = config.get("image_size", 224)
self.image_mean = config.get("image_mean", [0.48145466, 0.4578275, 0.40821073])
self.image_std = config.get("image_std", [0.26862954, 0.26130258, 0.27577711])
model_class = IMAGE_ENCODERS.get(config.get("model_type", "clip_vision_model"))
self.load_device = comfy.model_management.text_encoder_device()
offload_device = comfy.model_management.text_encoder_offload_device()
self.dtype = comfy.model_management.text_encoder_dtype(self.load_device)
self.model = model_class(config, self.dtype, offload_device, comfy.ops.manual_cast)
self.model.eval()
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
def load_sd(self, sd):
self.model.load_state_dict(sd, strict=False)
return self.model.load_state_dict(sd, strict=False)
def encode_image(self, image):
img = torch.clip((255. * image[0]), 0, 255).round().int()
inputs = self.processor(images=[img], return_tensors="pt")
outputs = self.model(**inputs)
def get_sd(self):
return self.model.state_dict()
def encode_image(self, image, crop=True):
comfy.model_management.load_model_gpu(self.patcher)
pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float()
out = self.model(pixel_values=pixel_values, intermediate_output=-2)
outputs = Output()
outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device())
outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device())
outputs["penultimate_hidden_states"] = out[1].to(comfy.model_management.intermediate_device())
outputs["mm_projected"] = out[3]
return outputs
def convert_to_transformers(sd):
def convert_to_transformers(sd, prefix):
sd_k = sd.keys()
if "embedder.model.visual.transformer.resblocks.0.attn.in_proj_weight" in sd_k:
if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k:
keys_to_replace = {
"embedder.model.visual.class_embedding": "vision_model.embeddings.class_embedding",
"embedder.model.visual.conv1.weight": "vision_model.embeddings.patch_embedding.weight",
"embedder.model.visual.positional_embedding": "vision_model.embeddings.position_embedding.weight",
"embedder.model.visual.ln_post.bias": "vision_model.post_layernorm.bias",
"embedder.model.visual.ln_post.weight": "vision_model.post_layernorm.weight",
"embedder.model.visual.ln_pre.bias": "vision_model.pre_layrnorm.bias",
"embedder.model.visual.ln_pre.weight": "vision_model.pre_layrnorm.weight",
"{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding",
"{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight",
"{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight",
"{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias",
"{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight",
"{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias",
"{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight",
}
for x in keys_to_replace:
if x in sd_k:
sd[keys_to_replace[x]] = sd.pop(x)
if "embedder.model.visual.proj" in sd_k:
sd['visual_projection.weight'] = sd.pop("embedder.model.visual.proj").transpose(0, 1)
if "{}proj".format(prefix) in sd_k:
sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1)
sd = transformers_convert(sd, "embedder.model.visual", "vision_model", 32)
sd = transformers_convert(sd, prefix, "vision_model.", 48)
else:
replace_prefix = {prefix: ""}
sd = state_dict_prefix_replace(sd, replace_prefix)
return sd
def load_clipvision_from_sd(sd):
sd = convert_to_transformers(sd)
if "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
if convert_keys:
sd = convert_to_transformers(sd, prefix)
if "vision_model.encoder.layers.47.layer_norm1.weight" in sd:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_g.json")
elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json")
elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
embed_shape = sd["vision_model.embeddings.position_embedding.weight"].shape[0]
if sd["vision_model.encoder.layers.0.layer_norm1.weight"].shape[0] == 1152:
if embed_shape == 729:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_384.json")
elif embed_shape == 1024:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_512.json")
elif embed_shape == 577:
if "multi_modal_projector.linear_1.bias" in sd:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336_llava.json")
else:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336.json")
else:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
elif "embeddings.patch_embeddings.projection.weight" in sd:
json_config = os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "image_encoders"), "dino2_giant.json")
else:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json")
return None
clip = ClipVisionModel(json_config)
clip.load_sd(sd)
m, u = clip.load_sd(sd)
if len(m) > 0:
logging.warning("missing clip vision: {}".format(m))
u = set(u)
keys = list(sd.keys())
for k in keys:
if k not in u:
sd.pop(k)
return clip
def load(ckpt_path):
sd = load_torch_file(ckpt_path)
return load_clipvision_from_sd(sd)
if "visual.transformer.resblocks.0.attn.in_proj_weight" in sd:
return load_clipvision_from_sd(sd, prefix="visual.", convert_keys=True)
else:
return load_clipvision_from_sd(sd)

View File

@@ -0,0 +1,18 @@
{
"attention_dropout": 0.0,
"dropout": 0.0,
"hidden_act": "gelu",
"hidden_size": 1664,
"image_size": 224,
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 8192,
"layer_norm_eps": 1e-05,
"model_type": "clip_vision_model",
"num_attention_heads": 16,
"num_channels": 3,
"num_hidden_layers": 48,
"patch_size": 14,
"projection_dim": 1280,
"torch_dtype": "float32"
}

View File

@@ -0,0 +1,18 @@
{
"attention_dropout": 0.0,
"dropout": 0.0,
"hidden_act": "quick_gelu",
"hidden_size": 1024,
"image_size": 336,
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 4096,
"layer_norm_eps": 1e-5,
"model_type": "clip_vision_model",
"num_attention_heads": 16,
"num_channels": 3,
"num_hidden_layers": 24,
"patch_size": 14,
"projection_dim": 768,
"torch_dtype": "float32"
}

View File

@@ -0,0 +1,19 @@
{
"attention_dropout": 0.0,
"dropout": 0.0,
"hidden_act": "quick_gelu",
"hidden_size": 1024,
"image_size": 336,
"initializer_factor": 1.0,
"initializer_range": 0.02,
"intermediate_size": 4096,
"layer_norm_eps": 1e-5,
"model_type": "clip_vision_model",
"num_attention_heads": 16,
"num_channels": 3,
"num_hidden_layers": 24,
"patch_size": 14,
"projection_dim": 768,
"projector_type": "llava3",
"torch_dtype": "float32"
}

View File

@@ -0,0 +1,13 @@
{
"num_channels": 3,
"hidden_act": "gelu_pytorch_tanh",
"hidden_size": 1152,
"image_size": 384,
"intermediate_size": 4304,
"model_type": "siglip_vision_model",
"num_attention_heads": 16,
"num_hidden_layers": 27,
"patch_size": 14,
"image_mean": [0.5, 0.5, 0.5],
"image_std": [0.5, 0.5, 0.5]
}

View File

@@ -0,0 +1,13 @@
{
"num_channels": 3,
"hidden_act": "gelu_pytorch_tanh",
"hidden_size": 1152,
"image_size": 512,
"intermediate_size": 4304,
"model_type": "siglip_vision_model",
"num_attention_heads": 16,
"num_hidden_layers": 27,
"patch_size": 16,
"image_mean": [0.5, 0.5, 0.5],
"image_std": [0.5, 0.5, 0.5]
}

View File

@@ -0,0 +1,43 @@
# Comfy Typing
## Type hinting for ComfyUI Node development
This module provides type hinting and concrete convenience types for node developers.
If cloned to the custom_nodes directory of ComfyUI, types can be imported using:
```python
from comfy.comfy_types import IO, ComfyNodeABC, CheckLazyMixin
class ExampleNode(ComfyNodeABC):
@classmethod
def INPUT_TYPES(s) -> InputTypeDict:
return {"required": {}}
```
Full example is in [examples/example_nodes.py](examples/example_nodes.py).
# Types
A few primary types are documented below. More complete information is available via the docstrings on each type.
## `IO`
A string enum of built-in and a few custom data types. Includes the following special types and their requisite plumbing:
- `ANY`: `"*"`
- `NUMBER`: `"FLOAT,INT"`
- `PRIMITIVE`: `"STRING,FLOAT,INT,BOOLEAN"`
## `ComfyNodeABC`
An abstract base class for nodes, offering type-hinting / autocomplete, and somewhat-alright docstrings.
### Type hinting for `INPUT_TYPES`
![INPUT_TYPES auto-completion in Visual Studio Code](examples/input_types.png)
### `INPUT_TYPES` return dict
![INPUT_TYPES return value type hinting in Visual Studio Code](examples/required_hint.png)
### Options for individual inputs
![INPUT_TYPES return value option auto-completion in Visual Studio Code](examples/input_options.png)

View File

@@ -0,0 +1,46 @@
import torch
from typing import Callable, Protocol, TypedDict, Optional, List
from .node_typing import IO, InputTypeDict, ComfyNodeABC, CheckLazyMixin, FileLocator
class UnetApplyFunction(Protocol):
"""Function signature protocol on comfy.model_base.BaseModel.apply_model"""
def __call__(self, x: torch.Tensor, t: torch.Tensor, **kwargs) -> torch.Tensor:
pass
class UnetApplyConds(TypedDict):
"""Optional conditions for unet apply function."""
c_concat: Optional[torch.Tensor]
c_crossattn: Optional[torch.Tensor]
control: Optional[torch.Tensor]
transformer_options: Optional[dict]
class UnetParams(TypedDict):
# Tensor of shape [B, C, H, W]
input: torch.Tensor
# Tensor of shape [B]
timestep: torch.Tensor
c: UnetApplyConds
# List of [0, 1], [0], [1], ...
# 0 means conditional, 1 means conditional unconditional
cond_or_uncond: List[int]
UnetWrapperFunction = Callable[[UnetApplyFunction, UnetParams], torch.Tensor]
__all__ = [
"UnetWrapperFunction",
UnetApplyConds.__name__,
UnetParams.__name__,
UnetApplyFunction.__name__,
IO.__name__,
InputTypeDict.__name__,
ComfyNodeABC.__name__,
CheckLazyMixin.__name__,
FileLocator.__name__,
]

View File

@@ -0,0 +1,28 @@
from comfy.comfy_types import IO, ComfyNodeABC, InputTypeDict
from inspect import cleandoc
class ExampleNode(ComfyNodeABC):
"""An example node that just adds 1 to an input integer.
* Requires a modern IDE to provide any benefit (detail: an IDE configured with analysis paths etc).
* This node is intended as an example for developers only.
"""
DESCRIPTION = cleandoc(__doc__)
CATEGORY = "examples"
@classmethod
def INPUT_TYPES(s) -> InputTypeDict:
return {
"required": {
"input_int": (IO.INT, {"defaultInput": True}),
}
}
RETURN_TYPES = (IO.INT,)
RETURN_NAMES = ("input_plus_one",)
FUNCTION = "execute"
def execute(self, input_int: int):
return (input_int + 1,)

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

View File

@@ -0,0 +1,350 @@
"""Comfy-specific type hinting"""
from __future__ import annotations
from typing import Literal, TypedDict, Optional
from typing_extensions import NotRequired
from abc import ABC, abstractmethod
from enum import Enum
class StrEnum(str, Enum):
"""Base class for string enums. Python's StrEnum is not available until 3.11."""
def __str__(self) -> str:
return self.value
class IO(StrEnum):
"""Node input/output data types.
Includes functionality for ``"*"`` (`ANY`) and ``"MULTI,TYPES"``.
"""
STRING = "STRING"
IMAGE = "IMAGE"
MASK = "MASK"
LATENT = "LATENT"
BOOLEAN = "BOOLEAN"
INT = "INT"
FLOAT = "FLOAT"
COMBO = "COMBO"
CONDITIONING = "CONDITIONING"
SAMPLER = "SAMPLER"
SIGMAS = "SIGMAS"
GUIDER = "GUIDER"
NOISE = "NOISE"
CLIP = "CLIP"
CONTROL_NET = "CONTROL_NET"
VAE = "VAE"
MODEL = "MODEL"
LORA_MODEL = "LORA_MODEL"
LOSS_MAP = "LOSS_MAP"
CLIP_VISION = "CLIP_VISION"
CLIP_VISION_OUTPUT = "CLIP_VISION_OUTPUT"
STYLE_MODEL = "STYLE_MODEL"
GLIGEN = "GLIGEN"
UPSCALE_MODEL = "UPSCALE_MODEL"
AUDIO = "AUDIO"
WEBCAM = "WEBCAM"
POINT = "POINT"
FACE_ANALYSIS = "FACE_ANALYSIS"
BBOX = "BBOX"
SEGS = "SEGS"
VIDEO = "VIDEO"
ANY = "*"
"""Always matches any type, but at a price.
Causes some functionality issues (e.g. reroutes, link types), and should be avoided whenever possible.
"""
NUMBER = "FLOAT,INT"
"""A float or an int - could be either"""
PRIMITIVE = "STRING,FLOAT,INT,BOOLEAN"
"""Could be any of: string, float, int, or bool"""
def __ne__(self, value: object) -> bool:
if self == "*" or value == "*":
return False
if not isinstance(value, str):
return True
a = frozenset(self.split(","))
b = frozenset(value.split(","))
return not (b.issubset(a) or a.issubset(b))
class RemoteInputOptions(TypedDict):
route: str
"""The route to the remote source."""
refresh_button: bool
"""Specifies whether to show a refresh button in the UI below the widget."""
control_after_refresh: Literal["first", "last"]
"""Specifies the control after the refresh button is clicked. If "first", the first item will be automatically selected, and so on."""
timeout: int
"""The maximum amount of time to wait for a response from the remote source in milliseconds."""
max_retries: int
"""The maximum number of retries before aborting the request."""
refresh: int
"""The TTL of the remote input's value in milliseconds. Specifies the interval at which the remote input's value is refreshed."""
class MultiSelectOptions(TypedDict):
placeholder: NotRequired[str]
"""The placeholder text to display in the multi-select widget when no items are selected."""
chip: NotRequired[bool]
"""Specifies whether to use chips instead of comma separated values for the multi-select widget."""
class InputTypeOptions(TypedDict):
"""Provides type hinting for the return type of the INPUT_TYPES node function.
Due to IDE limitations with unions, for now all options are available for all types (e.g. `label_on` is hinted even when the type is not `IO.BOOLEAN`).
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/datatypes
"""
default: NotRequired[bool | str | float | int | list | tuple]
"""The default value of the widget"""
defaultInput: NotRequired[bool]
"""@deprecated in v1.16 frontend. v1.16 frontend allows input socket and widget to co-exist.
- defaultInput on required inputs should be dropped.
- defaultInput on optional inputs should be replaced with forceInput.
Ref: https://github.com/Comfy-Org/ComfyUI_frontend/pull/3364
"""
forceInput: NotRequired[bool]
"""Forces the input to be an input slot rather than a widget even a widget is available for the input type."""
lazy: NotRequired[bool]
"""Declares that this input uses lazy evaluation"""
rawLink: NotRequired[bool]
"""When a link exists, rather than receiving the evaluated value, you will receive the link (i.e. `["nodeId", <outputIndex>]`). Designed for node expansion."""
tooltip: NotRequired[str]
"""Tooltip for the input (or widget), shown on pointer hover"""
socketless: NotRequired[bool]
"""All inputs (including widgets) have an input socket to connect links. When ``true``, if there is a widget for this input, no socket will be created.
Available from frontend v1.17.5
Ref: https://github.com/Comfy-Org/ComfyUI_frontend/pull/3548
"""
widgetType: NotRequired[str]
"""Specifies a type to be used for widget initialization if different from the input type.
Available from frontend v1.18.0
https://github.com/Comfy-Org/ComfyUI_frontend/pull/3550"""
# class InputTypeNumber(InputTypeOptions):
# default: float | int
min: NotRequired[float]
"""The minimum value of a number (``FLOAT`` | ``INT``)"""
max: NotRequired[float]
"""The maximum value of a number (``FLOAT`` | ``INT``)"""
step: NotRequired[float]
"""The amount to increment or decrement a widget by when stepping up/down (``FLOAT`` | ``INT``)"""
round: NotRequired[float]
"""Floats are rounded by this value (``FLOAT``)"""
# class InputTypeBoolean(InputTypeOptions):
# default: bool
label_on: NotRequired[str]
"""The label to use in the UI when the bool is True (``BOOLEAN``)"""
label_off: NotRequired[str]
"""The label to use in the UI when the bool is False (``BOOLEAN``)"""
# class InputTypeString(InputTypeOptions):
# default: str
multiline: NotRequired[bool]
"""Use a multiline text box (``STRING``)"""
placeholder: NotRequired[str]
"""Placeholder text to display in the UI when empty (``STRING``)"""
# Deprecated:
# defaultVal: str
dynamicPrompts: NotRequired[bool]
"""Causes the front-end to evaluate dynamic prompts (``STRING``)"""
# class InputTypeCombo(InputTypeOptions):
image_upload: NotRequired[bool]
"""Specifies whether the input should have an image upload button and image preview attached to it. Requires that the input's name is `image`."""
image_folder: NotRequired[Literal["input", "output", "temp"]]
"""Specifies which folder to get preview images from if the input has the ``image_upload`` flag.
"""
remote: NotRequired[RemoteInputOptions]
"""Specifies the configuration for a remote input.
Available after ComfyUI frontend v1.9.7
https://github.com/Comfy-Org/ComfyUI_frontend/pull/2422"""
control_after_generate: NotRequired[bool]
"""Specifies whether a control widget should be added to the input, adding options to automatically change the value after each prompt is queued. Currently only used for INT and COMBO types."""
options: NotRequired[list[str | int | float]]
"""COMBO type only. Specifies the selectable options for the combo widget.
Prefer:
["COMBO", {"options": ["Option 1", "Option 2", "Option 3"]}]
Over:
[["Option 1", "Option 2", "Option 3"]]
"""
multi_select: NotRequired[MultiSelectOptions]
"""COMBO type only. Specifies the configuration for a multi-select widget.
Available after ComfyUI frontend v1.13.4
https://github.com/Comfy-Org/ComfyUI_frontend/pull/2987"""
class HiddenInputTypeDict(TypedDict):
"""Provides type hinting for the hidden entry of node INPUT_TYPES."""
node_id: NotRequired[Literal["UNIQUE_ID"]]
"""UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages)."""
unique_id: NotRequired[Literal["UNIQUE_ID"]]
"""UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages)."""
prompt: NotRequired[Literal["PROMPT"]]
"""PROMPT is the complete prompt sent by the client to the server. See the prompt object for a full description."""
extra_pnginfo: NotRequired[Literal["EXTRA_PNGINFO"]]
"""EXTRA_PNGINFO is a dictionary that will be copied into the metadata of any .png files saved. Custom nodes can store additional information in this dictionary for saving (or as a way to communicate with a downstream node)."""
dynprompt: NotRequired[Literal["DYNPROMPT"]]
"""DYNPROMPT is an instance of comfy_execution.graph.DynamicPrompt. It differs from PROMPT in that it may mutate during the course of execution in response to Node Expansion."""
class InputTypeDict(TypedDict):
"""Provides type hinting for node INPUT_TYPES.
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/more_on_inputs
"""
required: NotRequired[dict[str, tuple[IO, InputTypeOptions]]]
"""Describes all inputs that must be connected for the node to execute."""
optional: NotRequired[dict[str, tuple[IO, InputTypeOptions]]]
"""Describes inputs which do not need to be connected."""
hidden: NotRequired[HiddenInputTypeDict]
"""Offers advanced functionality and server-client communication.
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/more_on_inputs#hidden-inputs
"""
class ComfyNodeABC(ABC):
"""Abstract base class for Comfy nodes. Includes the names and expected types of attributes.
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview
"""
DESCRIPTION: str
"""Node description, shown as a tooltip when hovering over the node.
Usage::
# Explicitly define the description
DESCRIPTION = "Example description here."
# Use the docstring of the node class.
DESCRIPTION = cleandoc(__doc__)
"""
CATEGORY: str
"""The category of the node, as per the "Add Node" menu.
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#category
"""
EXPERIMENTAL: bool
"""Flags a node as experimental, informing users that it may change or not work as expected."""
DEPRECATED: bool
"""Flags a node as deprecated, indicating to users that they should find alternatives to this node."""
API_NODE: Optional[bool]
"""Flags a node as an API node. See: https://docs.comfy.org/tutorials/api-nodes/overview."""
@classmethod
@abstractmethod
def INPUT_TYPES(s) -> InputTypeDict:
"""Defines node inputs.
* Must include the ``required`` key, which describes all inputs that must be connected for the node to execute.
* The ``optional`` key can be added to describe inputs which do not need to be connected.
* The ``hidden`` key offers some advanced functionality. More info at: https://docs.comfy.org/custom-nodes/backend/more_on_inputs#hidden-inputs
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#input-types
"""
return {"required": {}}
OUTPUT_NODE: bool
"""Flags this node as an output node, causing any inputs it requires to be executed.
If a node is not connected to any output nodes, that node will not be executed. Usage::
OUTPUT_NODE = True
From the docs:
By default, a node is not considered an output. Set ``OUTPUT_NODE = True`` to specify that it is.
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#output-node
"""
INPUT_IS_LIST: bool
"""A flag indicating if this node implements the additional code necessary to deal with OUTPUT_IS_LIST nodes.
All inputs of ``type`` will become ``list[type]``, regardless of how many items are passed in. This also affects ``check_lazy_status``.
From the docs:
A node can also override the default input behaviour and receive the whole list in a single call. This is done by setting a class attribute `INPUT_IS_LIST` to ``True``.
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lists#list-processing
"""
OUTPUT_IS_LIST: tuple[bool, ...]
"""A tuple indicating which node outputs are lists, but will be connected to nodes that expect individual items.
Connected nodes that do not implement `INPUT_IS_LIST` will be executed once for every item in the list.
A ``tuple[bool]``, where the items match those in `RETURN_TYPES`::
RETURN_TYPES = (IO.INT, IO.INT, IO.STRING)
OUTPUT_IS_LIST = (True, True, False) # The string output will be handled normally
From the docs:
In order to tell Comfy that the list being returned should not be wrapped, but treated as a series of data for sequential processing,
the node should provide a class attribute `OUTPUT_IS_LIST`, which is a ``tuple[bool]``, of the same length as `RETURN_TYPES`,
specifying which outputs which should be so treated.
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lists#list-processing
"""
RETURN_TYPES: tuple[IO, ...]
"""A tuple representing the outputs of this node.
Usage::
RETURN_TYPES = (IO.INT, "INT", "CUSTOM_TYPE")
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#return-types
"""
RETURN_NAMES: tuple[str, ...]
"""The output slot names for each item in `RETURN_TYPES`, e.g. ``RETURN_NAMES = ("count", "filter_string")``
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#return-names
"""
OUTPUT_TOOLTIPS: tuple[str, ...]
"""A tuple of strings to use as tooltips for node outputs, one for each item in `RETURN_TYPES`."""
FUNCTION: str
"""The name of the function to execute as a literal string, e.g. `FUNCTION = "execute"`
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#function
"""
class CheckLazyMixin:
"""Provides a basic check_lazy_status implementation and type hinting for nodes that use lazy inputs."""
def check_lazy_status(self, **kwargs) -> list[str]:
"""Returns a list of input names that should be evaluated.
This basic mixin impl. requires all inputs.
:kwargs: All node inputs will be included here. If the input is ``None``, it should be assumed that it has not yet been evaluated. \
When using ``INPUT_IS_LIST = True``, unevaluated will instead be ``(None,)``.
Params should match the nodes execution ``FUNCTION`` (self, and all inputs by name).
Will be executed repeatedly until it returns an empty list, or all requested items were already evaluated (and sent as params).
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lazy_evaluation#defining-check-lazy-status
"""
need = [name for name in kwargs if kwargs[name] is None]
return need
class FileLocator(TypedDict):
"""Provides type hinting for the file location"""
filename: str
"""The filename of the file."""
subfolder: str
"""The subfolder of the file."""
type: Literal["input", "output", "temp"]
"""The root folder of the file."""

130
comfy/conds.py Normal file
View File

@@ -0,0 +1,130 @@
import torch
import math
import comfy.utils
class CONDRegular:
def __init__(self, cond):
self.cond = cond
def _copy_with(self, cond):
return self.__class__(cond)
def process_cond(self, batch_size, device, **kwargs):
return self._copy_with(comfy.utils.repeat_to_batch_size(self.cond, batch_size).to(device))
def can_concat(self, other):
if self.cond.shape != other.cond.shape:
return False
return True
def concat(self, others):
conds = [self.cond]
for x in others:
conds.append(x.cond)
return torch.cat(conds)
def size(self):
return list(self.cond.size())
class CONDNoiseShape(CONDRegular):
def process_cond(self, batch_size, device, area, **kwargs):
data = self.cond
if area is not None:
dims = len(area) // 2
for i in range(dims):
data = data.narrow(i + 2, area[i + dims], area[i])
return self._copy_with(comfy.utils.repeat_to_batch_size(data, batch_size).to(device))
class CONDCrossAttn(CONDRegular):
def can_concat(self, other):
s1 = self.cond.shape
s2 = other.cond.shape
if s1 != s2:
if s1[0] != s2[0] or s1[2] != s2[2]: #these 2 cases should not happen
return False
mult_min = math.lcm(s1[1], s2[1])
diff = mult_min // min(s1[1], s2[1])
if diff > 4: #arbitrary limit on the padding because it's probably going to impact performance negatively if it's too much
return False
return True
def concat(self, others):
conds = [self.cond]
crossattn_max_len = self.cond.shape[1]
for x in others:
c = x.cond
crossattn_max_len = math.lcm(crossattn_max_len, c.shape[1])
conds.append(c)
out = []
for c in conds:
if c.shape[1] < crossattn_max_len:
c = c.repeat(1, crossattn_max_len // c.shape[1], 1) #padding with repeat doesn't change result
out.append(c)
return torch.cat(out)
class CONDConstant(CONDRegular):
def __init__(self, cond):
self.cond = cond
def process_cond(self, batch_size, device, **kwargs):
return self._copy_with(self.cond)
def can_concat(self, other):
if self.cond != other.cond:
return False
return True
def concat(self, others):
return self.cond
def size(self):
return [1]
class CONDList(CONDRegular):
def __init__(self, cond):
self.cond = cond
def process_cond(self, batch_size, device, **kwargs):
out = []
for c in self.cond:
out.append(comfy.utils.repeat_to_batch_size(c, batch_size).to(device))
return self._copy_with(out)
def can_concat(self, other):
if len(self.cond) != len(other.cond):
return False
for i in range(len(self.cond)):
if self.cond[i].shape != other.cond[i].shape:
return False
return True
def concat(self, others):
out = []
for i in range(len(self.cond)):
o = [self.cond[i]]
for x in others:
o.append(x.cond[i])
out.append(torch.cat(o))
return out
def size(self): # hackish implementation to make the mem estimation work
o = 0
c = 1
for c in self.cond:
size = c.size()
o += math.prod(size)
if len(size) > 1:
c = size[1]
return [1, c, o // c]

858
comfy/controlnet.py Normal file
View File

@@ -0,0 +1,858 @@
"""
This file is part of ComfyUI.
Copyright (C) 2024 Comfy
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
import torch
from enum import Enum
import math
import os
import logging
import comfy.utils
import comfy.model_management
import comfy.model_detection
import comfy.model_patcher
import comfy.ops
import comfy.latent_formats
import comfy.cldm.cldm
import comfy.t2i_adapter.adapter
import comfy.ldm.cascade.controlnet
import comfy.cldm.mmdit
import comfy.ldm.hydit.controlnet
import comfy.ldm.flux.controlnet
import comfy.cldm.dit_embedder
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from comfy.hooks import HookGroup
def broadcast_image_to(tensor, target_batch_size, batched_number):
current_batch_size = tensor.shape[0]
#print(current_batch_size, target_batch_size)
if current_batch_size == 1:
return tensor
per_batch = target_batch_size // batched_number
tensor = tensor[:per_batch]
if per_batch > tensor.shape[0]:
tensor = torch.cat([tensor] * (per_batch // tensor.shape[0]) + [tensor[:(per_batch % tensor.shape[0])]], dim=0)
current_batch_size = tensor.shape[0]
if current_batch_size == target_batch_size:
return tensor
else:
return torch.cat([tensor] * batched_number, dim=0)
class StrengthType(Enum):
CONSTANT = 1
LINEAR_UP = 2
class ControlBase:
def __init__(self):
self.cond_hint_original = None
self.cond_hint = None
self.strength = 1.0
self.timestep_percent_range = (0.0, 1.0)
self.latent_format = None
self.vae = None
self.global_average_pooling = False
self.timestep_range = None
self.compression_ratio = 8
self.upscale_algorithm = 'nearest-exact'
self.extra_args = {}
self.previous_controlnet = None
self.extra_conds = []
self.strength_type = StrengthType.CONSTANT
self.concat_mask = False
self.extra_concat_orig = []
self.extra_concat = None
self.extra_hooks: HookGroup = None
self.preprocess_image = lambda a: a
def set_cond_hint(self, cond_hint, strength=1.0, timestep_percent_range=(0.0, 1.0), vae=None, extra_concat=[]):
self.cond_hint_original = cond_hint
self.strength = strength
self.timestep_percent_range = timestep_percent_range
if self.latent_format is not None:
if vae is None:
logging.warning("WARNING: no VAE provided to the controlnet apply node when this controlnet requires one.")
self.vae = vae
self.extra_concat_orig = extra_concat.copy()
if self.concat_mask and len(self.extra_concat_orig) == 0:
self.extra_concat_orig.append(torch.tensor([[[[1.0]]]]))
return self
def pre_run(self, model, percent_to_timestep_function):
self.timestep_range = (percent_to_timestep_function(self.timestep_percent_range[0]), percent_to_timestep_function(self.timestep_percent_range[1]))
if self.previous_controlnet is not None:
self.previous_controlnet.pre_run(model, percent_to_timestep_function)
def set_previous_controlnet(self, controlnet):
self.previous_controlnet = controlnet
return self
def cleanup(self):
if self.previous_controlnet is not None:
self.previous_controlnet.cleanup()
self.cond_hint = None
self.extra_concat = None
self.timestep_range = None
def get_models(self):
out = []
if self.previous_controlnet is not None:
out += self.previous_controlnet.get_models()
return out
def get_extra_hooks(self):
out = []
if self.extra_hooks is not None:
out.append(self.extra_hooks)
if self.previous_controlnet is not None:
out += self.previous_controlnet.get_extra_hooks()
return out
def copy_to(self, c):
c.cond_hint_original = self.cond_hint_original
c.strength = self.strength
c.timestep_percent_range = self.timestep_percent_range
c.global_average_pooling = self.global_average_pooling
c.compression_ratio = self.compression_ratio
c.upscale_algorithm = self.upscale_algorithm
c.latent_format = self.latent_format
c.extra_args = self.extra_args.copy()
c.vae = self.vae
c.extra_conds = self.extra_conds.copy()
c.strength_type = self.strength_type
c.concat_mask = self.concat_mask
c.extra_concat_orig = self.extra_concat_orig.copy()
c.extra_hooks = self.extra_hooks.clone() if self.extra_hooks else None
c.preprocess_image = self.preprocess_image
def inference_memory_requirements(self, dtype):
if self.previous_controlnet is not None:
return self.previous_controlnet.inference_memory_requirements(dtype)
return 0
def control_merge(self, control, control_prev, output_dtype):
out = {'input':[], 'middle':[], 'output': []}
for key in control:
control_output = control[key]
applied_to = set()
for i in range(len(control_output)):
x = control_output[i]
if x is not None:
if self.global_average_pooling:
x = torch.mean(x, dim=(2, 3), keepdim=True).repeat(1, 1, x.shape[2], x.shape[3])
if x not in applied_to: #memory saving strategy, allow shared tensors and only apply strength to shared tensors once
applied_to.add(x)
if self.strength_type == StrengthType.CONSTANT:
x *= self.strength
elif self.strength_type == StrengthType.LINEAR_UP:
x *= (self.strength ** float(len(control_output) - i))
if output_dtype is not None and x.dtype != output_dtype:
x = x.to(output_dtype)
out[key].append(x)
if control_prev is not None:
for x in ['input', 'middle', 'output']:
o = out[x]
for i in range(len(control_prev[x])):
prev_val = control_prev[x][i]
if i >= len(o):
o.append(prev_val)
elif prev_val is not None:
if o[i] is None:
o[i] = prev_val
else:
if o[i].shape[0] < prev_val.shape[0]:
o[i] = prev_val + o[i]
else:
o[i] = prev_val + o[i] #TODO: change back to inplace add if shared tensors stop being an issue
return out
def set_extra_arg(self, argument, value=None):
self.extra_args[argument] = value
class ControlNet(ControlBase):
def __init__(self, control_model=None, global_average_pooling=False, compression_ratio=8, latent_format=None, load_device=None, manual_cast_dtype=None, extra_conds=["y"], strength_type=StrengthType.CONSTANT, concat_mask=False, preprocess_image=lambda a: a):
super().__init__()
self.control_model = control_model
self.load_device = load_device
if control_model is not None:
self.control_model_wrapped = comfy.model_patcher.ModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
self.compression_ratio = compression_ratio
self.global_average_pooling = global_average_pooling
self.model_sampling_current = None
self.manual_cast_dtype = manual_cast_dtype
self.latent_format = latent_format
self.extra_conds += extra_conds
self.strength_type = strength_type
self.concat_mask = concat_mask
self.preprocess_image = preprocess_image
def get_control(self, x_noisy, t, cond, batched_number, transformer_options):
control_prev = None
if self.previous_controlnet is not None:
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number, transformer_options)
if self.timestep_range is not None:
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
if control_prev is not None:
return control_prev
else:
return None
dtype = self.control_model.dtype
if self.manual_cast_dtype is not None:
dtype = self.manual_cast_dtype
if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
if self.cond_hint is not None:
del self.cond_hint
self.cond_hint = None
compression_ratio = self.compression_ratio
if self.vae is not None:
compression_ratio *= self.vae.downscale_ratio
else:
if self.latent_format is not None:
raise ValueError("This Controlnet needs a VAE but none was provided, please use a ControlNetApply node with a VAE input and connect it.")
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * compression_ratio, x_noisy.shape[2] * compression_ratio, self.upscale_algorithm, "center")
self.cond_hint = self.preprocess_image(self.cond_hint)
if self.vae is not None:
loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
self.cond_hint = self.vae.encode(self.cond_hint.movedim(1, -1))
comfy.model_management.load_models_gpu(loaded_models)
if self.latent_format is not None:
self.cond_hint = self.latent_format.process_in(self.cond_hint)
if len(self.extra_concat_orig) > 0:
to_concat = []
for c in self.extra_concat_orig:
c = c.to(self.cond_hint.device)
c = comfy.utils.common_upscale(c, self.cond_hint.shape[3], self.cond_hint.shape[2], self.upscale_algorithm, "center")
to_concat.append(comfy.utils.repeat_to_batch_size(c, self.cond_hint.shape[0]))
self.cond_hint = torch.cat([self.cond_hint] + to_concat, dim=1)
self.cond_hint = self.cond_hint.to(device=x_noisy.device, dtype=dtype)
if x_noisy.shape[0] != self.cond_hint.shape[0]:
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
context = cond.get('crossattn_controlnet', cond['c_crossattn'])
extra = self.extra_args.copy()
for c in self.extra_conds:
temp = cond.get(c, None)
if temp is not None:
extra[c] = temp.to(dtype)
timestep = self.model_sampling_current.timestep(t)
x_noisy = self.model_sampling_current.calculate_input(t, x_noisy)
control = self.control_model(x=x_noisy.to(dtype), hint=self.cond_hint, timesteps=timestep.to(dtype), context=context.to(dtype), **extra)
return self.control_merge(control, control_prev, output_dtype=None)
def copy(self):
c = ControlNet(None, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
c.control_model = self.control_model
c.control_model_wrapped = self.control_model_wrapped
self.copy_to(c)
return c
def get_models(self):
out = super().get_models()
out.append(self.control_model_wrapped)
return out
def pre_run(self, model, percent_to_timestep_function):
super().pre_run(model, percent_to_timestep_function)
self.model_sampling_current = model.model_sampling
def cleanup(self):
self.model_sampling_current = None
super().cleanup()
class ControlLoraOps:
class Linear(torch.nn.Module, comfy.ops.CastWeightBiasOp):
def __init__(self, in_features: int, out_features: int, bias: bool = True,
device=None, dtype=None) -> None:
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = None
self.up = None
self.down = None
self.bias = None
def forward(self, input):
weight, bias = comfy.ops.cast_bias_weight(self, input)
if self.up is not None:
return torch.nn.functional.linear(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias)
else:
return torch.nn.functional.linear(input, weight, bias)
class Conv2d(torch.nn.Module, comfy.ops.CastWeightBiasOp):
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
padding=0,
dilation=1,
groups=1,
bias=True,
padding_mode='zeros',
device=None,
dtype=None
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.transposed = False
self.output_padding = 0
self.groups = groups
self.padding_mode = padding_mode
self.weight = None
self.bias = None
self.up = None
self.down = None
def forward(self, input):
weight, bias = comfy.ops.cast_bias_weight(self, input)
if self.up is not None:
return torch.nn.functional.conv2d(input, weight + (torch.mm(self.up.flatten(start_dim=1), self.down.flatten(start_dim=1))).reshape(self.weight.shape).type(input.dtype), bias, self.stride, self.padding, self.dilation, self.groups)
else:
return torch.nn.functional.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups)
class ControlLora(ControlNet):
def __init__(self, control_weights, global_average_pooling=False, model_options={}): #TODO? model_options
ControlBase.__init__(self)
self.control_weights = control_weights
self.global_average_pooling = global_average_pooling
self.extra_conds += ["y"]
def pre_run(self, model, percent_to_timestep_function):
super().pre_run(model, percent_to_timestep_function)
controlnet_config = model.model_config.unet_config.copy()
controlnet_config.pop("out_channels")
controlnet_config["hint_channels"] = self.control_weights["input_hint_block.0.weight"].shape[1]
self.manual_cast_dtype = model.manual_cast_dtype
dtype = model.get_dtype()
if self.manual_cast_dtype is None:
class control_lora_ops(ControlLoraOps, comfy.ops.disable_weight_init):
pass
else:
class control_lora_ops(ControlLoraOps, comfy.ops.manual_cast):
pass
dtype = self.manual_cast_dtype
controlnet_config["operations"] = control_lora_ops
controlnet_config["dtype"] = dtype
self.control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
self.control_model.to(comfy.model_management.get_torch_device())
diffusion_model = model.diffusion_model
sd = diffusion_model.state_dict()
for k in sd:
weight = sd[k]
try:
comfy.utils.set_attr_param(self.control_model, k, weight)
except:
pass
for k in self.control_weights:
if (k not in {"lora_controlnet"}):
if (k.endswith(".up") or k.endswith(".down") or k.endswith(".weight") or k.endswith(".bias")) and ("__" not in k):
comfy.utils.set_attr_param(self.control_model, k, self.control_weights[k].to(dtype).to(comfy.model_management.get_torch_device()))
def copy(self):
c = ControlLora(self.control_weights, global_average_pooling=self.global_average_pooling)
self.copy_to(c)
return c
def cleanup(self):
del self.control_model
self.control_model = None
super().cleanup()
def get_models(self):
out = ControlBase.get_models(self)
return out
def inference_memory_requirements(self, dtype):
return comfy.utils.calculate_parameters(self.control_weights) * comfy.model_management.dtype_size(dtype) + ControlBase.inference_memory_requirements(self, dtype)
def controlnet_config(sd, model_options={}):
model_config = comfy.model_detection.model_config_from_unet(sd, "", True)
unet_dtype = model_options.get("dtype", None)
if unet_dtype is None:
weight_dtype = comfy.utils.weight_dtype(sd)
supported_inference_dtypes = list(model_config.supported_inference_dtypes)
unet_dtype = comfy.model_management.unet_dtype(model_params=-1, supported_dtypes=supported_inference_dtypes, weight_dtype=weight_dtype)
load_device = comfy.model_management.get_torch_device()
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
operations = model_options.get("custom_operations", None)
if operations is None:
operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype, disable_fast_fp8=True)
offload_device = comfy.model_management.unet_offload_device()
return model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device
def controlnet_load_state_dict(control_model, sd):
missing, unexpected = control_model.load_state_dict(sd, strict=False)
if len(missing) > 0:
logging.warning("missing controlnet keys: {}".format(missing))
if len(unexpected) > 0:
logging.debug("unexpected controlnet keys: {}".format(unexpected))
return control_model
def load_controlnet_mmdit(sd, model_options={}):
new_sd = comfy.model_detection.convert_diffusers_mmdit(sd, "")
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(new_sd, model_options=model_options)
num_blocks = comfy.model_detection.count_blocks(new_sd, 'joint_blocks.{}.')
for k in sd:
new_sd[k] = sd[k]
concat_mask = False
control_latent_channels = new_sd.get("pos_embed_input.proj.weight").shape[1]
if control_latent_channels == 17: #inpaint controlnet
concat_mask = True
control_model = comfy.cldm.mmdit.ControlNet(num_blocks=num_blocks, control_latent_channels=control_latent_channels, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
control_model = controlnet_load_state_dict(control_model, new_sd)
latent_format = comfy.latent_formats.SD3()
latent_format.shift_factor = 0 #SD3 controlnet weirdness
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, concat_mask=concat_mask, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
return control
class ControlNetSD35(ControlNet):
def pre_run(self, model, percent_to_timestep_function):
if self.control_model.double_y_emb:
missing, unexpected = self.control_model.orig_y_embedder.load_state_dict(model.diffusion_model.y_embedder.state_dict(), strict=False)
else:
missing, unexpected = self.control_model.x_embedder.load_state_dict(model.diffusion_model.x_embedder.state_dict(), strict=False)
super().pre_run(model, percent_to_timestep_function)
def copy(self):
c = ControlNetSD35(None, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
c.control_model = self.control_model
c.control_model_wrapped = self.control_model_wrapped
self.copy_to(c)
return c
def load_controlnet_sd35(sd, model_options={}):
control_type = -1
if "control_type" in sd:
control_type = round(sd.pop("control_type").item())
# blur_cnet = control_type == 0
canny_cnet = control_type == 1
depth_cnet = control_type == 2
new_sd = {}
for k in comfy.utils.MMDIT_MAP_BASIC:
if k[1] in sd:
new_sd[k[0]] = sd.pop(k[1])
for k in sd:
new_sd[k] = sd[k]
sd = new_sd
y_emb_shape = sd["y_embedder.mlp.0.weight"].shape
depth = y_emb_shape[0] // 64
hidden_size = 64 * depth
num_heads = depth
head_dim = hidden_size // num_heads
num_blocks = comfy.model_detection.count_blocks(new_sd, 'transformer_blocks.{}.')
load_device = comfy.model_management.get_torch_device()
offload_device = comfy.model_management.unet_offload_device()
unet_dtype = comfy.model_management.unet_dtype(model_params=-1)
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
operations = model_options.get("custom_operations", None)
if operations is None:
operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype, disable_fast_fp8=True)
control_model = comfy.cldm.dit_embedder.ControlNetEmbedder(img_size=None,
patch_size=2,
in_chans=16,
num_layers=num_blocks,
main_model_double=depth,
double_y_emb=y_emb_shape[0] == y_emb_shape[1],
attention_head_dim=head_dim,
num_attention_heads=num_heads,
adm_in_channels=2048,
device=offload_device,
dtype=unet_dtype,
operations=operations)
control_model = controlnet_load_state_dict(control_model, sd)
latent_format = comfy.latent_formats.SD3()
preprocess_image = lambda a: a
if canny_cnet:
preprocess_image = lambda a: (a * 255 * 0.5 + 0.5)
elif depth_cnet:
preprocess_image = lambda a: 1.0 - a
control = ControlNetSD35(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype, preprocess_image=preprocess_image)
return control
def load_controlnet_hunyuandit(controlnet_data, model_options={}):
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(controlnet_data, model_options=model_options)
control_model = comfy.ldm.hydit.controlnet.HunYuanControlNet(operations=operations, device=offload_device, dtype=unet_dtype)
control_model = controlnet_load_state_dict(control_model, controlnet_data)
latent_format = comfy.latent_formats.SDXL()
extra_conds = ['text_embedding_mask', 'encoder_hidden_states_t5', 'text_embedding_mask_t5', 'image_meta_size', 'style', 'cos_cis_img', 'sin_cis_img']
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds, strength_type=StrengthType.CONSTANT)
return control
def load_controlnet_flux_xlabs_mistoline(sd, mistoline=False, model_options={}):
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(sd, model_options=model_options)
control_model = comfy.ldm.flux.controlnet.ControlNetFlux(mistoline=mistoline, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
control_model = controlnet_load_state_dict(control_model, sd)
extra_conds = ['y', 'guidance']
control = ControlNet(control_model, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
return control
def load_controlnet_flux_instantx(sd, model_options={}):
new_sd = comfy.model_detection.convert_diffusers_mmdit(sd, "")
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(new_sd, model_options=model_options)
for k in sd:
new_sd[k] = sd[k]
num_union_modes = 0
union_cnet = "controlnet_mode_embedder.weight"
if union_cnet in new_sd:
num_union_modes = new_sd[union_cnet].shape[0]
control_latent_channels = new_sd.get("pos_embed_input.weight").shape[1] // 4
concat_mask = False
if control_latent_channels == 17:
concat_mask = True
control_model = comfy.ldm.flux.controlnet.ControlNetFlux(latent_input=True, num_union_modes=num_union_modes, control_latent_channels=control_latent_channels, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
control_model = controlnet_load_state_dict(control_model, new_sd)
latent_format = comfy.latent_formats.Flux()
extra_conds = ['y', 'guidance']
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, concat_mask=concat_mask, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
return control
def convert_mistoline(sd):
return comfy.utils.state_dict_prefix_replace(sd, {"single_controlnet_blocks.": "controlnet_single_blocks."})
def load_controlnet_state_dict(state_dict, model=None, model_options={}):
controlnet_data = state_dict
if 'after_proj_list.18.bias' in controlnet_data.keys(): #Hunyuan DiT
return load_controlnet_hunyuandit(controlnet_data, model_options=model_options)
if "lora_controlnet" in controlnet_data:
return ControlLora(controlnet_data, model_options=model_options)
controlnet_config = None
supported_inference_dtypes = None
if "controlnet_cond_embedding.conv_in.weight" in controlnet_data: #diffusers format
controlnet_config = comfy.model_detection.unet_config_from_diffusers_unet(controlnet_data)
diffusers_keys = comfy.utils.unet_to_diffusers(controlnet_config)
diffusers_keys["controlnet_mid_block.weight"] = "middle_block_out.0.weight"
diffusers_keys["controlnet_mid_block.bias"] = "middle_block_out.0.bias"
count = 0
loop = True
while loop:
suffix = [".weight", ".bias"]
for s in suffix:
k_in = "controlnet_down_blocks.{}{}".format(count, s)
k_out = "zero_convs.{}.0{}".format(count, s)
if k_in not in controlnet_data:
loop = False
break
diffusers_keys[k_in] = k_out
count += 1
count = 0
loop = True
while loop:
suffix = [".weight", ".bias"]
for s in suffix:
if count == 0:
k_in = "controlnet_cond_embedding.conv_in{}".format(s)
else:
k_in = "controlnet_cond_embedding.blocks.{}{}".format(count - 1, s)
k_out = "input_hint_block.{}{}".format(count * 2, s)
if k_in not in controlnet_data:
k_in = "controlnet_cond_embedding.conv_out{}".format(s)
loop = False
diffusers_keys[k_in] = k_out
count += 1
new_sd = {}
for k in diffusers_keys:
if k in controlnet_data:
new_sd[diffusers_keys[k]] = controlnet_data.pop(k)
if "control_add_embedding.linear_1.bias" in controlnet_data: #Union Controlnet
controlnet_config["union_controlnet_num_control_type"] = controlnet_data["task_embedding"].shape[0]
for k in list(controlnet_data.keys()):
new_k = k.replace('.attn.in_proj_', '.attn.in_proj.')
new_sd[new_k] = controlnet_data.pop(k)
leftover_keys = controlnet_data.keys()
if len(leftover_keys) > 0:
logging.warning("leftover keys: {}".format(leftover_keys))
controlnet_data = new_sd
elif "controlnet_blocks.0.weight" in controlnet_data:
if "double_blocks.0.img_attn.norm.key_norm.scale" in controlnet_data:
return load_controlnet_flux_xlabs_mistoline(controlnet_data, model_options=model_options)
elif "pos_embed_input.proj.weight" in controlnet_data:
if "transformer_blocks.0.adaLN_modulation.1.bias" in controlnet_data:
return load_controlnet_sd35(controlnet_data, model_options=model_options) #Stability sd3.5 format
else:
return load_controlnet_mmdit(controlnet_data, model_options=model_options) #SD3 diffusers controlnet
elif "controlnet_x_embedder.weight" in controlnet_data:
return load_controlnet_flux_instantx(controlnet_data, model_options=model_options)
elif "controlnet_blocks.0.linear.weight" in controlnet_data: #mistoline flux
return load_controlnet_flux_xlabs_mistoline(convert_mistoline(controlnet_data), mistoline=True, model_options=model_options)
pth_key = 'control_model.zero_convs.0.0.weight'
pth = False
key = 'zero_convs.0.0.weight'
if pth_key in controlnet_data:
pth = True
key = pth_key
prefix = "control_model."
elif key in controlnet_data:
prefix = ""
else:
net = load_t2i_adapter(controlnet_data, model_options=model_options)
if net is None:
logging.error("error could not detect control model type.")
return net
if controlnet_config is None:
model_config = comfy.model_detection.model_config_from_unet(controlnet_data, prefix, True)
supported_inference_dtypes = list(model_config.supported_inference_dtypes)
controlnet_config = model_config.unet_config
unet_dtype = model_options.get("dtype", None)
if unet_dtype is None:
weight_dtype = comfy.utils.weight_dtype(controlnet_data)
if supported_inference_dtypes is None:
supported_inference_dtypes = [comfy.model_management.unet_dtype()]
unet_dtype = comfy.model_management.unet_dtype(model_params=-1, supported_dtypes=supported_inference_dtypes, weight_dtype=weight_dtype)
load_device = comfy.model_management.get_torch_device()
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
operations = model_options.get("custom_operations", None)
if operations is None:
operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype)
controlnet_config["operations"] = operations
controlnet_config["dtype"] = unet_dtype
controlnet_config["device"] = comfy.model_management.unet_offload_device()
controlnet_config.pop("out_channels")
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
control_model = comfy.cldm.cldm.ControlNet(**controlnet_config)
if pth:
if 'difference' in controlnet_data:
if model is not None:
comfy.model_management.load_models_gpu([model])
model_sd = model.model_state_dict()
for x in controlnet_data:
c_m = "control_model."
if x.startswith(c_m):
sd_key = "diffusion_model.{}".format(x[len(c_m):])
if sd_key in model_sd:
cd = controlnet_data[x]
cd += model_sd[sd_key].type(cd.dtype).to(cd.device)
else:
logging.warning("WARNING: Loaded a diff controlnet without a model. It will very likely not work.")
class WeightsLoader(torch.nn.Module):
pass
w = WeightsLoader()
w.control_model = control_model
missing, unexpected = w.load_state_dict(controlnet_data, strict=False)
else:
missing, unexpected = control_model.load_state_dict(controlnet_data, strict=False)
if len(missing) > 0:
logging.warning("missing controlnet keys: {}".format(missing))
if len(unexpected) > 0:
logging.debug("unexpected controlnet keys: {}".format(unexpected))
global_average_pooling = model_options.get("global_average_pooling", False)
control = ControlNet(control_model, global_average_pooling=global_average_pooling, load_device=load_device, manual_cast_dtype=manual_cast_dtype)
return control
def load_controlnet(ckpt_path, model=None, model_options={}):
model_options = model_options.copy()
if "global_average_pooling" not in model_options:
filename = os.path.splitext(ckpt_path)[0]
if filename.endswith("_shuffle") or filename.endswith("_shuffle_fp16"): #TODO: smarter way of enabling global_average_pooling
model_options["global_average_pooling"] = True
cnet = load_controlnet_state_dict(comfy.utils.load_torch_file(ckpt_path, safe_load=True), model=model, model_options=model_options)
if cnet is None:
logging.error("error checkpoint does not contain controlnet or t2i adapter data {}".format(ckpt_path))
return cnet
class T2IAdapter(ControlBase):
def __init__(self, t2i_model, channels_in, compression_ratio, upscale_algorithm, device=None):
super().__init__()
self.t2i_model = t2i_model
self.channels_in = channels_in
self.control_input = None
self.compression_ratio = compression_ratio
self.upscale_algorithm = upscale_algorithm
if device is None:
device = comfy.model_management.get_torch_device()
self.device = device
def scale_image_to(self, width, height):
unshuffle_amount = self.t2i_model.unshuffle_amount
width = math.ceil(width / unshuffle_amount) * unshuffle_amount
height = math.ceil(height / unshuffle_amount) * unshuffle_amount
return width, height
def get_control(self, x_noisy, t, cond, batched_number, transformer_options):
control_prev = None
if self.previous_controlnet is not None:
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number, transformer_options)
if self.timestep_range is not None:
if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]:
if control_prev is not None:
return control_prev
else:
return None
if self.cond_hint is None or x_noisy.shape[2] * self.compression_ratio != self.cond_hint.shape[2] or x_noisy.shape[3] * self.compression_ratio != self.cond_hint.shape[3]:
if self.cond_hint is not None:
del self.cond_hint
self.control_input = None
self.cond_hint = None
width, height = self.scale_image_to(x_noisy.shape[3] * self.compression_ratio, x_noisy.shape[2] * self.compression_ratio)
self.cond_hint = comfy.utils.common_upscale(self.cond_hint_original, width, height, self.upscale_algorithm, "center").float().to(self.device)
if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
if x_noisy.shape[0] != self.cond_hint.shape[0]:
self.cond_hint = broadcast_image_to(self.cond_hint, x_noisy.shape[0], batched_number)
if self.control_input is None:
self.t2i_model.to(x_noisy.dtype)
self.t2i_model.to(self.device)
self.control_input = self.t2i_model(self.cond_hint.to(x_noisy.dtype))
self.t2i_model.cpu()
control_input = {}
for k in self.control_input:
control_input[k] = list(map(lambda a: None if a is None else a.clone(), self.control_input[k]))
return self.control_merge(control_input, control_prev, x_noisy.dtype)
def copy(self):
c = T2IAdapter(self.t2i_model, self.channels_in, self.compression_ratio, self.upscale_algorithm)
self.copy_to(c)
return c
def load_t2i_adapter(t2i_data, model_options={}): #TODO: model_options
compression_ratio = 8
upscale_algorithm = 'nearest-exact'
if 'adapter' in t2i_data:
t2i_data = t2i_data['adapter']
if 'adapter.body.0.resnets.0.block1.weight' in t2i_data: #diffusers format
prefix_replace = {}
for i in range(4):
for j in range(2):
prefix_replace["adapter.body.{}.resnets.{}.".format(i, j)] = "body.{}.".format(i * 2 + j)
prefix_replace["adapter.body.{}.".format(i, )] = "body.{}.".format(i * 2)
prefix_replace["adapter."] = ""
t2i_data = comfy.utils.state_dict_prefix_replace(t2i_data, prefix_replace)
keys = t2i_data.keys()
if "body.0.in_conv.weight" in keys:
cin = t2i_data['body.0.in_conv.weight'].shape[1]
model_ad = comfy.t2i_adapter.adapter.Adapter_light(cin=cin, channels=[320, 640, 1280, 1280], nums_rb=4)
elif 'conv_in.weight' in keys:
cin = t2i_data['conv_in.weight'].shape[1]
channel = t2i_data['conv_in.weight'].shape[0]
ksize = t2i_data['body.0.block2.weight'].shape[2]
use_conv = False
down_opts = list(filter(lambda a: a.endswith("down_opt.op.weight"), keys))
if len(down_opts) > 0:
use_conv = True
xl = False
if cin == 256 or cin == 768:
xl = True
model_ad = comfy.t2i_adapter.adapter.Adapter(cin=cin, channels=[channel, channel*2, channel*4, channel*4][:4], nums_rb=2, ksize=ksize, sk=True, use_conv=use_conv, xl=xl)
elif "backbone.0.0.weight" in keys:
model_ad = comfy.ldm.cascade.controlnet.ControlNet(c_in=t2i_data['backbone.0.0.weight'].shape[1], proj_blocks=[0, 4, 8, 12, 51, 55, 59, 63])
compression_ratio = 32
upscale_algorithm = 'bilinear'
elif "backbone.10.blocks.0.weight" in keys:
model_ad = comfy.ldm.cascade.controlnet.ControlNet(c_in=t2i_data['backbone.0.weight'].shape[1], bottleneck_mode="large", proj_blocks=[0, 4, 8, 12, 51, 55, 59, 63])
compression_ratio = 1
upscale_algorithm = 'nearest-exact'
else:
return None
missing, unexpected = model_ad.load_state_dict(t2i_data)
if len(missing) > 0:
logging.warning("t2i missing {}".format(missing))
if len(unexpected) > 0:
logging.debug("t2i unexpected {}".format(unexpected))
return T2IAdapter(model_ad, model_ad.input_channels, compression_ratio, upscale_algorithm)

View File

@@ -1,116 +1,9 @@
import json
import os
import yaml
import folder_paths
from comfy.ldm.util import instantiate_from_config
from comfy.sd import ModelPatcher, load_model_weights, CLIP, VAE
import os.path as osp
import re
import torch
from safetensors.torch import load_file, save_file
import logging
# conversion code from https://github.com/huggingface/diffusers/blob/main/scripts/convert_diffusers_to_original_stable_diffusion.py
# =================#
# UNet Conversion #
# =================#
unet_conversion_map = [
# (stable-diffusion, HF Diffusers)
("time_embed.0.weight", "time_embedding.linear_1.weight"),
("time_embed.0.bias", "time_embedding.linear_1.bias"),
("time_embed.2.weight", "time_embedding.linear_2.weight"),
("time_embed.2.bias", "time_embedding.linear_2.bias"),
("input_blocks.0.0.weight", "conv_in.weight"),
("input_blocks.0.0.bias", "conv_in.bias"),
("out.0.weight", "conv_norm_out.weight"),
("out.0.bias", "conv_norm_out.bias"),
("out.2.weight", "conv_out.weight"),
("out.2.bias", "conv_out.bias"),
]
unet_conversion_map_resnet = [
# (stable-diffusion, HF Diffusers)
("in_layers.0", "norm1"),
("in_layers.2", "conv1"),
("out_layers.0", "norm2"),
("out_layers.3", "conv2"),
("emb_layers.1", "time_emb_proj"),
("skip_connection", "conv_shortcut"),
]
unet_conversion_map_layer = []
# hardcoded number of downblocks and resnets/attentions...
# would need smarter logic for other networks.
for i in range(4):
# loop over downblocks/upblocks
for j in range(2):
# loop over resnets/attentions for downblocks
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
sd_down_res_prefix = f"input_blocks.{3 * i + j + 1}.0."
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
if i < 3:
# no attention layers in down_blocks.3
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
sd_down_atn_prefix = f"input_blocks.{3 * i + j + 1}.1."
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
for j in range(3):
# loop over resnets/attentions for upblocks
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
sd_up_res_prefix = f"output_blocks.{3 * i + j}.0."
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
if i > 0:
# no attention layers in up_blocks.0
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
sd_up_atn_prefix = f"output_blocks.{3 * i + j}.1."
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
if i < 3:
# no downsample in down_blocks.3
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
sd_downsample_prefix = f"input_blocks.{3 * (i + 1)}.0.op."
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
# no upsample in up_blocks.3
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
sd_upsample_prefix = f"output_blocks.{3 * i + 2}.{1 if i == 0 else 2}."
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
hf_mid_atn_prefix = "mid_block.attentions.0."
sd_mid_atn_prefix = "middle_block.1."
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
for j in range(2):
hf_mid_res_prefix = f"mid_block.resnets.{j}."
sd_mid_res_prefix = f"middle_block.{2 * j}."
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
def convert_unet_state_dict(unet_state_dict):
# buyer beware: this is a *brittle* function,
# and correct output requires that all of these pieces interact in
# the exact order in which I have arranged them.
mapping = {k: k for k in unet_state_dict.keys()}
for sd_name, hf_name in unet_conversion_map:
mapping[hf_name] = sd_name
for k, v in mapping.items():
if "resnets" in k:
for sd_part, hf_part in unet_conversion_map_resnet:
v = v.replace(hf_part, sd_part)
mapping[k] = v
for k, v in mapping.items():
for sd_part, hf_part in unet_conversion_map_layer:
v = v.replace(hf_part, sd_part)
mapping[k] = v
new_state_dict = {v: unet_state_dict[k] for k, v in mapping.items()}
return new_state_dict
# ================#
# VAE Conversion #
# ================#
@@ -157,20 +50,31 @@ vae_conversion_map_attn = [
("q.", "query."),
("k.", "key."),
("v.", "value."),
("q.", "to_q."),
("k.", "to_k."),
("v.", "to_v."),
("proj_out.", "to_out.0."),
("proj_out.", "proj_attn."),
]
def reshape_weight_for_sd(w):
def reshape_weight_for_sd(w, conv3d=False):
# convert HF linear weights to SD conv2d weights
return w.reshape(*w.shape, 1, 1)
if conv3d:
return w.reshape(*w.shape, 1, 1, 1)
else:
return w.reshape(*w.shape, 1, 1)
def convert_vae_state_dict(vae_state_dict):
mapping = {k: k for k in vae_state_dict.keys()}
conv3d = False
for k, v in mapping.items():
for sd_part, hf_part in vae_conversion_map:
v = v.replace(hf_part, sd_part)
if v.endswith(".conv.weight"):
if not conv3d and vae_state_dict[k].ndim == 5:
conv3d = True
mapping[k] = v
for k, v in mapping.items():
if "attentions" in k:
@@ -182,8 +86,8 @@ def convert_vae_state_dict(vae_state_dict):
for k, v in new_state_dict.items():
for weight_name in weights_to_convert:
if f"mid.attn_1.{weight_name}.weight" in k:
print(f"Reshaping {k} for SD format")
new_state_dict[k] = reshape_weight_for_sd(v)
logging.debug(f"Reshaping {k} for SD format")
new_state_dict[k] = reshape_weight_for_sd(v, conv3d=conv3d)
return new_state_dict
@@ -211,11 +115,30 @@ textenc_pattern = re.compile("|".join(protected.keys()))
code2idx = {"q": 0, "k": 1, "v": 2}
def convert_text_enc_state_dict_v20(text_enc_dict):
# This function exists because at the time of writing torch.cat can't do fp8 with cuda
def cat_tensors(tensors):
x = 0
for t in tensors:
x += t.shape[0]
shape = [x] + list(tensors[0].shape)[1:]
out = torch.empty(shape, device=tensors[0].device, dtype=tensors[0].dtype)
x = 0
for t in tensors:
out[x:x + t.shape[0]] = t
x += t.shape[0]
return out
def convert_text_enc_state_dict_v20(text_enc_dict, prefix=""):
new_state_dict = {}
capture_qkv_weight = {}
capture_qkv_bias = {}
for k, v in text_enc_dict.items():
if not k.startswith(prefix):
continue
if (
k.endswith(".self_attn.q_proj.weight")
or k.endswith(".self_attn.k_proj.weight")
@@ -240,123 +163,27 @@ def convert_text_enc_state_dict_v20(text_enc_dict):
capture_qkv_bias[k_pre][code2idx[k_code]] = v
continue
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
new_state_dict[relabelled_key] = v
text_proj = "transformer.text_projection.weight"
if k.endswith(text_proj):
new_state_dict[k.replace(text_proj, "text_projection")] = v.transpose(0, 1).contiguous()
else:
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k)
new_state_dict[relabelled_key] = v
for k_pre, tensors in capture_qkv_weight.items():
if None in tensors:
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
new_state_dict[relabelled_key + ".in_proj_weight"] = torch.cat(tensors)
new_state_dict[relabelled_key + ".in_proj_weight"] = cat_tensors(tensors)
for k_pre, tensors in capture_qkv_bias.items():
if None in tensors:
raise Exception("CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing")
relabelled_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], k_pre)
new_state_dict[relabelled_key + ".in_proj_bias"] = torch.cat(tensors)
new_state_dict[relabelled_key + ".in_proj_bias"] = cat_tensors(tensors)
return new_state_dict
def convert_text_enc_state_dict(text_enc_dict):
return text_enc_dict
def load_diffusers(model_path, fp16=True, output_vae=True, output_clip=True, embedding_directory=None):
diffusers_unet_conf = json.load(open(osp.join(model_path, "unet/config.json")))
diffusers_scheduler_conf = json.load(open(osp.join(model_path, "scheduler/scheduler_config.json")))
# magic
v2 = diffusers_unet_conf["sample_size"] == 96
if 'prediction_type' in diffusers_scheduler_conf:
v_pred = diffusers_scheduler_conf['prediction_type'] == 'v_prediction'
if v2:
if v_pred:
config_path = folder_paths.get_full_path("configs", 'v2-inference-v.yaml')
else:
config_path = folder_paths.get_full_path("configs", 'v2-inference.yaml')
else:
config_path = folder_paths.get_full_path("configs", 'v1-inference.yaml')
with open(config_path, 'r') as stream:
config = yaml.safe_load(stream)
model_config_params = config['model']['params']
clip_config = model_config_params['cond_stage_config']
scale_factor = model_config_params['scale_factor']
vae_config = model_config_params['first_stage_config']
vae_config['scale_factor'] = scale_factor
model_config_params["unet_config"]["params"]["use_fp16"] = fp16
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.safetensors")
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.safetensors")
text_enc_path = osp.join(model_path, "text_encoder", "model.safetensors")
# Load models from safetensors if it exists, if it doesn't pytorch
if osp.exists(unet_path):
unet_state_dict = load_file(unet_path, device="cpu")
else:
unet_path = osp.join(model_path, "unet", "diffusion_pytorch_model.bin")
unet_state_dict = torch.load(unet_path, map_location="cpu")
if osp.exists(vae_path):
vae_state_dict = load_file(vae_path, device="cpu")
else:
vae_path = osp.join(model_path, "vae", "diffusion_pytorch_model.bin")
vae_state_dict = torch.load(vae_path, map_location="cpu")
if osp.exists(text_enc_path):
text_enc_dict = load_file(text_enc_path, device="cpu")
else:
text_enc_path = osp.join(model_path, "text_encoder", "pytorch_model.bin")
text_enc_dict = torch.load(text_enc_path, map_location="cpu")
# Convert the UNet model
unet_state_dict = convert_unet_state_dict(unet_state_dict)
unet_state_dict = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
# Convert the VAE model
vae_state_dict = convert_vae_state_dict(vae_state_dict)
vae_state_dict = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
# Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper
is_v20_model = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict
if is_v20_model:
# Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm
text_enc_dict = {"transformer." + k: v for k, v in text_enc_dict.items()}
text_enc_dict = convert_text_enc_state_dict_v20(text_enc_dict)
text_enc_dict = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()}
else:
text_enc_dict = convert_text_enc_state_dict(text_enc_dict)
text_enc_dict = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}
# Put together new checkpoint
sd = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
clip = None
vae = None
class WeightsLoader(torch.nn.Module):
pass
w = WeightsLoader()
load_state_dict_to = []
if output_vae:
vae = VAE(scale_factor=scale_factor, config=vae_config)
w.first_stage_model = vae.first_stage_model
load_state_dict_to = [w]
if output_clip:
clip = CLIP(config=clip_config, embedding_directory=embedding_directory)
w.cond_stage_model = clip.cond_stage_model
load_state_dict_to = [w]
model = instantiate_from_config(config["model"])
model = load_model_weights(model, sd, verbose=False, load_state_dict_to=load_state_dict_to)
if fp16:
model = model.half()
return ModelPatcher(model), clip, vae

36
comfy/diffusers_load.py Normal file
View File

@@ -0,0 +1,36 @@
import os
import comfy.sd
def first_file(path, filenames):
for f in filenames:
p = os.path.join(path, f)
if os.path.exists(p):
return p
return None
def load_diffusers(model_path, output_vae=True, output_clip=True, embedding_directory=None):
diffusion_model_names = ["diffusion_pytorch_model.fp16.safetensors", "diffusion_pytorch_model.safetensors", "diffusion_pytorch_model.fp16.bin", "diffusion_pytorch_model.bin"]
unet_path = first_file(os.path.join(model_path, "unet"), diffusion_model_names)
vae_path = first_file(os.path.join(model_path, "vae"), diffusion_model_names)
text_encoder_model_names = ["model.fp16.safetensors", "model.safetensors", "pytorch_model.fp16.bin", "pytorch_model.bin"]
text_encoder1_path = first_file(os.path.join(model_path, "text_encoder"), text_encoder_model_names)
text_encoder2_path = first_file(os.path.join(model_path, "text_encoder_2"), text_encoder_model_names)
text_encoder_paths = [text_encoder1_path]
if text_encoder2_path is not None:
text_encoder_paths.append(text_encoder2_path)
unet = comfy.sd.load_diffusion_model(unet_path)
clip = None
if output_clip:
clip = comfy.sd.load_clip(text_encoder_paths, embedding_directory=embedding_directory)
vae = None
if output_vae:
sd = comfy.utils.load_torch_file(vae_path)
vae = comfy.sd.VAE(sd=sd)
return (unet, clip, vae)

View File

@@ -1,10 +1,10 @@
#code taken from: https://github.com/wl-zhao/UniPC and modified
import torch
import torch.nn.functional as F
import math
import logging
from tqdm.auto import trange, tqdm
from tqdm.auto import trange
class NoiseScheduleVP:
@@ -16,7 +16,7 @@ class NoiseScheduleVP:
continuous_beta_0=0.1,
continuous_beta_1=20.,
):
"""Create a wrapper class for the forward SDE (VP type).
r"""Create a wrapper class for the forward SDE (VP type).
***
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
@@ -80,7 +80,7 @@ class NoiseScheduleVP:
'linear' or 'cosine' for continuous-time DPMs.
Returns:
A wrapper object of the forward SDE (VP type).
===============================================================
Example:
@@ -180,7 +180,6 @@ class NoiseScheduleVP:
def model_wrapper(
model,
sampling_function,
noise_schedule,
model_type="noise",
model_kwargs={},
@@ -209,7 +208,7 @@ def model_wrapper(
arXiv preprint arXiv:2202.00512 (2022).
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
arXiv preprint arXiv:2210.02303 (2022).
4. "score": marginal score function. (Trained by denoising score matching).
Note that the score function and the noise prediction model follows a simple relationship:
```
@@ -227,7 +226,7 @@ def model_wrapper(
The input `model` has the following format:
``
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
``
``
The input `classifier_fn` has the following format:
``
@@ -241,12 +240,12 @@ def model_wrapper(
The input `model` has the following format:
``
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
``
``
And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
arXiv preprint arXiv:2207.12598 (2022).
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
or continuous-time labels (i.e. epsilon to T).
@@ -255,7 +254,7 @@ def model_wrapper(
``
def model_fn(x, t_continuous) -> noise:
t_input = get_model_input_time(t_continuous)
return noise_pred(model, x, t_input, **model_kwargs)
return noise_pred(model, x, t_input, **model_kwargs)
``
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
@@ -295,7 +294,7 @@ def model_wrapper(
if t_continuous.reshape((-1,)).shape[0] == 1:
t_continuous = t_continuous.expand((x.shape[0]))
t_input = get_model_input_time(t_continuous)
output = sampling_function(model, x, t_input, **model_kwargs)
output = model(x, t_input, **model_kwargs)
if model_type == "noise":
return output
elif model_type == "x_start":
@@ -359,11 +358,8 @@ class UniPC:
thresholding=False,
max_val=1.,
variant='bh1',
noise_mask=None,
masked_image=None,
noise=None,
):
"""Construct a UniPC.
"""Construct a UniPC.
We support both data_prediction and noise_prediction.
"""
@@ -373,13 +369,10 @@ class UniPC:
self.predict_x0 = predict_x0
self.thresholding = thresholding
self.max_val = max_val
self.noise_mask = noise_mask
self.masked_image = masked_image
self.noise = noise
def dynamic_thresholding_fn(self, x0, t=None):
"""
The dynamic thresholding method.
The dynamic thresholding method.
"""
dims = x0.dim()
p = self.dynamic_thresholding_ratio
@@ -392,10 +385,7 @@ class UniPC:
"""
Return the noise prediction model.
"""
if self.noise_mask is not None:
return self.model(x, t) * self.noise_mask
else:
return self.model(x, t)
return self.model(x, t)
def data_prediction_fn(self, x, t):
"""
@@ -410,13 +400,11 @@ class UniPC:
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
s = expand_dims(torch.maximum(s, self.max_val * torch.ones_like(s).to(s.device)), dims)
x0 = torch.clamp(x0, -s, s) / s
if self.noise_mask is not None:
x0 = x0 * self.noise_mask + (1. - self.noise_mask) * self.masked_image
return x0
def model_fn(self, x, t):
"""
Convert the model to the noise prediction model or the data prediction model.
Convert the model to the noise prediction model or the data prediction model.
"""
if self.predict_x0:
return self.data_prediction_fn(x, t)
@@ -473,7 +461,7 @@ class UniPC:
def denoise_to_zero_fn(self, x, s):
"""
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
"""
return self.data_prediction_fn(x, s)
@@ -487,7 +475,7 @@ class UniPC:
return self.multistep_uni_pc_vary_update(x, model_prev_list, t_prev_list, t, order, **kwargs)
def multistep_uni_pc_vary_update(self, x, model_prev_list, t_prev_list, t, order, use_corrector=True):
print(f'using unified predictor-corrector with order {order} (solver type: vary coeff)')
logging.info(f'using unified predictor-corrector with order {order} (solver type: vary coeff)')
ns = self.noise_schedule
assert order <= len(model_prev_list)
@@ -522,7 +510,7 @@ class UniPC:
col = torch.ones_like(rks)
for k in range(1, K + 1):
C.append(col)
col = col * rks / (k + 1)
col = col * rks / (k + 1)
C = torch.stack(C, dim=1)
if len(D1s) > 0:
@@ -531,7 +519,6 @@ class UniPC:
A_p = C_inv_p
if use_corrector:
print('using corrector')
C_inv = torch.linalg.inv(C)
A_c = C_inv
@@ -634,12 +621,12 @@ class UniPC:
B_h = torch.expm1(hh)
else:
raise NotImplementedError()
for i in range(1, order + 1):
R.append(torch.pow(rks, i - 1))
b.append(h_phi_k * factorial_i / B_h)
factorial_i *= (i + 1)
h_phi_k = h_phi_k / hh - 1 / factorial_i
h_phi_k = h_phi_k / hh - 1 / factorial_i
R = torch.stack(R)
b = torch.tensor(b, device=x.device)
@@ -674,7 +661,7 @@ class UniPC:
if x_t is None:
if use_predictor:
pred_res = torch.einsum('k,bkchw->bchw', rhos_p, D1s)
pred_res = torch.tensordot(D1s, rhos_p, dims=([1], [0])) # torch.einsum('k,bkchw->bchw', rhos_p, D1s)
else:
pred_res = 0
x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * pred_res
@@ -682,14 +669,14 @@ class UniPC:
if use_corrector:
model_t = self.model_fn(x_t, t)
if D1s is not None:
corr_res = torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
corr_res = torch.tensordot(D1s, rhos_c[:-1], dims=([1], [0])) # torch.einsum('k,bkchw->bchw', rhos_c[:-1], D1s)
else:
corr_res = 0
D1_t = (model_t - model_prev_0)
x_t = x_t_ - expand_dims(alpha_t * B_h, dims) * (corr_res + rhos_c[-1] * D1_t)
else:
x_t_ = (
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dimss) * x
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
- expand_dims(sigma_t * h_phi_1, dims) * model_prev_0
)
if x_t is None:
@@ -714,9 +701,8 @@ class UniPC:
method='singlestep', lower_order_final=True, denoise_to_zero=False, solver_type='dpm_solver',
atol=0.0078, rtol=0.05, corrector=False, callback=None, disable_pbar=False
):
t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
t_T = self.noise_schedule.T if t_start is None else t_start
device = x.device
# t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
# t_T = self.noise_schedule.T if t_start is None else t_start
steps = len(timesteps) - 1
if method == 'multistep':
assert steps >= order
@@ -724,8 +710,6 @@ class UniPC:
assert timesteps.shape[0] - 1 == steps
# with torch.no_grad():
for step_index in trange(steps, disable=disable_pbar):
if self.noise_mask is not None:
x = x * self.noise_mask + (1. - self.noise_mask) * (self.masked_image * self.noise_schedule.marginal_alpha(timesteps[step_index]) + self.noise * self.noise_schedule.marginal_std(timesteps[step_index]))
if step_index == 0:
vec_t = timesteps[0].expand((x.shape[0]))
model_prev_list = [self.model_fn(x, vec_t)]
@@ -767,11 +751,11 @@ class UniPC:
model_x = self.model_fn(x, vec_t)
model_prev_list[-1] = model_x
if callback is not None:
callback(step_index, model_prev_list[-1], x, steps)
callback({'x': x, 'i': step_index, 'denoised': model_prev_list[-1]})
else:
raise NotImplementedError()
if denoise_to_zero:
x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
# if denoise_to_zero:
# x = self.denoise_to_zero_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
return x
@@ -834,52 +818,56 @@ def expand_dims(v, dims):
return v[(...,) + (None,)*(dims - 1)]
class SigmaConvert:
schedule = ""
def marginal_log_mean_coeff(self, sigma):
return 0.5 * torch.log(1 / ((sigma * sigma) + 1))
def sample_unipc(model, noise, image, sigmas, sampling_function, max_denoise, extra_args=None, callback=None, disable=False, noise_mask=None, variant='bh1'):
to_zero = False
def marginal_alpha(self, t):
return torch.exp(self.marginal_log_mean_coeff(t))
def marginal_std(self, t):
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
def marginal_lambda(self, t):
"""
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
"""
log_mean_coeff = self.marginal_log_mean_coeff(t)
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
return log_mean_coeff - log_std
def predict_eps_sigma(model, input, sigma_in, **kwargs):
sigma = sigma_in.view(sigma_in.shape[:1] + (1,) * (input.ndim - 1))
input = input * ((sigma ** 2 + 1.0) ** 0.5)
return (input - model(input, sigma_in, **kwargs)) / sigma
def sample_unipc(model, noise, sigmas, extra_args=None, callback=None, disable=False, variant='bh1'):
timesteps = sigmas.clone()
if sigmas[-1] == 0:
timesteps = torch.nn.functional.interpolate(sigmas[None,None,:-1], size=(len(sigmas),), mode='linear')[0][0]
to_zero = True
timesteps = sigmas[:]
timesteps[-1] = 0.001
else:
timesteps = sigmas.clone()
ns = SigmaConvert()
for s in range(timesteps.shape[0]):
timesteps[s] = (model.sigma_to_t(timesteps[s]) / 1000) + (1 / len(model.sigmas))
ns = NoiseScheduleVP('discrete', alphas_cumprod=model.inner_model.alphas_cumprod)
if image is not None:
img = image * ns.marginal_alpha(timesteps[0])
if max_denoise:
noise_mult = 1.0
else:
noise_mult = ns.marginal_std(timesteps[0])
img += noise * noise_mult
else:
img = noise
if to_zero:
timesteps[-1] = (1 / len(model.sigmas))
device = noise.device
if model.parameterization == "v":
model_type = "v"
else:
model_type = "noise"
noise = noise / torch.sqrt(1.0 + timesteps[0] ** 2.0)
model_type = "noise"
model_fn = model_wrapper(
model.inner_model.inner_model.apply_model,
sampling_function,
lambda input, sigma, **kwargs: predict_eps_sigma(model, input, sigma, **kwargs),
ns,
model_type=model_type,
guidance_type="uncond",
model_kwargs=extra_args,
)
order = min(3, len(timesteps) - 1)
uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, noise_mask=noise_mask, masked_image=image, noise=noise, variant=variant)
x = uni_pc.sample(img, timesteps=timesteps, skip_type="time_uniform", method="multistep", order=order, lower_order_final=True, callback=callback, disable_pbar=disable)
if not to_zero:
x /= ns.marginal_alpha(timesteps[-1])
order = min(3, len(timesteps) - 2)
uni_pc = UniPC(model_fn, ns, predict_x0=True, thresholding=False, variant=variant)
x = uni_pc.sample(noise, timesteps=timesteps, skip_type="time_uniform", method="multistep", order=order, lower_order_final=True, callback=callback, disable_pbar=disable)
x /= ns.marginal_alpha(timesteps[-1])
return x
def sample_unipc_bh2(model, noise, sigmas, extra_args=None, callback=None, disable=False):
return sample_unipc(model, noise, sigmas, extra_args, callback, disable, variant='bh2')

67
comfy/float.py Normal file
View File

@@ -0,0 +1,67 @@
import torch
def calc_mantissa(abs_x, exponent, normal_mask, MANTISSA_BITS, EXPONENT_BIAS, generator=None):
mantissa_scaled = torch.where(
normal_mask,
(abs_x / (2.0 ** (exponent - EXPONENT_BIAS)) - 1.0) * (2**MANTISSA_BITS),
(abs_x / (2.0 ** (-EXPONENT_BIAS + 1 - MANTISSA_BITS)))
)
mantissa_scaled += torch.rand(mantissa_scaled.size(), dtype=mantissa_scaled.dtype, layout=mantissa_scaled.layout, device=mantissa_scaled.device, generator=generator)
return mantissa_scaled.floor() / (2**MANTISSA_BITS)
#Not 100% sure about this
def manual_stochastic_round_to_float8(x, dtype, generator=None):
if dtype == torch.float8_e4m3fn:
EXPONENT_BITS, MANTISSA_BITS, EXPONENT_BIAS = 4, 3, 7
elif dtype == torch.float8_e5m2:
EXPONENT_BITS, MANTISSA_BITS, EXPONENT_BIAS = 5, 2, 15
else:
raise ValueError("Unsupported dtype")
x = x.half()
sign = torch.sign(x)
abs_x = x.abs()
sign = torch.where(abs_x == 0, 0, sign)
# Combine exponent calculation and clamping
exponent = torch.clamp(
torch.floor(torch.log2(abs_x)) + EXPONENT_BIAS,
0, 2**EXPONENT_BITS - 1
)
# Combine mantissa calculation and rounding
normal_mask = ~(exponent == 0)
abs_x[:] = calc_mantissa(abs_x, exponent, normal_mask, MANTISSA_BITS, EXPONENT_BIAS, generator=generator)
sign *= torch.where(
normal_mask,
(2.0 ** (exponent - EXPONENT_BIAS)) * (1.0 + abs_x),
(2.0 ** (-EXPONENT_BIAS + 1)) * abs_x
)
inf = torch.finfo(dtype)
torch.clamp(sign, min=inf.min, max=inf.max, out=sign)
return sign
def stochastic_rounding(value, dtype, seed=0):
if dtype == torch.float32:
return value.to(dtype=torch.float32)
if dtype == torch.float16:
return value.to(dtype=torch.float16)
if dtype == torch.bfloat16:
return value.to(dtype=torch.bfloat16)
if dtype == torch.float8_e4m3fn or dtype == torch.float8_e5m2:
generator = torch.Generator(device=value.device)
generator.manual_seed(seed)
output = torch.empty_like(value, dtype=dtype)
num_slices = max(1, (value.numel() / (4096 * 4096)))
slice_size = max(1, round(value.shape[0] / num_slices))
for i in range(0, value.shape[0], slice_size):
output[i:i+slice_size].copy_(manual_stochastic_round_to_float8(value[i:i+slice_size], dtype, generator=generator))
return output
return value.to(dtype=dtype)

View File

@@ -1,8 +1,10 @@
import math
import torch
from torch import nn, einsum
from torch import nn
from .ldm.modules.attention import CrossAttention
from inspect import isfunction
import comfy.ops
ops = comfy.ops.manual_cast
def exists(val):
return val is not None
@@ -22,7 +24,7 @@ def default(val, d):
class GEGLU(nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out * 2)
self.proj = ops.Linear(dim_in, dim_out * 2)
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
@@ -35,14 +37,14 @@ class FeedForward(nn.Module):
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
project_in = nn.Sequential(
nn.Linear(dim, inner_dim),
ops.Linear(dim, inner_dim),
nn.GELU()
) if not glu else GEGLU(dim, inner_dim)
self.net = nn.Sequential(
project_in,
nn.Dropout(dropout),
nn.Linear(inner_dim, dim_out)
ops.Linear(inner_dim, dim_out)
)
def forward(self, x):
@@ -57,11 +59,12 @@ class GatedCrossAttentionDense(nn.Module):
query_dim=query_dim,
context_dim=context_dim,
heads=n_heads,
dim_head=d_head)
dim_head=d_head,
operations=ops)
self.ff = FeedForward(query_dim, glu=True)
self.norm1 = nn.LayerNorm(query_dim)
self.norm2 = nn.LayerNorm(query_dim)
self.norm1 = ops.LayerNorm(query_dim)
self.norm2 = ops.LayerNorm(query_dim)
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
@@ -87,17 +90,18 @@ class GatedSelfAttentionDense(nn.Module):
# we need a linear projection since we need cat visual feature and obj
# feature
self.linear = nn.Linear(context_dim, query_dim)
self.linear = ops.Linear(context_dim, query_dim)
self.attn = CrossAttention(
query_dim=query_dim,
context_dim=query_dim,
heads=n_heads,
dim_head=d_head)
dim_head=d_head,
operations=ops)
self.ff = FeedForward(query_dim, glu=True)
self.norm1 = nn.LayerNorm(query_dim)
self.norm2 = nn.LayerNorm(query_dim)
self.norm1 = ops.LayerNorm(query_dim)
self.norm2 = ops.LayerNorm(query_dim)
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
@@ -126,14 +130,14 @@ class GatedSelfAttentionDense2(nn.Module):
# we need a linear projection since we need cat visual feature and obj
# feature
self.linear = nn.Linear(context_dim, query_dim)
self.linear = ops.Linear(context_dim, query_dim)
self.attn = CrossAttention(
query_dim=query_dim, context_dim=query_dim, dim_head=d_head)
query_dim=query_dim, context_dim=query_dim, dim_head=d_head, operations=ops)
self.ff = FeedForward(query_dim, glu=True)
self.norm1 = nn.LayerNorm(query_dim)
self.norm2 = nn.LayerNorm(query_dim)
self.norm1 = ops.LayerNorm(query_dim)
self.norm2 = ops.LayerNorm(query_dim)
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
@@ -201,11 +205,11 @@ class PositionNet(nn.Module):
self.position_dim = fourier_freqs * 2 * 4 # 2 is sin&cos, 4 is xyxy
self.linears = nn.Sequential(
nn.Linear(self.in_dim + self.position_dim, 512),
ops.Linear(self.in_dim + self.position_dim, 512),
nn.SiLU(),
nn.Linear(512, 512),
ops.Linear(512, 512),
nn.SiLU(),
nn.Linear(512, out_dim),
ops.Linear(512, out_dim),
)
self.null_positive_feature = torch.nn.Parameter(
@@ -216,13 +220,14 @@ class PositionNet(nn.Module):
def forward(self, boxes, masks, positive_embeddings):
B, N, _ = boxes.shape
masks = masks.unsqueeze(-1)
positive_embeddings = positive_embeddings
# embedding position (it may includes padding as placeholder)
xyxy_embedding = self.fourier_embedder(boxes) # B*N*4 --> B*N*C
# learnable null embedding
positive_null = self.null_positive_feature.view(1, 1, -1)
xyxy_null = self.null_position_feature.view(1, 1, -1)
positive_null = self.null_positive_feature.to(device=boxes.device, dtype=boxes.dtype).view(1, 1, -1)
xyxy_null = self.null_position_feature.to(device=boxes.device, dtype=boxes.dtype).view(1, 1, -1)
# replace padding with learnable null embedding
positive_embeddings = positive_embeddings * \
@@ -242,28 +247,15 @@ class Gligen(nn.Module):
self.position_net = position_net
self.key_dim = key_dim
self.max_objs = 30
self.lowvram = False
self.current_device = torch.device("cpu")
def _set_position(self, boxes, masks, positive_embeddings):
if self.lowvram == True:
self.position_net.to(boxes.device)
objs = self.position_net(boxes, masks, positive_embeddings)
if self.lowvram == True:
self.position_net.cpu()
def func_lowvram(key, x):
module = self.module_list[key]
module.to(x.device)
r = module(x, objs)
module.cpu()
return r
return func_lowvram
else:
def func(key, x):
module = self.module_list[key]
return module(x, objs)
return func
def func(x, extra_options):
key = extra_options["transformer_index"]
module = self.module_list[key]
return module(x, objs.to(device=x.device, dtype=x.dtype))
return func
def set_position(self, latent_image_shape, position_params, device):
batch, c, h, w = latent_image_shape
@@ -308,14 +300,6 @@ class Gligen(nn.Module):
masks.to(device),
conds.to(device))
def set_lowvram(self, value=True):
self.lowvram = value
def cleanup(self):
self.lowvram = False
def get_models(self):
return [self]
def load_gligen(sd):
sd_k = sd.keys()

785
comfy/hooks.py Normal file
View File

@@ -0,0 +1,785 @@
from __future__ import annotations
from typing import TYPE_CHECKING, Callable
import enum
import math
import torch
import numpy as np
import itertools
import logging
if TYPE_CHECKING:
from comfy.model_patcher import ModelPatcher, PatcherInjection
from comfy.model_base import BaseModel
from comfy.sd import CLIP
import comfy.lora
import comfy.model_management
import comfy.patcher_extension
from node_helpers import conditioning_set_values
# #######################################################################################################
# Hooks explanation
# -------------------
# The purpose of hooks is to allow conds to influence sampling without the need for ComfyUI core code to
# make explicit special cases like it does for ControlNet and GLIGEN.
#
# This is necessary for nodes/features that are intended for use with masked or scheduled conds, or those
# that should run special code when a 'marked' cond is used in sampling.
# #######################################################################################################
class EnumHookMode(enum.Enum):
'''
Priority of hook memory optimization vs. speed, mostly related to WeightHooks.
MinVram: No caching will occur for any operations related to hooks.
MaxSpeed: Excess VRAM (and RAM, once VRAM is sufficiently depleted) will be used to cache hook weights when switching hook groups.
'''
MinVram = "minvram"
MaxSpeed = "maxspeed"
class EnumHookType(enum.Enum):
'''
Hook types, each of which has different expected behavior.
'''
Weight = "weight"
ObjectPatch = "object_patch"
AdditionalModels = "add_models"
TransformerOptions = "transformer_options"
Injections = "add_injections"
class EnumWeightTarget(enum.Enum):
Model = "model"
Clip = "clip"
class EnumHookScope(enum.Enum):
'''
Determines if hook should be limited in its influence over sampling.
AllConditioning: hook will affect all conds used in sampling.
HookedOnly: hook will only affect the conds it was attached to.
'''
AllConditioning = "all_conditioning"
HookedOnly = "hooked_only"
class _HookRef:
pass
def default_should_register(hook: Hook, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
'''Example for how custom_should_register function can look like.'''
return True
def create_target_dict(target: EnumWeightTarget=None, **kwargs) -> dict[str]:
'''Creates base dictionary for use with Hooks' target param.'''
d = {}
if target is not None:
d['target'] = target
d.update(kwargs)
return d
class Hook:
def __init__(self, hook_type: EnumHookType=None, hook_ref: _HookRef=None, hook_id: str=None,
hook_keyframe: HookKeyframeGroup=None, hook_scope=EnumHookScope.AllConditioning):
self.hook_type = hook_type
'''Enum identifying the general class of this hook.'''
self.hook_ref = hook_ref if hook_ref else _HookRef()
'''Reference shared between hook clones that have the same value. Should NOT be modified.'''
self.hook_id = hook_id
'''Optional string ID to identify hook; useful if need to consolidate duplicates at registration time.'''
self.hook_keyframe = hook_keyframe if hook_keyframe else HookKeyframeGroup()
'''Keyframe storage that can be referenced to get strength for current sampling step.'''
self.hook_scope = hook_scope
'''Scope of where this hook should apply in terms of the conds used in sampling run.'''
self.custom_should_register = default_should_register
'''Can be overriden with a compatible function to decide if this hook should be registered without the need to override .should_register'''
@property
def strength(self):
return self.hook_keyframe.strength
def initialize_timesteps(self, model: BaseModel):
self.reset()
self.hook_keyframe.initialize_timesteps(model)
def reset(self):
self.hook_keyframe.reset()
def clone(self):
c: Hook = self.__class__()
c.hook_type = self.hook_type
c.hook_ref = self.hook_ref
c.hook_id = self.hook_id
c.hook_keyframe = self.hook_keyframe
c.hook_scope = self.hook_scope
c.custom_should_register = self.custom_should_register
return c
def should_register(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
return self.custom_should_register(self, model, model_options, target_dict, registered)
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
raise NotImplementedError("add_hook_patches should be defined for Hook subclasses")
def __eq__(self, other: Hook):
return self.__class__ == other.__class__ and self.hook_ref == other.hook_ref
def __hash__(self):
return hash(self.hook_ref)
class WeightHook(Hook):
'''
Hook responsible for tracking weights to be applied to some model/clip.
Note, value of hook_scope is ignored and is treated as HookedOnly.
'''
def __init__(self, strength_model=1.0, strength_clip=1.0):
super().__init__(hook_type=EnumHookType.Weight, hook_scope=EnumHookScope.HookedOnly)
self.weights: dict = None
self.weights_clip: dict = None
self.need_weight_init = True
self._strength_model = strength_model
self._strength_clip = strength_clip
self.hook_scope = EnumHookScope.HookedOnly # this value does not matter for WeightHooks, just for docs
@property
def strength_model(self):
return self._strength_model * self.strength
@property
def strength_clip(self):
return self._strength_clip * self.strength
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
if not self.should_register(model, model_options, target_dict, registered):
return False
weights = None
target = target_dict.get('target', None)
if target == EnumWeightTarget.Clip:
strength = self._strength_clip
else:
strength = self._strength_model
if self.need_weight_init:
key_map = {}
if target == EnumWeightTarget.Clip:
key_map = comfy.lora.model_lora_keys_clip(model.model, key_map)
else:
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
weights = comfy.lora.load_lora(self.weights, key_map, log_missing=False)
else:
if target == EnumWeightTarget.Clip:
weights = self.weights_clip
else:
weights = self.weights
model.add_hook_patches(hook=self, patches=weights, strength_patch=strength)
registered.add(self)
return True
# TODO: add logs about any keys that were not applied
def clone(self):
c: WeightHook = super().clone()
c.weights = self.weights
c.weights_clip = self.weights_clip
c.need_weight_init = self.need_weight_init
c._strength_model = self._strength_model
c._strength_clip = self._strength_clip
return c
class ObjectPatchHook(Hook):
def __init__(self, object_patches: dict[str]=None,
hook_scope=EnumHookScope.AllConditioning):
super().__init__(hook_type=EnumHookType.ObjectPatch)
self.object_patches = object_patches
self.hook_scope = hook_scope
def clone(self):
c: ObjectPatchHook = super().clone()
c.object_patches = self.object_patches
return c
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
raise NotImplementedError("ObjectPatchHook is not supported yet in ComfyUI.")
class AdditionalModelsHook(Hook):
'''
Hook responsible for telling model management any additional models that should be loaded.
Note, value of hook_scope is ignored and is treated as AllConditioning.
'''
def __init__(self, models: list[ModelPatcher]=None, key: str=None):
super().__init__(hook_type=EnumHookType.AdditionalModels)
self.models = models
self.key = key
def clone(self):
c: AdditionalModelsHook = super().clone()
c.models = self.models.copy() if self.models else self.models
c.key = self.key
return c
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
if not self.should_register(model, model_options, target_dict, registered):
return False
registered.add(self)
return True
class TransformerOptionsHook(Hook):
'''
Hook responsible for adding wrappers, callbacks, patches, or anything else related to transformer_options.
'''
def __init__(self, transformers_dict: dict[str, dict[str, dict[str, list[Callable]]]]=None,
hook_scope=EnumHookScope.AllConditioning):
super().__init__(hook_type=EnumHookType.TransformerOptions)
self.transformers_dict = transformers_dict
self.hook_scope = hook_scope
self._skip_adding = False
'''Internal value used to avoid double load of transformer_options when hook_scope is AllConditioning.'''
def clone(self):
c: TransformerOptionsHook = super().clone()
c.transformers_dict = self.transformers_dict
c._skip_adding = self._skip_adding
return c
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
if not self.should_register(model, model_options, target_dict, registered):
return False
# NOTE: to_load_options will be used to manually load patches/wrappers/callbacks from hooks
self._skip_adding = False
if self.hook_scope == EnumHookScope.AllConditioning:
add_model_options = {"transformer_options": self.transformers_dict,
"to_load_options": self.transformers_dict}
# skip_adding if included in AllConditioning to avoid double loading
self._skip_adding = True
else:
add_model_options = {"to_load_options": self.transformers_dict}
registered.add(self)
comfy.patcher_extension.merge_nested_dicts(model_options, add_model_options, copy_dict1=False)
return True
def on_apply_hooks(self, model: ModelPatcher, transformer_options: dict[str]):
if not self._skip_adding:
comfy.patcher_extension.merge_nested_dicts(transformer_options, self.transformers_dict, copy_dict1=False)
WrapperHook = TransformerOptionsHook
'''Only here for backwards compatibility, WrapperHook is identical to TransformerOptionsHook.'''
class InjectionsHook(Hook):
def __init__(self, key: str=None, injections: list[PatcherInjection]=None,
hook_scope=EnumHookScope.AllConditioning):
super().__init__(hook_type=EnumHookType.Injections)
self.key = key
self.injections = injections
self.hook_scope = hook_scope
def clone(self):
c: InjectionsHook = super().clone()
c.key = self.key
c.injections = self.injections.copy() if self.injections else self.injections
return c
def add_hook_patches(self, model: ModelPatcher, model_options: dict, target_dict: dict[str], registered: HookGroup):
raise NotImplementedError("InjectionsHook is not supported yet in ComfyUI.")
class HookGroup:
'''
Stores groups of hooks, and allows them to be queried by type.
To prevent breaking their functionality, never modify the underlying self.hooks or self._hook_dict vars directly;
always use the provided functions on HookGroup.
'''
def __init__(self):
self.hooks: list[Hook] = []
self._hook_dict: dict[EnumHookType, list[Hook]] = {}
def __len__(self):
return len(self.hooks)
def add(self, hook: Hook):
if hook not in self.hooks:
self.hooks.append(hook)
self._hook_dict.setdefault(hook.hook_type, []).append(hook)
def remove(self, hook: Hook):
if hook in self.hooks:
self.hooks.remove(hook)
self._hook_dict[hook.hook_type].remove(hook)
def get_type(self, hook_type: EnumHookType):
return self._hook_dict.get(hook_type, [])
def contains(self, hook: Hook):
return hook in self.hooks
def is_subset_of(self, other: HookGroup):
self_hooks = set(self.hooks)
other_hooks = set(other.hooks)
return self_hooks.issubset(other_hooks)
def new_with_common_hooks(self, other: HookGroup):
c = HookGroup()
for hook in self.hooks:
if other.contains(hook):
c.add(hook.clone())
return c
def clone(self):
c = HookGroup()
for hook in self.hooks:
c.add(hook.clone())
return c
def clone_and_combine(self, other: HookGroup):
c = self.clone()
if other is not None:
for hook in other.hooks:
c.add(hook.clone())
return c
def set_keyframes_on_hooks(self, hook_kf: HookKeyframeGroup):
if hook_kf is None:
hook_kf = HookKeyframeGroup()
else:
hook_kf = hook_kf.clone()
for hook in self.hooks:
hook.hook_keyframe = hook_kf
def get_hooks_for_clip_schedule(self):
scheduled_hooks: dict[WeightHook, list[tuple[tuple[float,float], HookKeyframe]]] = {}
# only care about WeightHooks, for now
for hook in self.get_type(EnumHookType.Weight):
hook: WeightHook
hook_schedule = []
# if no hook keyframes, assign default value
if len(hook.hook_keyframe.keyframes) == 0:
hook_schedule.append(((0.0, 1.0), None))
scheduled_hooks[hook] = hook_schedule
continue
# find ranges of values
prev_keyframe = hook.hook_keyframe.keyframes[0]
for keyframe in hook.hook_keyframe.keyframes:
if keyframe.start_percent > prev_keyframe.start_percent and not math.isclose(keyframe.strength, prev_keyframe.strength):
hook_schedule.append(((prev_keyframe.start_percent, keyframe.start_percent), prev_keyframe))
prev_keyframe = keyframe
elif keyframe.start_percent == prev_keyframe.start_percent:
prev_keyframe = keyframe
# create final range, assuming last start_percent was not 1.0
if not math.isclose(prev_keyframe.start_percent, 1.0):
hook_schedule.append(((prev_keyframe.start_percent, 1.0), prev_keyframe))
scheduled_hooks[hook] = hook_schedule
# hooks should not have their schedules in a list of tuples
all_ranges: list[tuple[float, float]] = []
for range_kfs in scheduled_hooks.values():
for t_range, keyframe in range_kfs:
all_ranges.append(t_range)
# turn list of ranges into boundaries
boundaries_set = set(itertools.chain.from_iterable(all_ranges))
boundaries_set.add(0.0)
boundaries = sorted(boundaries_set)
real_ranges = [(boundaries[i], boundaries[i + 1]) for i in range(len(boundaries) - 1)]
# with real ranges defined, give appropriate hooks w/ keyframes for each range
scheduled_keyframes: list[tuple[tuple[float,float], list[tuple[WeightHook, HookKeyframe]]]] = []
for t_range in real_ranges:
hooks_schedule = []
for hook, val in scheduled_hooks.items():
keyframe = None
# check if is a keyframe that works for the current t_range
for stored_range, stored_kf in val:
# if stored start is less than current end, then fits - give it assigned keyframe
if stored_range[0] < t_range[1] and stored_range[1] > t_range[0]:
keyframe = stored_kf
break
hooks_schedule.append((hook, keyframe))
scheduled_keyframes.append((t_range, hooks_schedule))
return scheduled_keyframes
def reset(self):
for hook in self.hooks:
hook.reset()
@staticmethod
def combine_all_hooks(hooks_list: list[HookGroup], require_count=0) -> HookGroup:
actual: list[HookGroup] = []
for group in hooks_list:
if group is not None:
actual.append(group)
if len(actual) < require_count:
raise Exception(f"Need at least {require_count} hooks to combine, but only had {len(actual)}.")
# if no hooks, then return None
if len(actual) == 0:
return None
# if only 1 hook, just return itself without cloning
elif len(actual) == 1:
return actual[0]
final_hook: HookGroup = None
for hook in actual:
if final_hook is None:
final_hook = hook.clone()
else:
final_hook = final_hook.clone_and_combine(hook)
return final_hook
class HookKeyframe:
def __init__(self, strength: float, start_percent=0.0, guarantee_steps=1):
self.strength = strength
# scheduling
self.start_percent = float(start_percent)
self.start_t = 999999999.9
self.guarantee_steps = guarantee_steps
def get_effective_guarantee_steps(self, max_sigma: torch.Tensor):
'''If keyframe starts before current sampling range (max_sigma), treat as 0.'''
if self.start_t > max_sigma:
return 0
return self.guarantee_steps
def clone(self):
c = HookKeyframe(strength=self.strength,
start_percent=self.start_percent, guarantee_steps=self.guarantee_steps)
c.start_t = self.start_t
return c
class HookKeyframeGroup:
def __init__(self):
self.keyframes: list[HookKeyframe] = []
self._current_keyframe: HookKeyframe = None
self._current_used_steps = 0
self._current_index = 0
self._current_strength = None
self._curr_t = -1.
# properties shadow those of HookWeightsKeyframe
@property
def strength(self):
if self._current_keyframe is not None:
return self._current_keyframe.strength
return 1.0
def reset(self):
self._current_keyframe = None
self._current_used_steps = 0
self._current_index = 0
self._current_strength = None
self.curr_t = -1.
self._set_first_as_current()
def add(self, keyframe: HookKeyframe):
# add to end of list, then sort
self.keyframes.append(keyframe)
self.keyframes = get_sorted_list_via_attr(self.keyframes, "start_percent")
self._set_first_as_current()
def _set_first_as_current(self):
if len(self.keyframes) > 0:
self._current_keyframe = self.keyframes[0]
else:
self._current_keyframe = None
def has_guarantee_steps(self):
for kf in self.keyframes:
if kf.guarantee_steps > 0:
return True
return False
def has_index(self, index: int):
return index >= 0 and index < len(self.keyframes)
def is_empty(self):
return len(self.keyframes) == 0
def clone(self):
c = HookKeyframeGroup()
for keyframe in self.keyframes:
c.keyframes.append(keyframe.clone())
c._set_first_as_current()
return c
def initialize_timesteps(self, model: BaseModel):
for keyframe in self.keyframes:
keyframe.start_t = model.model_sampling.percent_to_sigma(keyframe.start_percent)
def prepare_current_keyframe(self, curr_t: float, transformer_options: dict[str, torch.Tensor]) -> bool:
if self.is_empty():
return False
if curr_t == self._curr_t:
return False
max_sigma = torch.max(transformer_options["sample_sigmas"])
prev_index = self._current_index
prev_strength = self._current_strength
# if met guaranteed steps, look for next keyframe in case need to switch
if self._current_used_steps >= self._current_keyframe.get_effective_guarantee_steps(max_sigma):
# if has next index, loop through and see if need to switch
if self.has_index(self._current_index+1):
for i in range(self._current_index+1, len(self.keyframes)):
eval_c = self.keyframes[i]
# check if start_t is greater or equal to curr_t
# NOTE: t is in terms of sigmas, not percent, so bigger number = earlier step in sampling
if eval_c.start_t >= curr_t:
self._current_index = i
self._current_strength = eval_c.strength
self._current_keyframe = eval_c
self._current_used_steps = 0
# if guarantee_steps greater than zero, stop searching for other keyframes
if self._current_keyframe.get_effective_guarantee_steps(max_sigma) > 0:
break
# if eval_c is outside the percent range, stop looking further
else: break
# update steps current context is used
self._current_used_steps += 1
# update current timestep this was performed on
self._curr_t = curr_t
# return True if keyframe changed, False if no change
return prev_index != self._current_index and prev_strength != self._current_strength
class InterpolationMethod:
LINEAR = "linear"
EASE_IN = "ease_in"
EASE_OUT = "ease_out"
EASE_IN_OUT = "ease_in_out"
_LIST = [LINEAR, EASE_IN, EASE_OUT, EASE_IN_OUT]
@classmethod
def get_weights(cls, num_from: float, num_to: float, length: int, method: str, reverse=False):
diff = num_to - num_from
if method == cls.LINEAR:
weights = torch.linspace(num_from, num_to, length)
elif method == cls.EASE_IN:
index = torch.linspace(0, 1, length)
weights = diff * np.power(index, 2) + num_from
elif method == cls.EASE_OUT:
index = torch.linspace(0, 1, length)
weights = diff * (1 - np.power(1 - index, 2)) + num_from
elif method == cls.EASE_IN_OUT:
index = torch.linspace(0, 1, length)
weights = diff * ((1 - np.cos(index * np.pi)) / 2) + num_from
else:
raise ValueError(f"Unrecognized interpolation method '{method}'.")
if reverse:
weights = weights.flip(dims=(0,))
return weights
def get_sorted_list_via_attr(objects: list, attr: str) -> list:
if not objects:
return objects
elif len(objects) <= 1:
return [x for x in objects]
# now that we know we have to sort, do it following these rules:
# a) if objects have same value of attribute, maintain their relative order
# b) perform sorting of the groups of objects with same attributes
unique_attrs = {}
for o in objects:
val_attr = getattr(o, attr)
attr_list: list = unique_attrs.get(val_attr, list())
attr_list.append(o)
if val_attr not in unique_attrs:
unique_attrs[val_attr] = attr_list
# now that we have the unique attr values grouped together in relative order, sort them by key
sorted_attrs = dict(sorted(unique_attrs.items()))
# now flatten out the dict into a list to return
sorted_list = []
for object_list in sorted_attrs.values():
sorted_list.extend(object_list)
return sorted_list
def create_transformer_options_from_hooks(model: ModelPatcher, hooks: HookGroup, transformer_options: dict[str]=None):
# if no hooks or is not a ModelPatcher for sampling, return empty dict
if hooks is None or model.is_clip:
return {}
if transformer_options is None:
transformer_options = {}
for hook in hooks.get_type(EnumHookType.TransformerOptions):
hook: TransformerOptionsHook
hook.on_apply_hooks(model, transformer_options)
return transformer_options
def create_hook_lora(lora: dict[str, torch.Tensor], strength_model: float, strength_clip: float):
hook_group = HookGroup()
hook = WeightHook(strength_model=strength_model, strength_clip=strength_clip)
hook_group.add(hook)
hook.weights = lora
return hook_group
def create_hook_model_as_lora(weights_model, weights_clip, strength_model: float, strength_clip: float):
hook_group = HookGroup()
hook = WeightHook(strength_model=strength_model, strength_clip=strength_clip)
hook_group.add(hook)
patches_model = None
patches_clip = None
if weights_model is not None:
patches_model = {}
for key in weights_model:
patches_model[key] = ("model_as_lora", (weights_model[key],))
if weights_clip is not None:
patches_clip = {}
for key in weights_clip:
patches_clip[key] = ("model_as_lora", (weights_clip[key],))
hook.weights = patches_model
hook.weights_clip = patches_clip
hook.need_weight_init = False
return hook_group
def get_patch_weights_from_model(model: ModelPatcher, discard_model_sampling=True):
if model is None:
return None
patches_model: dict[str, torch.Tensor] = model.model.state_dict()
if discard_model_sampling:
# do not include ANY model_sampling components of the model that should act as a patch
for key in list(patches_model.keys()):
if key.startswith("model_sampling"):
patches_model.pop(key, None)
return patches_model
# NOTE: this function shows how to register weight hooks directly on the ModelPatchers
def load_hook_lora_for_models(model: ModelPatcher, clip: CLIP, lora: dict[str, torch.Tensor],
strength_model: float, strength_clip: float):
key_map = {}
if model is not None:
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
if clip is not None:
key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)
hook_group = HookGroup()
hook = WeightHook()
hook_group.add(hook)
loaded: dict[str] = comfy.lora.load_lora(lora, key_map)
if model is not None:
new_modelpatcher = model.clone()
k = new_modelpatcher.add_hook_patches(hook=hook, patches=loaded, strength_patch=strength_model)
else:
k = ()
new_modelpatcher = None
if clip is not None:
new_clip = clip.clone()
k1 = new_clip.patcher.add_hook_patches(hook=hook, patches=loaded, strength_patch=strength_clip)
else:
k1 = ()
new_clip = None
k = set(k)
k1 = set(k1)
for x in loaded:
if (x not in k) and (x not in k1):
logging.warning(f"NOT LOADED {x}")
return (new_modelpatcher, new_clip, hook_group)
def _combine_hooks_from_values(c_dict: dict[str, HookGroup], values: dict[str, HookGroup], cache: dict[tuple[HookGroup, HookGroup], HookGroup]):
hooks_key = 'hooks'
# if hooks only exist in one dict, do what's needed so that it ends up in c_dict
if hooks_key not in values:
return
if hooks_key not in c_dict:
hooks_value = values.get(hooks_key, None)
if hooks_value is not None:
c_dict[hooks_key] = hooks_value
return
# otherwise, need to combine with minimum duplication via cache
hooks_tuple = (c_dict[hooks_key], values[hooks_key])
cached_hooks = cache.get(hooks_tuple, None)
if cached_hooks is None:
new_hooks = hooks_tuple[0].clone_and_combine(hooks_tuple[1])
cache[hooks_tuple] = new_hooks
c_dict[hooks_key] = new_hooks
else:
c_dict[hooks_key] = cache[hooks_tuple]
def conditioning_set_values_with_hooks(conditioning, values={}, append_hooks=True,
cache: dict[tuple[HookGroup, HookGroup], HookGroup]=None):
c = []
if cache is None:
cache = {}
for t in conditioning:
n = [t[0], t[1].copy()]
for k in values:
if append_hooks and k == 'hooks':
_combine_hooks_from_values(n[1], values, cache)
else:
n[1][k] = values[k]
c.append(n)
return c
def set_hooks_for_conditioning(cond, hooks: HookGroup, append_hooks=True, cache: dict[tuple[HookGroup, HookGroup], HookGroup]=None):
if hooks is None:
return cond
return conditioning_set_values_with_hooks(cond, {'hooks': hooks}, append_hooks=append_hooks, cache=cache)
def set_timesteps_for_conditioning(cond, timestep_range: tuple[float,float]):
if timestep_range is None:
return cond
return conditioning_set_values(cond, {"start_percent": timestep_range[0],
"end_percent": timestep_range[1]})
def set_mask_for_conditioning(cond, mask: torch.Tensor, set_cond_area: str, strength: float):
if mask is None:
return cond
set_area_to_bounds = False
if set_cond_area != 'default':
set_area_to_bounds = True
if len(mask.shape) < 3:
mask = mask.unsqueeze(0)
return conditioning_set_values(cond, {'mask': mask,
'set_area_to_bounds': set_area_to_bounds,
'mask_strength': strength})
def combine_conditioning(conds: list):
combined_conds = []
for cond in conds:
combined_conds.extend(cond)
return combined_conds
def combine_with_new_conds(conds: list, new_conds: list):
combined_conds = []
for c, new_c in zip(conds, new_conds):
combined_conds.append(combine_conditioning([c, new_c]))
return combined_conds
def set_conds_props(conds: list, strength: float, set_cond_area: str,
mask: torch.Tensor=None, hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
final_conds = []
cache = {}
for c in conds:
# first, apply lora_hook to conditioning, if provided
c = set_hooks_for_conditioning(c, hooks, append_hooks=append_hooks, cache=cache)
# next, apply mask to conditioning
c = set_mask_for_conditioning(cond=c, mask=mask, strength=strength, set_cond_area=set_cond_area)
# apply timesteps, if present
c = set_timesteps_for_conditioning(cond=c, timestep_range=timesteps_range)
# finally, apply mask to conditioning and store
final_conds.append(c)
return final_conds
def set_conds_props_and_combine(conds: list, new_conds: list, strength: float=1.0, set_cond_area: str="default",
mask: torch.Tensor=None, hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
combined_conds = []
cache = {}
for c, masked_c in zip(conds, new_conds):
# first, apply lora_hook to new conditioning, if provided
masked_c = set_hooks_for_conditioning(masked_c, hooks, append_hooks=append_hooks, cache=cache)
# next, apply mask to new conditioning, if provided
masked_c = set_mask_for_conditioning(cond=masked_c, mask=mask, set_cond_area=set_cond_area, strength=strength)
# apply timesteps, if present
masked_c = set_timesteps_for_conditioning(cond=masked_c, timestep_range=timesteps_range)
# finally, combine with existing conditioning and store
combined_conds.append(combine_conditioning([c, masked_c]))
return combined_conds
def set_default_conds_and_combine(conds: list, new_conds: list,
hooks: HookGroup=None, timesteps_range: tuple[float,float]=None, append_hooks=True):
combined_conds = []
cache = {}
for c, new_c in zip(conds, new_conds):
# first, apply lora_hook to new conditioning, if provided
new_c = set_hooks_for_conditioning(new_c, hooks, append_hooks=append_hooks, cache=cache)
# next, add default_cond key to cond so that during sampling, it can be identified
new_c = conditioning_set_values(new_c, {'default': True})
# apply timesteps, if present
new_c = set_timesteps_for_conditioning(cond=new_c, timestep_range=timesteps_range)
# finally, combine with existing conditioning and store
combined_conds.append(combine_conditioning([c, new_c]))
return combined_conds

View File

@@ -0,0 +1,141 @@
import torch
from comfy.text_encoders.bert import BertAttention
import comfy.model_management
from comfy.ldm.modules.attention import optimized_attention_for_device
class Dino2AttentionOutput(torch.nn.Module):
def __init__(self, input_dim, output_dim, layer_norm_eps, dtype, device, operations):
super().__init__()
self.dense = operations.Linear(input_dim, output_dim, dtype=dtype, device=device)
def forward(self, x):
return self.dense(x)
class Dino2AttentionBlock(torch.nn.Module):
def __init__(self, embed_dim, heads, layer_norm_eps, dtype, device, operations):
super().__init__()
self.attention = BertAttention(embed_dim, heads, dtype, device, operations)
self.output = Dino2AttentionOutput(embed_dim, embed_dim, layer_norm_eps, dtype, device, operations)
def forward(self, x, mask, optimized_attention):
return self.output(self.attention(x, mask, optimized_attention))
class LayerScale(torch.nn.Module):
def __init__(self, dim, dtype, device, operations):
super().__init__()
self.lambda1 = torch.nn.Parameter(torch.empty(dim, device=device, dtype=dtype))
def forward(self, x):
return x * comfy.model_management.cast_to_device(self.lambda1, x.device, x.dtype)
class SwiGLUFFN(torch.nn.Module):
def __init__(self, dim, dtype, device, operations):
super().__init__()
in_features = out_features = dim
hidden_features = int(dim * 4)
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
self.weights_in = operations.Linear(in_features, 2 * hidden_features, bias=True, device=device, dtype=dtype)
self.weights_out = operations.Linear(hidden_features, out_features, bias=True, device=device, dtype=dtype)
def forward(self, x):
x = self.weights_in(x)
x1, x2 = x.chunk(2, dim=-1)
x = torch.nn.functional.silu(x1) * x2
return self.weights_out(x)
class Dino2Block(torch.nn.Module):
def __init__(self, dim, num_heads, layer_norm_eps, dtype, device, operations):
super().__init__()
self.attention = Dino2AttentionBlock(dim, num_heads, layer_norm_eps, dtype, device, operations)
self.layer_scale1 = LayerScale(dim, dtype, device, operations)
self.layer_scale2 = LayerScale(dim, dtype, device, operations)
self.mlp = SwiGLUFFN(dim, dtype, device, operations)
self.norm1 = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
self.norm2 = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
def forward(self, x, optimized_attention):
x = x + self.layer_scale1(self.attention(self.norm1(x), None, optimized_attention))
x = x + self.layer_scale2(self.mlp(self.norm2(x)))
return x
class Dino2Encoder(torch.nn.Module):
def __init__(self, dim, num_heads, layer_norm_eps, num_layers, dtype, device, operations):
super().__init__()
self.layer = torch.nn.ModuleList([Dino2Block(dim, num_heads, layer_norm_eps, dtype, device, operations) for _ in range(num_layers)])
def forward(self, x, intermediate_output=None):
optimized_attention = optimized_attention_for_device(x.device, False, small_input=True)
if intermediate_output is not None:
if intermediate_output < 0:
intermediate_output = len(self.layer) + intermediate_output
intermediate = None
for i, l in enumerate(self.layer):
x = l(x, optimized_attention)
if i == intermediate_output:
intermediate = x.clone()
return x, intermediate
class Dino2PatchEmbeddings(torch.nn.Module):
def __init__(self, dim, num_channels=3, patch_size=14, image_size=518, dtype=None, device=None, operations=None):
super().__init__()
self.projection = operations.Conv2d(
in_channels=num_channels,
out_channels=dim,
kernel_size=patch_size,
stride=patch_size,
bias=True,
dtype=dtype,
device=device
)
def forward(self, pixel_values):
return self.projection(pixel_values).flatten(2).transpose(1, 2)
class Dino2Embeddings(torch.nn.Module):
def __init__(self, dim, dtype, device, operations):
super().__init__()
patch_size = 14
image_size = 518
self.patch_embeddings = Dino2PatchEmbeddings(dim, patch_size=patch_size, image_size=image_size, dtype=dtype, device=device, operations=operations)
self.position_embeddings = torch.nn.Parameter(torch.empty(1, (image_size // patch_size) ** 2 + 1, dim, dtype=dtype, device=device))
self.cls_token = torch.nn.Parameter(torch.empty(1, 1, dim, dtype=dtype, device=device))
self.mask_token = torch.nn.Parameter(torch.empty(1, dim, dtype=dtype, device=device))
def forward(self, pixel_values):
x = self.patch_embeddings(pixel_values)
# TODO: mask_token?
x = torch.cat((self.cls_token.to(device=x.device, dtype=x.dtype).expand(x.shape[0], -1, -1), x), dim=1)
x = x + comfy.model_management.cast_to_device(self.position_embeddings, x.device, x.dtype)
return x
class Dinov2Model(torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
num_layers = config_dict["num_hidden_layers"]
dim = config_dict["hidden_size"]
heads = config_dict["num_attention_heads"]
layer_norm_eps = config_dict["layer_norm_eps"]
self.embeddings = Dino2Embeddings(dim, dtype, device, operations)
self.encoder = Dino2Encoder(dim, heads, layer_norm_eps, num_layers, dtype, device, operations)
self.layernorm = operations.LayerNorm(dim, eps=layer_norm_eps, dtype=dtype, device=device)
def forward(self, pixel_values, attention_mask=None, intermediate_output=None):
x = self.embeddings(pixel_values)
x, i = self.encoder(x, intermediate_output=intermediate_output)
x = self.layernorm(x)
pooled_output = x[:, 0, :]
return x, i, pooled_output, None

View File

@@ -0,0 +1,21 @@
{
"attention_probs_dropout_prob": 0.0,
"drop_path_rate": 0.0,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.0,
"hidden_size": 1536,
"image_size": 518,
"initializer_range": 0.02,
"layer_norm_eps": 1e-06,
"layerscale_value": 1.0,
"mlp_ratio": 4,
"model_type": "dinov2",
"num_attention_heads": 24,
"num_channels": 3,
"num_hidden_layers": 40,
"patch_size": 14,
"qkv_bias": true,
"use_swiglu_ffn": true,
"image_mean": [0.485, 0.456, 0.406],
"image_std": [0.229, 0.224, 0.225]
}

View File

@@ -1,105 +0,0 @@
from functools import reduce
import math
import operator
import numpy as np
from skimage import transform
import torch
from torch import nn
def translate2d(tx, ty):
mat = [[1, 0, tx],
[0, 1, ty],
[0, 0, 1]]
return torch.tensor(mat, dtype=torch.float32)
def scale2d(sx, sy):
mat = [[sx, 0, 0],
[ 0, sy, 0],
[ 0, 0, 1]]
return torch.tensor(mat, dtype=torch.float32)
def rotate2d(theta):
mat = [[torch.cos(theta), torch.sin(-theta), 0],
[torch.sin(theta), torch.cos(theta), 0],
[ 0, 0, 1]]
return torch.tensor(mat, dtype=torch.float32)
class KarrasAugmentationPipeline:
def __init__(self, a_prob=0.12, a_scale=2**0.2, a_aniso=2**0.2, a_trans=1/8):
self.a_prob = a_prob
self.a_scale = a_scale
self.a_aniso = a_aniso
self.a_trans = a_trans
def __call__(self, image):
h, w = image.size
mats = [translate2d(h / 2 - 0.5, w / 2 - 0.5)]
# x-flip
a0 = torch.randint(2, []).float()
mats.append(scale2d(1 - 2 * a0, 1))
# y-flip
do = (torch.rand([]) < self.a_prob).float()
a1 = torch.randint(2, []).float() * do
mats.append(scale2d(1, 1 - 2 * a1))
# scaling
do = (torch.rand([]) < self.a_prob).float()
a2 = torch.randn([]) * do
mats.append(scale2d(self.a_scale ** a2, self.a_scale ** a2))
# rotation
do = (torch.rand([]) < self.a_prob).float()
a3 = (torch.rand([]) * 2 * math.pi - math.pi) * do
mats.append(rotate2d(-a3))
# anisotropy
do = (torch.rand([]) < self.a_prob).float()
a4 = (torch.rand([]) * 2 * math.pi - math.pi) * do
a5 = torch.randn([]) * do
mats.append(rotate2d(a4))
mats.append(scale2d(self.a_aniso ** a5, self.a_aniso ** -a5))
mats.append(rotate2d(-a4))
# translation
do = (torch.rand([]) < self.a_prob).float()
a6 = torch.randn([]) * do
a7 = torch.randn([]) * do
mats.append(translate2d(self.a_trans * w * a6, self.a_trans * h * a7))
# form the transformation matrix and conditioning vector
mats.append(translate2d(-h / 2 + 0.5, -w / 2 + 0.5))
mat = reduce(operator.matmul, mats)
cond = torch.stack([a0, a1, a2, a3.cos() - 1, a3.sin(), a5 * a4.cos(), a5 * a4.sin(), a6, a7])
# apply the transformation
image_orig = np.array(image, dtype=np.float32) / 255
if image_orig.ndim == 2:
image_orig = image_orig[..., None]
tf = transform.AffineTransform(mat.numpy())
image = transform.warp(image_orig, tf.inverse, order=3, mode='reflect', cval=0.5, clip=False, preserve_range=True)
image_orig = torch.as_tensor(image_orig).movedim(2, 0) * 2 - 1
image = torch.as_tensor(image).movedim(2, 0) * 2 - 1
return image, image_orig, cond
class KarrasAugmentWrapper(nn.Module):
def __init__(self, model):
super().__init__()
self.inner_model = model
def forward(self, input, sigma, aug_cond=None, mapping_cond=None, **kwargs):
if aug_cond is None:
aug_cond = input.new_zeros([input.shape[0], 9])
if mapping_cond is None:
mapping_cond = aug_cond
else:
mapping_cond = torch.cat([aug_cond, mapping_cond], dim=1)
return self.inner_model(input, sigma, mapping_cond=mapping_cond, **kwargs)
def set_skip_stages(self, skip_stages):
return self.inner_model.set_skip_stages(skip_stages)
def set_patch_size(self, patch_size):
return self.inner_model.set_patch_size(patch_size)

View File

@@ -1,110 +0,0 @@
from functools import partial
import json
import math
import warnings
from jsonmerge import merge
from . import augmentation, layers, models, utils
def load_config(file):
defaults = {
'model': {
'sigma_data': 1.,
'patch_size': 1,
'dropout_rate': 0.,
'augment_wrapper': True,
'augment_prob': 0.,
'mapping_cond_dim': 0,
'unet_cond_dim': 0,
'cross_cond_dim': 0,
'cross_attn_depths': None,
'skip_stages': 0,
'has_variance': False,
},
'dataset': {
'type': 'imagefolder',
},
'optimizer': {
'type': 'adamw',
'lr': 1e-4,
'betas': [0.95, 0.999],
'eps': 1e-6,
'weight_decay': 1e-3,
},
'lr_sched': {
'type': 'inverse',
'inv_gamma': 20000.,
'power': 1.,
'warmup': 0.99,
},
'ema_sched': {
'type': 'inverse',
'power': 0.6667,
'max_value': 0.9999
},
}
config = json.load(file)
return merge(defaults, config)
def make_model(config):
config = config['model']
assert config['type'] == 'image_v1'
model = models.ImageDenoiserModelV1(
config['input_channels'],
config['mapping_out'],
config['depths'],
config['channels'],
config['self_attn_depths'],
config['cross_attn_depths'],
patch_size=config['patch_size'],
dropout_rate=config['dropout_rate'],
mapping_cond_dim=config['mapping_cond_dim'] + (9 if config['augment_wrapper'] else 0),
unet_cond_dim=config['unet_cond_dim'],
cross_cond_dim=config['cross_cond_dim'],
skip_stages=config['skip_stages'],
has_variance=config['has_variance'],
)
if config['augment_wrapper']:
model = augmentation.KarrasAugmentWrapper(model)
return model
def make_denoiser_wrapper(config):
config = config['model']
sigma_data = config.get('sigma_data', 1.)
has_variance = config.get('has_variance', False)
if not has_variance:
return partial(layers.Denoiser, sigma_data=sigma_data)
return partial(layers.DenoiserWithVariance, sigma_data=sigma_data)
def make_sample_density(config):
sd_config = config['sigma_sample_density']
sigma_data = config['sigma_data']
if sd_config['type'] == 'lognormal':
loc = sd_config['mean'] if 'mean' in sd_config else sd_config['loc']
scale = sd_config['std'] if 'std' in sd_config else sd_config['scale']
return partial(utils.rand_log_normal, loc=loc, scale=scale)
if sd_config['type'] == 'loglogistic':
loc = sd_config['loc'] if 'loc' in sd_config else math.log(sigma_data)
scale = sd_config['scale'] if 'scale' in sd_config else 0.5
min_value = sd_config['min_value'] if 'min_value' in sd_config else 0.
max_value = sd_config['max_value'] if 'max_value' in sd_config else float('inf')
return partial(utils.rand_log_logistic, loc=loc, scale=scale, min_value=min_value, max_value=max_value)
if sd_config['type'] == 'loguniform':
min_value = sd_config['min_value'] if 'min_value' in sd_config else config['sigma_min']
max_value = sd_config['max_value'] if 'max_value' in sd_config else config['sigma_max']
return partial(utils.rand_log_uniform, min_value=min_value, max_value=max_value)
if sd_config['type'] == 'v-diffusion':
min_value = sd_config['min_value'] if 'min_value' in sd_config else 0.
max_value = sd_config['max_value'] if 'max_value' in sd_config else float('inf')
return partial(utils.rand_v_diffusion, sigma_data=sigma_data, min_value=min_value, max_value=max_value)
if sd_config['type'] == 'split-lognormal':
loc = sd_config['mean'] if 'mean' in sd_config else sd_config['loc']
scale_1 = sd_config['std_1'] if 'std_1' in sd_config else sd_config['scale_1']
scale_2 = sd_config['std_2'] if 'std_2' in sd_config else sd_config['scale_2']
return partial(utils.rand_split_log_normal, loc=loc, scale_1=scale_1, scale_2=scale_2)
raise ValueError('Unknown sample density type')

120
comfy/k_diffusion/deis.py Normal file
View File

@@ -0,0 +1,120 @@
#Taken from: https://github.com/zju-pi/diff-sampler/blob/main/gits-main/solver_utils.py
#under Apache 2 license
import torch
import numpy as np
# A pytorch reimplementation of DEIS (https://github.com/qsh-zh/deis).
#############################
### Utils for DEIS solver ###
#############################
#----------------------------------------------------------------------------
# Transfer from the input time (sigma) used in EDM to that (t) used in DEIS.
def edm2t(edm_steps, epsilon_s=1e-3, sigma_min=0.002, sigma_max=80):
vp_sigma_inv = lambda beta_d, beta_min: lambda sigma: ((beta_min ** 2 + 2 * beta_d * (sigma ** 2 + 1).log()).sqrt() - beta_min) / beta_d
vp_beta_d = 2 * (np.log(torch.tensor(sigma_min).cpu() ** 2 + 1) / epsilon_s - np.log(torch.tensor(sigma_max).cpu() ** 2 + 1)) / (epsilon_s - 1)
vp_beta_min = np.log(torch.tensor(sigma_max).cpu() ** 2 + 1) - 0.5 * vp_beta_d
t_steps = vp_sigma_inv(vp_beta_d.clone().detach().cpu(), vp_beta_min.clone().detach().cpu())(edm_steps.clone().detach().cpu())
return t_steps, vp_beta_min, vp_beta_d + vp_beta_min
#----------------------------------------------------------------------------
def cal_poly(prev_t, j, taus):
poly = 1
for k in range(prev_t.shape[0]):
if k == j:
continue
poly *= (taus - prev_t[k]) / (prev_t[j] - prev_t[k])
return poly
#----------------------------------------------------------------------------
# Transfer from t to alpha_t.
def t2alpha_fn(beta_0, beta_1, t):
return torch.exp(-0.5 * t ** 2 * (beta_1 - beta_0) - t * beta_0)
#----------------------------------------------------------------------------
def cal_intergrand(beta_0, beta_1, taus):
with torch.inference_mode(mode=False):
taus = taus.clone()
beta_0 = beta_0.clone()
beta_1 = beta_1.clone()
with torch.enable_grad():
taus.requires_grad_(True)
alpha = t2alpha_fn(beta_0, beta_1, taus)
log_alpha = alpha.log()
log_alpha.sum().backward()
d_log_alpha_dtau = taus.grad
integrand = -0.5 * d_log_alpha_dtau / torch.sqrt(alpha * (1 - alpha))
return integrand
#----------------------------------------------------------------------------
def get_deis_coeff_list(t_steps, max_order, N=10000, deis_mode='tab'):
"""
Get the coefficient list for DEIS sampling.
Args:
t_steps: A pytorch tensor. The time steps for sampling.
max_order: A `int`. Maximum order of the solver. 1 <= max_order <= 4
N: A `int`. Use how many points to perform the numerical integration when deis_mode=='tab'.
deis_mode: A `str`. Select between 'tab' and 'rhoab'. Type of DEIS.
Returns:
A pytorch tensor. A batch of generated samples or sampling trajectories if return_inters=True.
"""
if deis_mode == 'tab':
t_steps, beta_0, beta_1 = edm2t(t_steps)
C = []
for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])):
order = min(i+1, max_order)
if order == 1:
C.append([])
else:
taus = torch.linspace(t_cur, t_next, N) # split the interval for integral appximation
dtau = (t_next - t_cur) / N
prev_t = t_steps[[i - k for k in range(order)]]
coeff_temp = []
integrand = cal_intergrand(beta_0, beta_1, taus)
for j in range(order):
poly = cal_poly(prev_t, j, taus)
coeff_temp.append(torch.sum(integrand * poly) * dtau)
C.append(coeff_temp)
elif deis_mode == 'rhoab':
# Analytical solution, second order
def get_def_intergral_2(a, b, start, end, c):
coeff = (end**3 - start**3) / 3 - (end**2 - start**2) * (a + b) / 2 + (end - start) * a * b
return coeff / ((c - a) * (c - b))
# Analytical solution, third order
def get_def_intergral_3(a, b, c, start, end, d):
coeff = (end**4 - start**4) / 4 - (end**3 - start**3) * (a + b + c) / 3 \
+ (end**2 - start**2) * (a*b + a*c + b*c) / 2 - (end - start) * a * b * c
return coeff / ((d - a) * (d - b) * (d - c))
C = []
for i, (t_cur, t_next) in enumerate(zip(t_steps[:-1], t_steps[1:])):
order = min(i, max_order)
if order == 0:
C.append([])
else:
prev_t = t_steps[[i - k for k in range(order+1)]]
if order == 1:
coeff_cur = ((t_next - prev_t[1])**2 - (t_cur - prev_t[1])**2) / (2 * (t_cur - prev_t[1]))
coeff_prev1 = (t_next - t_cur)**2 / (2 * (prev_t[1] - t_cur))
coeff_temp = [coeff_cur, coeff_prev1]
elif order == 2:
coeff_cur = get_def_intergral_2(prev_t[1], prev_t[2], t_cur, t_next, t_cur)
coeff_prev1 = get_def_intergral_2(t_cur, prev_t[2], t_cur, t_next, prev_t[1])
coeff_prev2 = get_def_intergral_2(t_cur, prev_t[1], t_cur, t_next, prev_t[2])
coeff_temp = [coeff_cur, coeff_prev1, coeff_prev2]
elif order == 3:
coeff_cur = get_def_intergral_3(prev_t[1], prev_t[2], prev_t[3], t_cur, t_next, t_cur)
coeff_prev1 = get_def_intergral_3(t_cur, prev_t[2], prev_t[3], t_cur, t_next, prev_t[1])
coeff_prev2 = get_def_intergral_3(t_cur, prev_t[1], prev_t[3], t_cur, t_next, prev_t[2])
coeff_prev3 = get_def_intergral_3(t_cur, prev_t[1], prev_t[2], t_cur, t_next, prev_t[3])
coeff_temp = [coeff_cur, coeff_prev1, coeff_prev2, coeff_prev3]
C.append(coeff_temp)
return C

View File

@@ -1,134 +0,0 @@
import math
import os
from pathlib import Path
from cleanfid.inception_torchscript import InceptionV3W
import clip
from resize_right import resize
import torch
from torch import nn
from torch.nn import functional as F
from torchvision import transforms
from tqdm.auto import trange
from . import utils
class InceptionV3FeatureExtractor(nn.Module):
def __init__(self, device='cpu'):
super().__init__()
path = Path(os.environ.get('XDG_CACHE_HOME', Path.home() / '.cache')) / 'k-diffusion'
url = 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metrics/inception-2015-12-05.pt'
digest = 'f58cb9b6ec323ed63459aa4fb441fe750cfe39fafad6da5cb504a16f19e958f4'
utils.download_file(path / 'inception-2015-12-05.pt', url, digest)
self.model = InceptionV3W(str(path), resize_inside=False).to(device)
self.size = (299, 299)
def forward(self, x):
if x.shape[2:4] != self.size:
x = resize(x, out_shape=self.size, pad_mode='reflect')
if x.shape[1] == 1:
x = torch.cat([x] * 3, dim=1)
x = (x * 127.5 + 127.5).clamp(0, 255)
return self.model(x)
class CLIPFeatureExtractor(nn.Module):
def __init__(self, name='ViT-L/14@336px', device='cpu'):
super().__init__()
self.model = clip.load(name, device=device)[0].eval().requires_grad_(False)
self.normalize = transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073),
std=(0.26862954, 0.26130258, 0.27577711))
self.size = (self.model.visual.input_resolution, self.model.visual.input_resolution)
def forward(self, x):
if x.shape[2:4] != self.size:
x = resize(x.add(1).div(2), out_shape=self.size, pad_mode='reflect').clamp(0, 1)
x = self.normalize(x)
x = self.model.encode_image(x).float()
x = F.normalize(x) * x.shape[1] ** 0.5
return x
def compute_features(accelerator, sample_fn, extractor_fn, n, batch_size):
n_per_proc = math.ceil(n / accelerator.num_processes)
feats_all = []
try:
for i in trange(0, n_per_proc, batch_size, disable=not accelerator.is_main_process):
cur_batch_size = min(n - i, batch_size)
samples = sample_fn(cur_batch_size)[:cur_batch_size]
feats_all.append(accelerator.gather(extractor_fn(samples)))
except StopIteration:
pass
return torch.cat(feats_all)[:n]
def polynomial_kernel(x, y):
d = x.shape[-1]
dot = x @ y.transpose(-2, -1)
return (dot / d + 1) ** 3
def squared_mmd(x, y, kernel=polynomial_kernel):
m = x.shape[-2]
n = y.shape[-2]
kxx = kernel(x, x)
kyy = kernel(y, y)
kxy = kernel(x, y)
kxx_sum = kxx.sum([-1, -2]) - kxx.diagonal(dim1=-1, dim2=-2).sum(-1)
kyy_sum = kyy.sum([-1, -2]) - kyy.diagonal(dim1=-1, dim2=-2).sum(-1)
kxy_sum = kxy.sum([-1, -2])
term_1 = kxx_sum / m / (m - 1)
term_2 = kyy_sum / n / (n - 1)
term_3 = kxy_sum * 2 / m / n
return term_1 + term_2 - term_3
@utils.tf32_mode(matmul=False)
def kid(x, y, max_size=5000):
x_size, y_size = x.shape[0], y.shape[0]
n_partitions = math.ceil(max(x_size / max_size, y_size / max_size))
total_mmd = x.new_zeros([])
for i in range(n_partitions):
cur_x = x[round(i * x_size / n_partitions):round((i + 1) * x_size / n_partitions)]
cur_y = y[round(i * y_size / n_partitions):round((i + 1) * y_size / n_partitions)]
total_mmd = total_mmd + squared_mmd(cur_x, cur_y)
return total_mmd / n_partitions
class _MatrixSquareRootEig(torch.autograd.Function):
@staticmethod
def forward(ctx, a):
vals, vecs = torch.linalg.eigh(a)
ctx.save_for_backward(vals, vecs)
return vecs @ vals.abs().sqrt().diag_embed() @ vecs.transpose(-2, -1)
@staticmethod
def backward(ctx, grad_output):
vals, vecs = ctx.saved_tensors
d = vals.abs().sqrt().unsqueeze(-1).repeat_interleave(vals.shape[-1], -1)
vecs_t = vecs.transpose(-2, -1)
return vecs @ (vecs_t @ grad_output @ vecs / (d + d.transpose(-2, -1))) @ vecs_t
def sqrtm_eig(a):
if a.ndim < 2:
raise RuntimeError('tensor of matrices must have at least 2 dimensions')
if a.shape[-2] != a.shape[-1]:
raise RuntimeError('tensor must be batches of square matrices')
return _MatrixSquareRootEig.apply(a)
@utils.tf32_mode(matmul=False)
def fid(x, y, eps=1e-8):
x_mean = x.mean(dim=0)
y_mean = y.mean(dim=0)
mean_term = (x_mean - y_mean).pow(2).sum()
x_cov = torch.cov(x.T)
y_cov = torch.cov(y.T)
eps_eye = torch.eye(x_cov.shape[0], device=x_cov.device, dtype=x_cov.dtype) * eps
x_cov = x_cov + eps_eye
y_cov = y_cov + eps_eye
x_cov_sqrt = sqrtm_eig(x_cov)
cov_term = torch.trace(x_cov + y_cov - 2 * sqrtm_eig(x_cov_sqrt @ y_cov @ x_cov_sqrt))
return mean_term + cov_term

View File

@@ -1,179 +0,0 @@
import math
import torch
from torch import nn
from . import sampling, utils
class VDenoiser(nn.Module):
"""A v-diffusion-pytorch model wrapper for k-diffusion."""
def __init__(self, inner_model):
super().__init__()
self.inner_model = inner_model
self.sigma_data = 1.
def get_scalings(self, sigma):
c_skip = self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2)
c_out = -sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
c_in = 1 / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
return c_skip, c_out, c_in
def sigma_to_t(self, sigma):
return sigma.atan() / math.pi * 2
def t_to_sigma(self, t):
return (t * math.pi / 2).tan()
def loss(self, input, noise, sigma, **kwargs):
c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
noised_input = input + noise * utils.append_dims(sigma, input.ndim)
model_output = self.inner_model(noised_input * c_in, self.sigma_to_t(sigma), **kwargs)
target = (input - c_skip * noised_input) / c_out
return (model_output - target).pow(2).flatten(1).mean(1)
def forward(self, input, sigma, **kwargs):
c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
return self.inner_model(input * c_in, self.sigma_to_t(sigma), **kwargs) * c_out + input * c_skip
class DiscreteSchedule(nn.Module):
"""A mapping between continuous noise levels (sigmas) and a list of discrete noise
levels."""
def __init__(self, sigmas, quantize):
super().__init__()
self.register_buffer('sigmas', sigmas)
self.register_buffer('log_sigmas', sigmas.log())
self.quantize = quantize
@property
def sigma_min(self):
return self.sigmas[0]
@property
def sigma_max(self):
return self.sigmas[-1]
def get_sigmas(self, n=None):
if n is None:
return sampling.append_zero(self.sigmas.flip(0))
t_max = len(self.sigmas) - 1
t = torch.linspace(t_max, 0, n, device=self.sigmas.device)
return sampling.append_zero(self.t_to_sigma(t))
def sigma_to_t(self, sigma, quantize=None):
quantize = self.quantize if quantize is None else quantize
log_sigma = sigma.log()
dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None]
if quantize:
return dists.abs().argmin(dim=0).view(sigma.shape)
low_idx = dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(max=self.log_sigmas.shape[0] - 2)
high_idx = low_idx + 1
low, high = self.log_sigmas[low_idx], self.log_sigmas[high_idx]
w = (low - log_sigma) / (low - high)
w = w.clamp(0, 1)
t = (1 - w) * low_idx + w * high_idx
return t.view(sigma.shape)
def t_to_sigma(self, t):
t = t.float()
low_idx = t.floor().long()
high_idx = t.ceil().long()
w = t-low_idx if t.device.type == 'mps' else t.frac()
log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx]
return log_sigma.exp()
class DiscreteEpsDDPMDenoiser(DiscreteSchedule):
"""A wrapper for discrete schedule DDPM models that output eps (the predicted
noise)."""
def __init__(self, model, alphas_cumprod, quantize):
super().__init__(((1 - alphas_cumprod) / alphas_cumprod) ** 0.5, quantize)
self.inner_model = model
self.sigma_data = 1.
def get_scalings(self, sigma):
c_out = -sigma
c_in = 1 / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
return c_out, c_in
def get_eps(self, *args, **kwargs):
return self.inner_model(*args, **kwargs)
def loss(self, input, noise, sigma, **kwargs):
c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
noised_input = input + noise * utils.append_dims(sigma, input.ndim)
eps = self.get_eps(noised_input * c_in, self.sigma_to_t(sigma), **kwargs)
return (eps - noise).pow(2).flatten(1).mean(1)
def forward(self, input, sigma, **kwargs):
c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
eps = self.get_eps(input * c_in, self.sigma_to_t(sigma), **kwargs)
return input + eps * c_out
class OpenAIDenoiser(DiscreteEpsDDPMDenoiser):
"""A wrapper for OpenAI diffusion models."""
def __init__(self, model, diffusion, quantize=False, has_learned_sigmas=True, device='cpu'):
alphas_cumprod = torch.tensor(diffusion.alphas_cumprod, device=device, dtype=torch.float32)
super().__init__(model, alphas_cumprod, quantize=quantize)
self.has_learned_sigmas = has_learned_sigmas
def get_eps(self, *args, **kwargs):
model_output = self.inner_model(*args, **kwargs)
if self.has_learned_sigmas:
return model_output.chunk(2, dim=1)[0]
return model_output
class CompVisDenoiser(DiscreteEpsDDPMDenoiser):
"""A wrapper for CompVis diffusion models."""
def __init__(self, model, quantize=False, device='cpu'):
super().__init__(model, model.alphas_cumprod, quantize=quantize)
def get_eps(self, *args, **kwargs):
return self.inner_model.apply_model(*args, **kwargs)
class DiscreteVDDPMDenoiser(DiscreteSchedule):
"""A wrapper for discrete schedule DDPM models that output v."""
def __init__(self, model, alphas_cumprod, quantize):
super().__init__(((1 - alphas_cumprod) / alphas_cumprod) ** 0.5, quantize)
self.inner_model = model
self.sigma_data = 1.
def get_scalings(self, sigma):
c_skip = self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2)
c_out = -sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
c_in = 1 / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
return c_skip, c_out, c_in
def get_v(self, *args, **kwargs):
return self.inner_model(*args, **kwargs)
def loss(self, input, noise, sigma, **kwargs):
c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
noised_input = input + noise * utils.append_dims(sigma, input.ndim)
model_output = self.get_v(noised_input * c_in, self.sigma_to_t(sigma), **kwargs)
target = (input - c_skip * noised_input) / c_out
return (model_output - target).pow(2).flatten(1).mean(1)
def forward(self, input, sigma, **kwargs):
c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
return self.get_v(input * c_in, self.sigma_to_t(sigma), **kwargs) * c_out + input * c_skip
class CompVisVDenoiser(DiscreteVDDPMDenoiser):
"""A wrapper for CompVis diffusion models that output v."""
def __init__(self, model, quantize=False, device='cpu'):
super().__init__(model, model.alphas_cumprod, quantize=quantize)
def get_v(self, x, t, cond, **kwargs):
return self.inner_model.apply_model(x, t, cond)

View File

@@ -1,99 +0,0 @@
import torch
from torch import nn
class DDPGradientStatsHook:
def __init__(self, ddp_module):
try:
ddp_module.register_comm_hook(self, self._hook_fn)
except AttributeError:
raise ValueError('DDPGradientStatsHook does not support non-DDP wrapped modules')
self._clear_state()
def _clear_state(self):
self.bucket_sq_norms_small_batch = []
self.bucket_sq_norms_large_batch = []
@staticmethod
def _hook_fn(self, bucket):
buf = bucket.buffer()
self.bucket_sq_norms_small_batch.append(buf.pow(2).sum())
fut = torch.distributed.all_reduce(buf, op=torch.distributed.ReduceOp.AVG, async_op=True).get_future()
def callback(fut):
buf = fut.value()[0]
self.bucket_sq_norms_large_batch.append(buf.pow(2).sum())
return buf
return fut.then(callback)
def get_stats(self):
sq_norm_small_batch = sum(self.bucket_sq_norms_small_batch)
sq_norm_large_batch = sum(self.bucket_sq_norms_large_batch)
self._clear_state()
stats = torch.stack([sq_norm_small_batch, sq_norm_large_batch])
torch.distributed.all_reduce(stats, op=torch.distributed.ReduceOp.AVG)
return stats[0].item(), stats[1].item()
class GradientNoiseScale:
"""Calculates the gradient noise scale (1 / SNR), or critical batch size,
from _An Empirical Model of Large-Batch Training_,
https://arxiv.org/abs/1812.06162).
Args:
beta (float): The decay factor for the exponential moving averages used to
calculate the gradient noise scale.
Default: 0.9998
eps (float): Added for numerical stability.
Default: 1e-8
"""
def __init__(self, beta=0.9998, eps=1e-8):
self.beta = beta
self.eps = eps
self.ema_sq_norm = 0.
self.ema_var = 0.
self.beta_cumprod = 1.
self.gradient_noise_scale = float('nan')
def state_dict(self):
"""Returns the state of the object as a :class:`dict`."""
return dict(self.__dict__.items())
def load_state_dict(self, state_dict):
"""Loads the object's state.
Args:
state_dict (dict): object state. Should be an object returned
from a call to :meth:`state_dict`.
"""
self.__dict__.update(state_dict)
def update(self, sq_norm_small_batch, sq_norm_large_batch, n_small_batch, n_large_batch):
"""Updates the state with a new batch's gradient statistics, and returns the
current gradient noise scale.
Args:
sq_norm_small_batch (float): The mean of the squared 2-norms of microbatch or
per sample gradients.
sq_norm_large_batch (float): The squared 2-norm of the mean of the microbatch or
per sample gradients.
n_small_batch (int): The batch size of the individual microbatch or per sample
gradients (1 if per sample).
n_large_batch (int): The total batch size of the mean of the microbatch or
per sample gradients.
"""
est_sq_norm = (n_large_batch * sq_norm_large_batch - n_small_batch * sq_norm_small_batch) / (n_large_batch - n_small_batch)
est_var = (sq_norm_small_batch - sq_norm_large_batch) / (1 / n_small_batch - 1 / n_large_batch)
self.ema_sq_norm = self.beta * self.ema_sq_norm + (1 - self.beta) * est_sq_norm
self.ema_var = self.beta * self.ema_var + (1 - self.beta) * est_var
self.beta_cumprod *= self.beta
self.gradient_noise_scale = max(self.ema_var, self.eps) / max(self.ema_sq_norm, self.eps)
return self.gradient_noise_scale
def get_gns(self):
"""Returns the current gradient noise scale."""
return self.gradient_noise_scale
def get_stats(self):
"""Returns the current (debiased) estimates of the squared mean gradient
and gradient variance."""
return self.ema_sq_norm / (1 - self.beta_cumprod), self.ema_var / (1 - self.beta_cumprod)

View File

@@ -1,246 +0,0 @@
import math
from einops import rearrange, repeat
import torch
from torch import nn
from torch.nn import functional as F
from . import utils
# Karras et al. preconditioned denoiser
class Denoiser(nn.Module):
"""A Karras et al. preconditioner for denoising diffusion models."""
def __init__(self, inner_model, sigma_data=1.):
super().__init__()
self.inner_model = inner_model
self.sigma_data = sigma_data
def get_scalings(self, sigma):
c_skip = self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2)
c_out = sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
c_in = 1 / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
return c_skip, c_out, c_in
def loss(self, input, noise, sigma, **kwargs):
c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
noised_input = input + noise * utils.append_dims(sigma, input.ndim)
model_output = self.inner_model(noised_input * c_in, sigma, **kwargs)
target = (input - c_skip * noised_input) / c_out
return (model_output - target).pow(2).flatten(1).mean(1)
def forward(self, input, sigma, **kwargs):
c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
return self.inner_model(input * c_in, sigma, **kwargs) * c_out + input * c_skip
class DenoiserWithVariance(Denoiser):
def loss(self, input, noise, sigma, **kwargs):
c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)]
noised_input = input + noise * utils.append_dims(sigma, input.ndim)
model_output, logvar = self.inner_model(noised_input * c_in, sigma, return_variance=True, **kwargs)
logvar = utils.append_dims(logvar, model_output.ndim)
target = (input - c_skip * noised_input) / c_out
losses = ((model_output - target) ** 2 / logvar.exp() + logvar) / 2
return losses.flatten(1).mean(1)
# Residual blocks
class ResidualBlock(nn.Module):
def __init__(self, *main, skip=None):
super().__init__()
self.main = nn.Sequential(*main)
self.skip = skip if skip else nn.Identity()
def forward(self, input):
return self.main(input) + self.skip(input)
# Noise level (and other) conditioning
class ConditionedModule(nn.Module):
pass
class UnconditionedModule(ConditionedModule):
def __init__(self, module):
super().__init__()
self.module = module
def forward(self, input, cond=None):
return self.module(input)
class ConditionedSequential(nn.Sequential, ConditionedModule):
def forward(self, input, cond):
for module in self:
if isinstance(module, ConditionedModule):
input = module(input, cond)
else:
input = module(input)
return input
class ConditionedResidualBlock(ConditionedModule):
def __init__(self, *main, skip=None):
super().__init__()
self.main = ConditionedSequential(*main)
self.skip = skip if skip else nn.Identity()
def forward(self, input, cond):
skip = self.skip(input, cond) if isinstance(self.skip, ConditionedModule) else self.skip(input)
return self.main(input, cond) + skip
class AdaGN(ConditionedModule):
def __init__(self, feats_in, c_out, num_groups, eps=1e-5, cond_key='cond'):
super().__init__()
self.num_groups = num_groups
self.eps = eps
self.cond_key = cond_key
self.mapper = nn.Linear(feats_in, c_out * 2)
def forward(self, input, cond):
weight, bias = self.mapper(cond[self.cond_key]).chunk(2, dim=-1)
input = F.group_norm(input, self.num_groups, eps=self.eps)
return torch.addcmul(utils.append_dims(bias, input.ndim), input, utils.append_dims(weight, input.ndim) + 1)
# Attention
class SelfAttention2d(ConditionedModule):
def __init__(self, c_in, n_head, norm, dropout_rate=0.):
super().__init__()
assert c_in % n_head == 0
self.norm_in = norm(c_in)
self.n_head = n_head
self.qkv_proj = nn.Conv2d(c_in, c_in * 3, 1)
self.out_proj = nn.Conv2d(c_in, c_in, 1)
self.dropout = nn.Dropout(dropout_rate)
def forward(self, input, cond):
n, c, h, w = input.shape
qkv = self.qkv_proj(self.norm_in(input, cond))
qkv = qkv.view([n, self.n_head * 3, c // self.n_head, h * w]).transpose(2, 3)
q, k, v = qkv.chunk(3, dim=1)
scale = k.shape[3] ** -0.25
att = ((q * scale) @ (k.transpose(2, 3) * scale)).softmax(3)
att = self.dropout(att)
y = (att @ v).transpose(2, 3).contiguous().view([n, c, h, w])
return input + self.out_proj(y)
class CrossAttention2d(ConditionedModule):
def __init__(self, c_dec, c_enc, n_head, norm_dec, dropout_rate=0.,
cond_key='cross', cond_key_padding='cross_padding'):
super().__init__()
assert c_dec % n_head == 0
self.cond_key = cond_key
self.cond_key_padding = cond_key_padding
self.norm_enc = nn.LayerNorm(c_enc)
self.norm_dec = norm_dec(c_dec)
self.n_head = n_head
self.q_proj = nn.Conv2d(c_dec, c_dec, 1)
self.kv_proj = nn.Linear(c_enc, c_dec * 2)
self.out_proj = nn.Conv2d(c_dec, c_dec, 1)
self.dropout = nn.Dropout(dropout_rate)
def forward(self, input, cond):
n, c, h, w = input.shape
q = self.q_proj(self.norm_dec(input, cond))
q = q.view([n, self.n_head, c // self.n_head, h * w]).transpose(2, 3)
kv = self.kv_proj(self.norm_enc(cond[self.cond_key]))
kv = kv.view([n, -1, self.n_head * 2, c // self.n_head]).transpose(1, 2)
k, v = kv.chunk(2, dim=1)
scale = k.shape[3] ** -0.25
att = ((q * scale) @ (k.transpose(2, 3) * scale))
att = att - (cond[self.cond_key_padding][:, None, None, :]) * 10000
att = att.softmax(3)
att = self.dropout(att)
y = (att @ v).transpose(2, 3)
y = y.contiguous().view([n, c, h, w])
return input + self.out_proj(y)
# Downsampling/upsampling
_kernels = {
'linear':
[1 / 8, 3 / 8, 3 / 8, 1 / 8],
'cubic':
[-0.01171875, -0.03515625, 0.11328125, 0.43359375,
0.43359375, 0.11328125, -0.03515625, -0.01171875],
'lanczos3':
[0.003689131001010537, 0.015056144446134567, -0.03399861603975296,
-0.066637322306633, 0.13550527393817902, 0.44638532400131226,
0.44638532400131226, 0.13550527393817902, -0.066637322306633,
-0.03399861603975296, 0.015056144446134567, 0.003689131001010537]
}
_kernels['bilinear'] = _kernels['linear']
_kernels['bicubic'] = _kernels['cubic']
class Downsample2d(nn.Module):
def __init__(self, kernel='linear', pad_mode='reflect'):
super().__init__()
self.pad_mode = pad_mode
kernel_1d = torch.tensor([_kernels[kernel]])
self.pad = kernel_1d.shape[1] // 2 - 1
self.register_buffer('kernel', kernel_1d.T @ kernel_1d)
def forward(self, x):
x = F.pad(x, (self.pad,) * 4, self.pad_mode)
weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0], self.kernel.shape[1]])
indices = torch.arange(x.shape[1], device=x.device)
weight[indices, indices] = self.kernel.to(weight)
return F.conv2d(x, weight, stride=2)
class Upsample2d(nn.Module):
def __init__(self, kernel='linear', pad_mode='reflect'):
super().__init__()
self.pad_mode = pad_mode
kernel_1d = torch.tensor([_kernels[kernel]]) * 2
self.pad = kernel_1d.shape[1] // 2 - 1
self.register_buffer('kernel', kernel_1d.T @ kernel_1d)
def forward(self, x):
x = F.pad(x, ((self.pad + 1) // 2,) * 4, self.pad_mode)
weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0], self.kernel.shape[1]])
indices = torch.arange(x.shape[1], device=x.device)
weight[indices, indices] = self.kernel.to(weight)
return F.conv_transpose2d(x, weight, stride=2, padding=self.pad * 2 + 1)
# Embeddings
class FourierFeatures(nn.Module):
def __init__(self, in_features, out_features, std=1.):
super().__init__()
assert out_features % 2 == 0
self.register_buffer('weight', torch.randn([out_features // 2, in_features]) * std)
def forward(self, input):
f = 2 * math.pi * input @ self.weight.T
return torch.cat([f.cos(), f.sin()], dim=-1)
# U-Nets
class UNet(ConditionedModule):
def __init__(self, d_blocks, u_blocks, skip_stages=0):
super().__init__()
self.d_blocks = nn.ModuleList(d_blocks)
self.u_blocks = nn.ModuleList(u_blocks)
self.skip_stages = skip_stages
def forward(self, input, cond):
skips = []
for block in self.d_blocks[self.skip_stages:]:
input = block(input, cond)
skips.append(input)
for i, (block, skip) in enumerate(zip(self.u_blocks, reversed(skips))):
input = block(input, cond, skip if i > 0 else None)
return input

View File

@@ -1 +0,0 @@
from .image_v1 import ImageDenoiserModelV1

View File

@@ -1,156 +0,0 @@
import math
import torch
from torch import nn
from torch.nn import functional as F
from .. import layers, utils
def orthogonal_(module):
nn.init.orthogonal_(module.weight)
return module
class ResConvBlock(layers.ConditionedResidualBlock):
def __init__(self, feats_in, c_in, c_mid, c_out, group_size=32, dropout_rate=0.):
skip = None if c_in == c_out else orthogonal_(nn.Conv2d(c_in, c_out, 1, bias=False))
super().__init__(
layers.AdaGN(feats_in, c_in, max(1, c_in // group_size)),
nn.GELU(),
nn.Conv2d(c_in, c_mid, 3, padding=1),
nn.Dropout2d(dropout_rate, inplace=True),
layers.AdaGN(feats_in, c_mid, max(1, c_mid // group_size)),
nn.GELU(),
nn.Conv2d(c_mid, c_out, 3, padding=1),
nn.Dropout2d(dropout_rate, inplace=True),
skip=skip)
class DBlock(layers.ConditionedSequential):
def __init__(self, n_layers, feats_in, c_in, c_mid, c_out, group_size=32, head_size=64, dropout_rate=0., downsample=False, self_attn=False, cross_attn=False, c_enc=0):
modules = [nn.Identity()]
for i in range(n_layers):
my_c_in = c_in if i == 0 else c_mid
my_c_out = c_mid if i < n_layers - 1 else c_out
modules.append(ResConvBlock(feats_in, my_c_in, c_mid, my_c_out, group_size, dropout_rate))
if self_attn:
norm = lambda c_in: layers.AdaGN(feats_in, c_in, max(1, my_c_out // group_size))
modules.append(layers.SelfAttention2d(my_c_out, max(1, my_c_out // head_size), norm, dropout_rate))
if cross_attn:
norm = lambda c_in: layers.AdaGN(feats_in, c_in, max(1, my_c_out // group_size))
modules.append(layers.CrossAttention2d(my_c_out, c_enc, max(1, my_c_out // head_size), norm, dropout_rate))
super().__init__(*modules)
self.set_downsample(downsample)
def set_downsample(self, downsample):
self[0] = layers.Downsample2d() if downsample else nn.Identity()
return self
class UBlock(layers.ConditionedSequential):
def __init__(self, n_layers, feats_in, c_in, c_mid, c_out, group_size=32, head_size=64, dropout_rate=0., upsample=False, self_attn=False, cross_attn=False, c_enc=0):
modules = []
for i in range(n_layers):
my_c_in = c_in if i == 0 else c_mid
my_c_out = c_mid if i < n_layers - 1 else c_out
modules.append(ResConvBlock(feats_in, my_c_in, c_mid, my_c_out, group_size, dropout_rate))
if self_attn:
norm = lambda c_in: layers.AdaGN(feats_in, c_in, max(1, my_c_out // group_size))
modules.append(layers.SelfAttention2d(my_c_out, max(1, my_c_out // head_size), norm, dropout_rate))
if cross_attn:
norm = lambda c_in: layers.AdaGN(feats_in, c_in, max(1, my_c_out // group_size))
modules.append(layers.CrossAttention2d(my_c_out, c_enc, max(1, my_c_out // head_size), norm, dropout_rate))
modules.append(nn.Identity())
super().__init__(*modules)
self.set_upsample(upsample)
def forward(self, input, cond, skip=None):
if skip is not None:
input = torch.cat([input, skip], dim=1)
return super().forward(input, cond)
def set_upsample(self, upsample):
self[-1] = layers.Upsample2d() if upsample else nn.Identity()
return self
class MappingNet(nn.Sequential):
def __init__(self, feats_in, feats_out, n_layers=2):
layers = []
for i in range(n_layers):
layers.append(orthogonal_(nn.Linear(feats_in if i == 0 else feats_out, feats_out)))
layers.append(nn.GELU())
super().__init__(*layers)
class ImageDenoiserModelV1(nn.Module):
def __init__(self, c_in, feats_in, depths, channels, self_attn_depths, cross_attn_depths=None, mapping_cond_dim=0, unet_cond_dim=0, cross_cond_dim=0, dropout_rate=0., patch_size=1, skip_stages=0, has_variance=False):
super().__init__()
self.c_in = c_in
self.channels = channels
self.unet_cond_dim = unet_cond_dim
self.patch_size = patch_size
self.has_variance = has_variance
self.timestep_embed = layers.FourierFeatures(1, feats_in)
if mapping_cond_dim > 0:
self.mapping_cond = nn.Linear(mapping_cond_dim, feats_in, bias=False)
self.mapping = MappingNet(feats_in, feats_in)
self.proj_in = nn.Conv2d((c_in + unet_cond_dim) * self.patch_size ** 2, channels[max(0, skip_stages - 1)], 1)
self.proj_out = nn.Conv2d(channels[max(0, skip_stages - 1)], c_in * self.patch_size ** 2 + (1 if self.has_variance else 0), 1)
nn.init.zeros_(self.proj_out.weight)
nn.init.zeros_(self.proj_out.bias)
if cross_cond_dim == 0:
cross_attn_depths = [False] * len(self_attn_depths)
d_blocks, u_blocks = [], []
for i in range(len(depths)):
my_c_in = channels[max(0, i - 1)]
d_blocks.append(DBlock(depths[i], feats_in, my_c_in, channels[i], channels[i], downsample=i > skip_stages, self_attn=self_attn_depths[i], cross_attn=cross_attn_depths[i], c_enc=cross_cond_dim, dropout_rate=dropout_rate))
for i in range(len(depths)):
my_c_in = channels[i] * 2 if i < len(depths) - 1 else channels[i]
my_c_out = channels[max(0, i - 1)]
u_blocks.append(UBlock(depths[i], feats_in, my_c_in, channels[i], my_c_out, upsample=i > skip_stages, self_attn=self_attn_depths[i], cross_attn=cross_attn_depths[i], c_enc=cross_cond_dim, dropout_rate=dropout_rate))
self.u_net = layers.UNet(d_blocks, reversed(u_blocks), skip_stages=skip_stages)
def forward(self, input, sigma, mapping_cond=None, unet_cond=None, cross_cond=None, cross_cond_padding=None, return_variance=False):
c_noise = sigma.log() / 4
timestep_embed = self.timestep_embed(utils.append_dims(c_noise, 2))
mapping_cond_embed = torch.zeros_like(timestep_embed) if mapping_cond is None else self.mapping_cond(mapping_cond)
mapping_out = self.mapping(timestep_embed + mapping_cond_embed)
cond = {'cond': mapping_out}
if unet_cond is not None:
input = torch.cat([input, unet_cond], dim=1)
if cross_cond is not None:
cond['cross'] = cross_cond
cond['cross_padding'] = cross_cond_padding
if self.patch_size > 1:
input = F.pixel_unshuffle(input, self.patch_size)
input = self.proj_in(input)
input = self.u_net(input, cond)
input = self.proj_out(input)
if self.has_variance:
input, logvar = input[:, :-1], input[:, -1].flatten(1).mean(1)
if self.patch_size > 1:
input = F.pixel_shuffle(input, self.patch_size)
if self.has_variance and return_variance:
return input, logvar
return input
def set_skip_stages(self, skip_stages):
self.proj_in = nn.Conv2d(self.proj_in.in_channels, self.channels[max(0, skip_stages - 1)], 1)
self.proj_out = nn.Conv2d(self.channels[max(0, skip_stages - 1)], self.proj_out.out_channels, 1)
nn.init.zeros_(self.proj_out.weight)
nn.init.zeros_(self.proj_out.bias)
self.u_net.skip_stages = skip_stages
for i, block in enumerate(self.u_net.d_blocks):
block.set_downsample(i > skip_stages)
for i, block in enumerate(reversed(self.u_net.u_blocks)):
block.set_upsample(i > skip_stages)
return self
def set_patch_size(self, patch_size):
self.patch_size = patch_size
self.proj_in = nn.Conv2d((self.c_in + self.unet_cond_dim) * self.patch_size ** 2, self.channels[max(0, self.u_net.skip_stages - 1)], 1)
self.proj_out = nn.Conv2d(self.channels[max(0, self.u_net.skip_stages - 1)], self.c_in * self.patch_size ** 2 + (1 if self.has_variance else 0), 1)
nn.init.zeros_(self.proj_out.weight)
nn.init.zeros_(self.proj_out.bias)

File diff suppressed because it is too large Load Diff

View File

@@ -10,25 +10,6 @@ from PIL import Image
import torch
from torch import nn, optim
from torch.utils import data
from torchvision.transforms import functional as TF
def from_pil_image(x):
"""Converts from a PIL image to a tensor."""
x = TF.to_tensor(x)
if x.ndim == 2:
x = x[..., None]
return x * 2 - 1
def to_pil_image(x):
"""Converts from a tensor to a PIL image."""
if x.ndim == 4:
assert x.shape[0] == 1
x = x[0]
if x.shape[0] == 1:
x = x[0]
return TF.to_pil_image((x.clamp(-1, 1) + 1) / 2)
def hf_datasets_augs_helper(examples, transform, image_key, mode='RGB'):

472
comfy/latent_formats.py Normal file
View File

@@ -0,0 +1,472 @@
import torch
class LatentFormat:
scale_factor = 1.0
latent_channels = 4
latent_dimensions = 2
latent_rgb_factors = None
latent_rgb_factors_bias = None
taesd_decoder_name = None
def process_in(self, latent):
return latent * self.scale_factor
def process_out(self, latent):
return latent / self.scale_factor
class SD15(LatentFormat):
def __init__(self, scale_factor=0.18215):
self.scale_factor = scale_factor
self.latent_rgb_factors = [
# R G B
[ 0.3512, 0.2297, 0.3227],
[ 0.3250, 0.4974, 0.2350],
[-0.2829, 0.1762, 0.2721],
[-0.2120, -0.2616, -0.7177]
]
self.taesd_decoder_name = "taesd_decoder"
class SDXL(LatentFormat):
scale_factor = 0.13025
def __init__(self):
self.latent_rgb_factors = [
# R G B
[ 0.3651, 0.4232, 0.4341],
[-0.2533, -0.0042, 0.1068],
[ 0.1076, 0.1111, -0.0362],
[-0.3165, -0.2492, -0.2188]
]
self.latent_rgb_factors_bias = [ 0.1084, -0.0175, -0.0011]
self.taesd_decoder_name = "taesdxl_decoder"
class SDXL_Playground_2_5(LatentFormat):
def __init__(self):
self.scale_factor = 0.5
self.latents_mean = torch.tensor([-1.6574, 1.886, -1.383, 2.5155]).view(1, 4, 1, 1)
self.latents_std = torch.tensor([8.4927, 5.9022, 6.5498, 5.2299]).view(1, 4, 1, 1)
self.latent_rgb_factors = [
# R G B
[ 0.3920, 0.4054, 0.4549],
[-0.2634, -0.0196, 0.0653],
[ 0.0568, 0.1687, -0.0755],
[-0.3112, -0.2359, -0.2076]
]
self.taesd_decoder_name = "taesdxl_decoder"
def process_in(self, latent):
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
latents_std = self.latents_std.to(latent.device, latent.dtype)
return (latent - latents_mean) * self.scale_factor / latents_std
def process_out(self, latent):
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
latents_std = self.latents_std.to(latent.device, latent.dtype)
return latent * latents_std / self.scale_factor + latents_mean
class SD_X4(LatentFormat):
def __init__(self):
self.scale_factor = 0.08333
self.latent_rgb_factors = [
[-0.2340, -0.3863, -0.3257],
[ 0.0994, 0.0885, -0.0908],
[-0.2833, -0.2349, -0.3741],
[ 0.2523, -0.0055, -0.1651]
]
class SC_Prior(LatentFormat):
latent_channels = 16
def __init__(self):
self.scale_factor = 1.0
self.latent_rgb_factors = [
[-0.0326, -0.0204, -0.0127],
[-0.1592, -0.0427, 0.0216],
[ 0.0873, 0.0638, -0.0020],
[-0.0602, 0.0442, 0.1304],
[ 0.0800, -0.0313, -0.1796],
[-0.0810, -0.0638, -0.1581],
[ 0.1791, 0.1180, 0.0967],
[ 0.0740, 0.1416, 0.0432],
[-0.1745, -0.1888, -0.1373],
[ 0.2412, 0.1577, 0.0928],
[ 0.1908, 0.0998, 0.0682],
[ 0.0209, 0.0365, -0.0092],
[ 0.0448, -0.0650, -0.1728],
[-0.1658, -0.1045, -0.1308],
[ 0.0542, 0.1545, 0.1325],
[-0.0352, -0.1672, -0.2541]
]
class SC_B(LatentFormat):
def __init__(self):
self.scale_factor = 1.0 / 0.43
self.latent_rgb_factors = [
[ 0.1121, 0.2006, 0.1023],
[-0.2093, -0.0222, -0.0195],
[-0.3087, -0.1535, 0.0366],
[ 0.0290, -0.1574, -0.4078]
]
class SD3(LatentFormat):
latent_channels = 16
def __init__(self):
self.scale_factor = 1.5305
self.shift_factor = 0.0609
self.latent_rgb_factors = [
[-0.0922, -0.0175, 0.0749],
[ 0.0311, 0.0633, 0.0954],
[ 0.1994, 0.0927, 0.0458],
[ 0.0856, 0.0339, 0.0902],
[ 0.0587, 0.0272, -0.0496],
[-0.0006, 0.1104, 0.0309],
[ 0.0978, 0.0306, 0.0427],
[-0.0042, 0.1038, 0.1358],
[-0.0194, 0.0020, 0.0669],
[-0.0488, 0.0130, -0.0268],
[ 0.0922, 0.0988, 0.0951],
[-0.0278, 0.0524, -0.0542],
[ 0.0332, 0.0456, 0.0895],
[-0.0069, -0.0030, -0.0810],
[-0.0596, -0.0465, -0.0293],
[-0.1448, -0.1463, -0.1189]
]
self.latent_rgb_factors_bias = [0.2394, 0.2135, 0.1925]
self.taesd_decoder_name = "taesd3_decoder"
def process_in(self, latent):
return (latent - self.shift_factor) * self.scale_factor
def process_out(self, latent):
return (latent / self.scale_factor) + self.shift_factor
class StableAudio1(LatentFormat):
latent_channels = 64
latent_dimensions = 1
class Flux(SD3):
latent_channels = 16
def __init__(self):
self.scale_factor = 0.3611
self.shift_factor = 0.1159
self.latent_rgb_factors =[
[-0.0346, 0.0244, 0.0681],
[ 0.0034, 0.0210, 0.0687],
[ 0.0275, -0.0668, -0.0433],
[-0.0174, 0.0160, 0.0617],
[ 0.0859, 0.0721, 0.0329],
[ 0.0004, 0.0383, 0.0115],
[ 0.0405, 0.0861, 0.0915],
[-0.0236, -0.0185, -0.0259],
[-0.0245, 0.0250, 0.1180],
[ 0.1008, 0.0755, -0.0421],
[-0.0515, 0.0201, 0.0011],
[ 0.0428, -0.0012, -0.0036],
[ 0.0817, 0.0765, 0.0749],
[-0.1264, -0.0522, -0.1103],
[-0.0280, -0.0881, -0.0499],
[-0.1262, -0.0982, -0.0778]
]
self.latent_rgb_factors_bias = [-0.0329, -0.0718, -0.0851]
self.taesd_decoder_name = "taef1_decoder"
def process_in(self, latent):
return (latent - self.shift_factor) * self.scale_factor
def process_out(self, latent):
return (latent / self.scale_factor) + self.shift_factor
class Mochi(LatentFormat):
latent_channels = 12
latent_dimensions = 3
def __init__(self):
self.scale_factor = 1.0
self.latents_mean = torch.tensor([-0.06730895953510081, -0.038011381506090416, -0.07477820912866141,
-0.05565264470995561, 0.012767231469026969, -0.04703542746246419,
0.043896967884726704, -0.09346305707025976, -0.09918314763016893,
-0.008729793427399178, -0.011931556316503654, -0.0321993391887285]).view(1, self.latent_channels, 1, 1, 1)
self.latents_std = torch.tensor([0.9263795028493863, 0.9248894543193766, 0.9393059390890617,
0.959253732819592, 0.8244560132752793, 0.917259975397747,
0.9294154431013696, 1.3720942357788521, 0.881393668867029,
0.9168315692124348, 0.9185249279345552, 0.9274757570805041]).view(1, self.latent_channels, 1, 1, 1)
self.latent_rgb_factors =[
[-0.0069, -0.0045, 0.0018],
[ 0.0154, -0.0692, -0.0274],
[ 0.0333, 0.0019, 0.0206],
[-0.1390, 0.0628, 0.1678],
[-0.0725, 0.0134, -0.1898],
[ 0.0074, -0.0270, -0.0209],
[-0.0176, -0.0277, -0.0221],
[ 0.5294, 0.5204, 0.3852],
[-0.0326, -0.0446, -0.0143],
[-0.0659, 0.0153, -0.0153],
[ 0.0185, -0.0217, 0.0014],
[-0.0396, -0.0495, -0.0281]
]
self.latent_rgb_factors_bias = [-0.0940, -0.1418, -0.1453]
self.taesd_decoder_name = None #TODO
def process_in(self, latent):
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
latents_std = self.latents_std.to(latent.device, latent.dtype)
return (latent - latents_mean) * self.scale_factor / latents_std
def process_out(self, latent):
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
latents_std = self.latents_std.to(latent.device, latent.dtype)
return latent * latents_std / self.scale_factor + latents_mean
class LTXV(LatentFormat):
latent_channels = 128
latent_dimensions = 3
def __init__(self):
self.latent_rgb_factors = [
[ 1.1202e-02, -6.3815e-04, -1.0021e-02],
[ 8.6031e-02, 6.5813e-02, 9.5409e-04],
[-1.2576e-02, -7.5734e-03, -4.0528e-03],
[ 9.4063e-03, -2.1688e-03, 2.6093e-03],
[ 3.7636e-03, 1.2765e-02, 9.1548e-03],
[ 2.1024e-02, -5.2973e-03, 3.4373e-03],
[-8.8896e-03, -1.9703e-02, -1.8761e-02],
[-1.3160e-02, -1.0523e-02, 1.9709e-03],
[-1.5152e-03, -6.9891e-03, -7.5810e-03],
[-1.7247e-03, 4.6560e-04, -3.3839e-03],
[ 1.3617e-02, 4.7077e-03, -2.0045e-03],
[ 1.0256e-02, 7.7318e-03, 1.3948e-02],
[-1.6108e-02, -6.2151e-03, 1.1561e-03],
[ 7.3407e-03, 1.5628e-02, 4.4865e-04],
[ 9.5357e-04, -2.9518e-03, -1.4760e-02],
[ 1.9143e-02, 1.0868e-02, 1.2264e-02],
[ 4.4575e-03, 3.6682e-05, -6.8508e-03],
[-4.5681e-04, 3.2570e-03, 7.7929e-03],
[ 3.3902e-02, 3.3405e-02, 3.7454e-02],
[-2.3001e-02, -2.4877e-03, -3.1033e-03],
[ 5.0265e-02, 3.8841e-02, 3.3539e-02],
[-4.1018e-03, -1.1095e-03, 1.5859e-03],
[-1.2689e-01, -1.3107e-01, -2.1005e-01],
[ 2.6276e-02, 1.4189e-02, -3.5963e-03],
[-4.8679e-03, 8.8486e-03, 7.8029e-03],
[-1.6610e-03, -4.8597e-03, -5.2060e-03],
[-2.1010e-03, 2.3610e-03, 9.3796e-03],
[-2.2482e-02, -2.1305e-02, -1.5087e-02],
[-1.5753e-02, -1.0646e-02, -6.5083e-03],
[-4.6975e-03, 5.0288e-03, -6.7390e-03],
[ 1.1951e-02, 2.0712e-02, 1.6191e-02],
[-6.3704e-03, -8.4827e-03, -9.5483e-03],
[ 7.2610e-03, -9.9326e-03, -2.2978e-02],
[-9.1904e-04, 6.2882e-03, 9.5720e-03],
[-3.7178e-02, -3.7123e-02, -5.6713e-02],
[-1.3373e-01, -1.0720e-01, -5.3801e-02],
[-5.3702e-03, 8.1256e-03, 8.8397e-03],
[-1.5247e-01, -2.1437e-01, -2.1843e-01],
[ 3.1441e-02, 7.0335e-03, -9.7541e-03],
[ 2.1528e-03, -8.9817e-03, -2.1023e-02],
[ 3.8461e-03, -5.8957e-03, -1.5014e-02],
[-4.3470e-03, -1.2940e-02, -1.5972e-02],
[-5.4781e-03, -1.0842e-02, -3.0204e-03],
[-6.5347e-03, 3.0806e-03, -1.0163e-02],
[-5.0414e-03, -7.1503e-03, -8.9686e-04],
[-8.5851e-03, -2.4351e-03, 1.0674e-03],
[-9.0016e-03, -9.6493e-03, 1.5692e-03],
[ 5.0914e-03, 1.2099e-02, 1.9968e-02],
[ 1.3758e-02, 1.1669e-02, 8.1958e-03],
[-1.0518e-02, -1.1575e-02, -4.1307e-03],
[-2.8410e-02, -3.1266e-02, -2.2149e-02],
[ 2.9336e-03, 3.6511e-02, 1.8717e-02],
[-1.6703e-02, -1.6696e-02, -4.4529e-03],
[ 4.8818e-02, 4.0063e-02, 8.7410e-03],
[-1.5066e-02, -5.7328e-04, 2.9785e-03],
[-1.7613e-02, -8.1034e-03, 1.3086e-02],
[-9.2633e-03, 1.0803e-02, -6.3489e-03],
[ 3.0851e-03, 4.7750e-04, 1.2347e-02],
[-2.2785e-02, -2.3043e-02, -2.6005e-02],
[-2.4787e-02, -1.5389e-02, -2.2104e-02],
[-2.3572e-02, 1.0544e-03, 1.2361e-02],
[-7.8915e-03, -1.2271e-03, -6.0968e-03],
[-1.1478e-02, -1.2543e-03, 6.2679e-03],
[-5.4229e-02, 2.6644e-02, 6.3394e-03],
[ 4.4216e-03, -7.3338e-03, -1.0464e-02],
[-4.5013e-03, 1.6082e-03, 1.4420e-02],
[ 1.3673e-02, 8.8877e-03, 4.1253e-03],
[-1.0145e-02, 9.0072e-03, 1.5695e-02],
[-5.6234e-03, 1.1847e-03, 8.1261e-03],
[-3.7171e-03, -5.3538e-03, 1.2590e-03],
[ 2.9476e-02, 2.1424e-02, 3.0424e-02],
[-3.4925e-02, -2.4340e-02, -2.5316e-02],
[-3.4127e-02, -2.2406e-02, -1.0589e-02],
[-1.7342e-02, -1.3249e-02, -1.0719e-02],
[-2.1478e-03, -8.6051e-03, -2.9878e-03],
[ 1.2089e-03, -4.2391e-03, -6.8569e-03],
[ 9.0411e-04, -6.6886e-03, -6.7547e-05],
[ 1.6048e-02, -1.0057e-02, -2.8929e-02],
[ 1.2290e-03, 1.0163e-02, 1.8861e-02],
[ 1.7264e-02, 2.7257e-04, 1.3785e-02],
[-1.3482e-02, -3.6427e-03, 6.7481e-04],
[ 4.6782e-03, -5.2423e-03, 2.4467e-03],
[-5.9113e-03, -6.2244e-03, -1.8162e-03],
[ 1.5496e-02, 1.4582e-02, 1.9514e-03],
[ 7.4958e-03, 1.5886e-03, -8.2305e-03],
[ 1.9086e-02, 1.6360e-03, -3.9674e-03],
[-5.7021e-03, -2.7307e-03, -4.1066e-03],
[ 1.7450e-03, 1.4602e-02, 2.5794e-02],
[-8.2788e-04, 2.2902e-03, 4.5161e-03],
[ 1.1632e-02, 8.9193e-03, -7.2813e-03],
[ 7.5721e-03, 2.6784e-03, 1.1393e-02],
[ 5.1939e-03, 3.6903e-03, 1.4049e-02],
[-1.8383e-02, -2.2529e-02, -2.4477e-02],
[ 5.8842e-04, -5.7874e-03, -1.4770e-02],
[-1.6125e-02, -8.6101e-03, -1.4533e-02],
[ 2.0540e-02, 2.0729e-02, 6.4338e-03],
[ 3.3587e-03, -1.1226e-02, -1.6444e-02],
[-1.4742e-03, -1.0489e-02, 1.7097e-03],
[ 2.8130e-02, 2.3546e-02, 3.2791e-02],
[-1.8532e-02, -1.2842e-02, -8.7756e-03],
[-8.0533e-03, -1.0771e-02, -1.7536e-02],
[-3.9009e-03, 1.6150e-02, 3.3359e-02],
[-7.4554e-03, -1.4154e-02, -6.1910e-03],
[ 3.4734e-03, -1.1370e-02, -1.0581e-02],
[ 1.1476e-02, 3.9281e-03, 2.8231e-03],
[ 7.1639e-03, -1.4741e-03, -3.8066e-03],
[ 2.2250e-03, -8.7552e-03, -9.5719e-03],
[ 2.4146e-02, 2.1696e-02, 2.8056e-02],
[-5.4365e-03, -2.4291e-02, -1.7802e-02],
[ 7.4263e-03, 1.0510e-02, 1.2705e-02],
[ 6.2669e-03, 6.2658e-03, 1.9211e-02],
[ 1.6378e-02, 9.4933e-03, 6.6971e-03],
[ 1.7173e-02, 2.3601e-02, 2.3296e-02],
[-1.4568e-02, -9.8279e-03, -1.1556e-02],
[ 1.4431e-02, 1.4430e-02, 6.6362e-03],
[-6.8230e-03, 1.8863e-02, 1.4555e-02],
[ 6.1156e-03, 3.4700e-03, -2.6662e-03],
[-2.6983e-03, -5.9402e-03, -9.2276e-03],
[ 1.0235e-02, 7.4173e-03, -7.6243e-03],
[-1.3255e-02, 1.9322e-02, -9.2153e-04],
[ 2.4222e-03, -4.8039e-03, -1.5759e-02],
[ 2.6244e-02, 2.5951e-02, 2.0249e-02],
[ 1.5711e-02, 1.8498e-02, 2.7407e-03],
[-2.1714e-03, 4.7214e-03, -2.2443e-02],
[-7.4747e-03, 7.4166e-03, 1.4430e-02],
[-8.3906e-03, -7.9776e-03, 9.7927e-03],
[ 3.8321e-02, 9.6622e-03, -1.9268e-02],
[-1.4605e-02, -6.7032e-03, 3.9675e-03]
]
self.latent_rgb_factors_bias = [-0.0571, -0.1657, -0.2512]
class HunyuanVideo(LatentFormat):
latent_channels = 16
latent_dimensions = 3
scale_factor = 0.476986
latent_rgb_factors = [
[-0.0395, -0.0331, 0.0445],
[ 0.0696, 0.0795, 0.0518],
[ 0.0135, -0.0945, -0.0282],
[ 0.0108, -0.0250, -0.0765],
[-0.0209, 0.0032, 0.0224],
[-0.0804, -0.0254, -0.0639],
[-0.0991, 0.0271, -0.0669],
[-0.0646, -0.0422, -0.0400],
[-0.0696, -0.0595, -0.0894],
[-0.0799, -0.0208, -0.0375],
[ 0.1166, 0.1627, 0.0962],
[ 0.1165, 0.0432, 0.0407],
[-0.2315, -0.1920, -0.1355],
[-0.0270, 0.0401, -0.0821],
[-0.0616, -0.0997, -0.0727],
[ 0.0249, -0.0469, -0.1703]
]
latent_rgb_factors_bias = [ 0.0259, -0.0192, -0.0761]
class Cosmos1CV8x8x8(LatentFormat):
latent_channels = 16
latent_dimensions = 3
latent_rgb_factors = [
[ 0.1817, 0.2284, 0.2423],
[-0.0586, -0.0862, -0.3108],
[-0.4703, -0.4255, -0.3995],
[ 0.0803, 0.1963, 0.1001],
[-0.0820, -0.1050, 0.0400],
[ 0.2511, 0.3098, 0.2787],
[-0.1830, -0.2117, -0.0040],
[-0.0621, -0.2187, -0.0939],
[ 0.3619, 0.1082, 0.1455],
[ 0.3164, 0.3922, 0.2575],
[ 0.1152, 0.0231, -0.0462],
[-0.1434, -0.3609, -0.3665],
[ 0.0635, 0.1471, 0.1680],
[-0.3635, -0.1963, -0.3248],
[-0.1865, 0.0365, 0.2346],
[ 0.0447, 0.0994, 0.0881]
]
latent_rgb_factors_bias = [-0.1223, -0.1889, -0.1976]
class Wan21(LatentFormat):
latent_channels = 16
latent_dimensions = 3
latent_rgb_factors = [
[-0.1299, -0.1692, 0.2932],
[ 0.0671, 0.0406, 0.0442],
[ 0.3568, 0.2548, 0.1747],
[ 0.0372, 0.2344, 0.1420],
[ 0.0313, 0.0189, -0.0328],
[ 0.0296, -0.0956, -0.0665],
[-0.3477, -0.4059, -0.2925],
[ 0.0166, 0.1902, 0.1975],
[-0.0412, 0.0267, -0.1364],
[-0.1293, 0.0740, 0.1636],
[ 0.0680, 0.3019, 0.1128],
[ 0.0032, 0.0581, 0.0639],
[-0.1251, 0.0927, 0.1699],
[ 0.0060, -0.0633, 0.0005],
[ 0.3477, 0.2275, 0.2950],
[ 0.1984, 0.0913, 0.1861]
]
latent_rgb_factors_bias = [-0.1835, -0.0868, -0.3360]
def __init__(self):
self.scale_factor = 1.0
self.latents_mean = torch.tensor([
-0.7571, -0.7089, -0.9113, 0.1075, -0.1745, 0.9653, -0.1517, 1.5508,
0.4134, -0.0715, 0.5517, -0.3632, -0.1922, -0.9497, 0.2503, -0.2921
]).view(1, self.latent_channels, 1, 1, 1)
self.latents_std = torch.tensor([
2.8184, 1.4541, 2.3275, 2.6558, 1.2196, 1.7708, 2.6052, 2.0743,
3.2687, 2.1526, 2.8652, 1.5579, 1.6382, 1.1253, 2.8251, 1.9160
]).view(1, self.latent_channels, 1, 1, 1)
self.taesd_decoder_name = None #TODO
def process_in(self, latent):
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
latents_std = self.latents_std.to(latent.device, latent.dtype)
return (latent - latents_mean) * self.scale_factor / latents_std
def process_out(self, latent):
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
latents_std = self.latents_std.to(latent.device, latent.dtype)
return latent * latents_std / self.scale_factor + latents_mean
class Hunyuan3Dv2(LatentFormat):
latent_channels = 64
latent_dimensions = 1
scale_factor = 0.9990943042622529
class Hunyuan3Dv2mini(LatentFormat):
latent_channels = 64
latent_dimensions = 1
scale_factor = 1.0188137142395404
class ACEAudio(LatentFormat):
latent_channels = 8
latent_dimensions = 2

761
comfy/ldm/ace/attention.py Normal file
View File

@@ -0,0 +1,761 @@
# Original from: https://github.com/ace-step/ACE-Step/blob/main/models/attention.py
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Tuple, Union, Optional
import torch
import torch.nn.functional as F
from torch import nn
import comfy.model_management
from comfy.ldm.modules.attention import optimized_attention
class Attention(nn.Module):
def __init__(
self,
query_dim: int,
cross_attention_dim: Optional[int] = None,
heads: int = 8,
kv_heads: Optional[int] = None,
dim_head: int = 64,
dropout: float = 0.0,
bias: bool = False,
qk_norm: Optional[str] = None,
added_kv_proj_dim: Optional[int] = None,
added_proj_bias: Optional[bool] = True,
out_bias: bool = True,
scale_qk: bool = True,
only_cross_attention: bool = False,
eps: float = 1e-5,
rescale_output_factor: float = 1.0,
residual_connection: bool = False,
processor=None,
out_dim: int = None,
out_context_dim: int = None,
context_pre_only=None,
pre_only=False,
elementwise_affine: bool = True,
is_causal: bool = False,
dtype=None, device=None, operations=None
):
super().__init__()
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
self.inner_kv_dim = self.inner_dim if kv_heads is None else dim_head * kv_heads
self.query_dim = query_dim
self.use_bias = bias
self.is_cross_attention = cross_attention_dim is not None
self.cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim
self.rescale_output_factor = rescale_output_factor
self.residual_connection = residual_connection
self.dropout = dropout
self.fused_projections = False
self.out_dim = out_dim if out_dim is not None else query_dim
self.out_context_dim = out_context_dim if out_context_dim is not None else query_dim
self.context_pre_only = context_pre_only
self.pre_only = pre_only
self.is_causal = is_causal
self.scale_qk = scale_qk
self.scale = dim_head**-0.5 if self.scale_qk else 1.0
self.heads = out_dim // dim_head if out_dim is not None else heads
# for slice_size > 0 the attention score computation
# is split across the batch axis to save memory
# You can set slice_size with `set_attention_slice`
self.sliceable_head_dim = heads
self.added_kv_proj_dim = added_kv_proj_dim
self.only_cross_attention = only_cross_attention
if self.added_kv_proj_dim is None and self.only_cross_attention:
raise ValueError(
"`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`."
)
self.group_norm = None
self.spatial_norm = None
self.norm_q = None
self.norm_k = None
self.norm_cross = None
self.to_q = operations.Linear(query_dim, self.inner_dim, bias=bias, dtype=dtype, device=device)
if not self.only_cross_attention:
# only relevant for the `AddedKVProcessor` classes
self.to_k = operations.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
self.to_v = operations.Linear(self.cross_attention_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
else:
self.to_k = None
self.to_v = None
self.added_proj_bias = added_proj_bias
if self.added_kv_proj_dim is not None:
self.add_k_proj = operations.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias, dtype=dtype, device=device)
self.add_v_proj = operations.Linear(added_kv_proj_dim, self.inner_kv_dim, bias=added_proj_bias, dtype=dtype, device=device)
if self.context_pre_only is not None:
self.add_q_proj = operations.Linear(added_kv_proj_dim, self.inner_dim, bias=added_proj_bias, dtype=dtype, device=device)
else:
self.add_q_proj = None
self.add_k_proj = None
self.add_v_proj = None
if not self.pre_only:
self.to_out = nn.ModuleList([])
self.to_out.append(operations.Linear(self.inner_dim, self.out_dim, bias=out_bias, dtype=dtype, device=device))
self.to_out.append(nn.Dropout(dropout))
else:
self.to_out = None
if self.context_pre_only is not None and not self.context_pre_only:
self.to_add_out = operations.Linear(self.inner_dim, self.out_context_dim, bias=out_bias, dtype=dtype, device=device)
else:
self.to_add_out = None
self.norm_added_q = None
self.norm_added_k = None
self.processor = processor
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
**cross_attention_kwargs,
) -> torch.Tensor:
return self.processor(
self,
hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
class CustomLiteLAProcessor2_0:
"""Attention processor used typically in processing the SD3-like self-attention projections. add rms norm for query and key and apply RoPE"""
def __init__(self):
self.kernel_func = nn.ReLU(inplace=False)
self.eps = 1e-15
self.pad_val = 1.0
def apply_rotary_emb(
self,
x: torch.Tensor,
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
tensors contain rotary embeddings and are returned as real tensors.
Args:
x (`torch.Tensor`):
Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
"""
cos, sin = freqs_cis # [S, D]
cos = cos[None, None]
sin = sin[None, None]
cos, sin = cos.to(x.device), sin.to(x.device)
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
return out
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
*args,
**kwargs,
) -> torch.FloatTensor:
hidden_states_len = hidden_states.shape[1]
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
if encoder_hidden_states is not None:
context_input_ndim = encoder_hidden_states.ndim
if context_input_ndim == 4:
batch_size, channel, height, width = encoder_hidden_states.shape
encoder_hidden_states = encoder_hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size = hidden_states.shape[0]
# `sample` projections.
dtype = hidden_states.dtype
query = attn.to_q(hidden_states)
key = attn.to_k(hidden_states)
value = attn.to_v(hidden_states)
# `context` projections.
has_encoder_hidden_state_proj = hasattr(attn, "add_q_proj") and hasattr(attn, "add_k_proj") and hasattr(attn, "add_v_proj")
if encoder_hidden_states is not None and has_encoder_hidden_state_proj:
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
# attention
if not attn.is_cross_attention:
query = torch.cat([query, encoder_hidden_states_query_proj], dim=1)
key = torch.cat([key, encoder_hidden_states_key_proj], dim=1)
value = torch.cat([value, encoder_hidden_states_value_proj], dim=1)
else:
query = hidden_states
key = encoder_hidden_states
value = encoder_hidden_states
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.transpose(-1, -2).reshape(batch_size, attn.heads, head_dim, -1)
key = key.transpose(-1, -2).reshape(batch_size, attn.heads, head_dim, -1).transpose(-1, -2)
value = value.transpose(-1, -2).reshape(batch_size, attn.heads, head_dim, -1)
# RoPE需要 [B, H, S, D] 输入
# 此时 query是 [B, H, D, S], 需要转成 [B, H, S, D] 才能应用RoPE
query = query.permute(0, 1, 3, 2) # [B, H, S, D] (从 [B, H, D, S])
# Apply query and key normalization if needed
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# Apply RoPE if needed
if rotary_freqs_cis is not None:
query = self.apply_rotary_emb(query, rotary_freqs_cis)
if not attn.is_cross_attention:
key = self.apply_rotary_emb(key, rotary_freqs_cis)
elif rotary_freqs_cis_cross is not None and has_encoder_hidden_state_proj:
key = self.apply_rotary_emb(key, rotary_freqs_cis_cross)
# 此时 query是 [B, H, S, D],需要还原成 [B, H, D, S]
query = query.permute(0, 1, 3, 2) # [B, H, D, S]
if attention_mask is not None:
# attention_mask: [B, S] -> [B, 1, S, 1]
attention_mask = attention_mask[:, None, :, None].to(key.dtype) # [B, 1, S, 1]
query = query * attention_mask.permute(0, 1, 3, 2) # [B, H, S, D] * [B, 1, S, 1]
if not attn.is_cross_attention:
key = key * attention_mask # key: [B, h, S, D] 与 mask [B, 1, S, 1] 相乘
value = value * attention_mask.permute(0, 1, 3, 2) # 如果 value 是 [B, h, D, S]那么需调整mask以匹配S维度
if attn.is_cross_attention and encoder_attention_mask is not None and has_encoder_hidden_state_proj:
encoder_attention_mask = encoder_attention_mask[:, None, :, None].to(key.dtype) # [B, 1, S_enc, 1]
# 此时 key: [B, h, S_enc, D], value: [B, h, D, S_enc]
key = key * encoder_attention_mask # [B, h, S_enc, D] * [B, 1, S_enc, 1]
value = value * encoder_attention_mask.permute(0, 1, 3, 2) # [B, h, D, S_enc] * [B, 1, 1, S_enc]
query = self.kernel_func(query)
key = self.kernel_func(key)
query, key, value = query.float(), key.float(), value.float()
value = F.pad(value, (0, 0, 0, 1), mode="constant", value=self.pad_val)
vk = torch.matmul(value, key)
hidden_states = torch.matmul(vk, query)
if hidden_states.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.float()
hidden_states = hidden_states[:, :, :-1] / (hidden_states[:, :, -1:] + self.eps)
hidden_states = hidden_states.view(batch_size, attn.heads * head_dim, -1).permute(0, 2, 1)
hidden_states = hidden_states.to(dtype)
if encoder_hidden_states is not None:
encoder_hidden_states = encoder_hidden_states.to(dtype)
# Split the attention outputs.
if encoder_hidden_states is not None and not attn.is_cross_attention and has_encoder_hidden_state_proj:
hidden_states, encoder_hidden_states = (
hidden_states[:, : hidden_states_len],
hidden_states[:, hidden_states_len:],
)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if encoder_hidden_states is not None and not attn.context_pre_only and not attn.is_cross_attention and hasattr(attn, "to_add_out"):
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if encoder_hidden_states is not None and context_input_ndim == 4:
encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if torch.get_autocast_gpu_dtype() == torch.float16:
hidden_states = hidden_states.clip(-65504, 65504)
if encoder_hidden_states is not None:
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
return hidden_states, encoder_hidden_states
class CustomerAttnProcessor2_0:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def apply_rotary_emb(
self,
x: torch.Tensor,
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
tensors contain rotary embeddings and are returned as real tensors.
Args:
x (`torch.Tensor`):
Query or key tensor to apply rotary embeddings. [B, H, S, D] xk (torch.Tensor): Key tensor to apply
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
"""
cos, sin = freqs_cis # [S, D]
cos = cos[None, None]
sin = sin[None, None]
cos, sin = cos.to(x.device), sin.to(x.device)
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
return out
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
*args,
**kwargs,
) -> torch.Tensor:
residual = hidden_states
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
has_encoder_hidden_state_proj = hasattr(attn, "add_q_proj") and hasattr(attn, "add_k_proj") and hasattr(attn, "add_v_proj")
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
if attn.norm_q is not None:
query = attn.norm_q(query)
if attn.norm_k is not None:
key = attn.norm_k(key)
# Apply RoPE if needed
if rotary_freqs_cis is not None:
query = self.apply_rotary_emb(query, rotary_freqs_cis)
if not attn.is_cross_attention:
key = self.apply_rotary_emb(key, rotary_freqs_cis)
elif rotary_freqs_cis_cross is not None and has_encoder_hidden_state_proj:
key = self.apply_rotary_emb(key, rotary_freqs_cis_cross)
if attn.is_cross_attention and encoder_attention_mask is not None and has_encoder_hidden_state_proj:
# attention_mask: N x S1
# encoder_attention_mask: N x S2
# cross attention 整合attention_mask和encoder_attention_mask
combined_mask = attention_mask[:, :, None] * encoder_attention_mask[:, None, :]
attention_mask = torch.where(combined_mask == 1, 0.0, -torch.inf)
attention_mask = attention_mask[:, None, :, :].expand(-1, attn.heads, -1, -1).to(query.dtype)
elif not attn.is_cross_attention and attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
# the output of sdp = (batch, num_heads, seq_len, head_dim)
hidden_states = optimized_attention(
query, key, value, heads=query.shape[1], mask=attention_mask, skip_reshape=True,
).to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
def val2list(x: list or tuple or any, repeat_time=1) -> list: # type: ignore
"""Repeat `val` for `repeat_time` times and return the list or val if list/tuple."""
if isinstance(x, (list, tuple)):
return list(x)
return [x for _ in range(repeat_time)]
def val2tuple(x: list or tuple or any, min_len: int = 1, idx_repeat: int = -1) -> tuple: # type: ignore
"""Return tuple with min_len by repeating element at idx_repeat."""
# convert to list first
x = val2list(x)
# repeat elements if necessary
if len(x) > 0:
x[idx_repeat:idx_repeat] = [x[idx_repeat] for _ in range(min_len - len(x))]
return tuple(x)
def t2i_modulate(x, shift, scale):
return x * (1 + scale) + shift
def get_same_padding(kernel_size: Union[int, Tuple[int, ...]]) -> Union[int, Tuple[int, ...]]:
if isinstance(kernel_size, tuple):
return tuple([get_same_padding(ks) for ks in kernel_size])
else:
assert kernel_size % 2 > 0, f"kernel size {kernel_size} should be odd number"
return kernel_size // 2
class ConvLayer(nn.Module):
def __init__(
self,
in_dim: int,
out_dim: int,
kernel_size=3,
stride=1,
dilation=1,
groups=1,
padding: Union[int, None] = None,
use_bias=False,
norm=None,
act=None,
dtype=None, device=None, operations=None
):
super().__init__()
if padding is None:
padding = get_same_padding(kernel_size)
padding *= dilation
self.in_dim = in_dim
self.out_dim = out_dim
self.kernel_size = kernel_size
self.stride = stride
self.dilation = dilation
self.groups = groups
self.padding = padding
self.use_bias = use_bias
self.conv = operations.Conv1d(
in_dim,
out_dim,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
bias=use_bias,
device=device,
dtype=dtype
)
if norm is not None:
self.norm = operations.RMSNorm(out_dim, elementwise_affine=False, dtype=dtype, device=device)
else:
self.norm = None
if act is not None:
self.act = nn.SiLU(inplace=True)
else:
self.act = None
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.conv(x)
if self.norm:
x = self.norm(x)
if self.act:
x = self.act(x)
return x
class GLUMBConv(nn.Module):
def __init__(
self,
in_features: int,
hidden_features: int,
out_feature=None,
kernel_size=3,
stride=1,
padding: Union[int, None] = None,
use_bias=False,
norm=(None, None, None),
act=("silu", "silu", None),
dilation=1,
dtype=None, device=None, operations=None
):
out_feature = out_feature or in_features
super().__init__()
use_bias = val2tuple(use_bias, 3)
norm = val2tuple(norm, 3)
act = val2tuple(act, 3)
self.glu_act = nn.SiLU(inplace=False)
self.inverted_conv = ConvLayer(
in_features,
hidden_features * 2,
1,
use_bias=use_bias[0],
norm=norm[0],
act=act[0],
dtype=dtype,
device=device,
operations=operations,
)
self.depth_conv = ConvLayer(
hidden_features * 2,
hidden_features * 2,
kernel_size,
stride=stride,
groups=hidden_features * 2,
padding=padding,
use_bias=use_bias[1],
norm=norm[1],
act=None,
dilation=dilation,
dtype=dtype,
device=device,
operations=operations,
)
self.point_conv = ConvLayer(
hidden_features,
out_feature,
1,
use_bias=use_bias[2],
norm=norm[2],
act=act[2],
dtype=dtype,
device=device,
operations=operations,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x.transpose(1, 2)
x = self.inverted_conv(x)
x = self.depth_conv(x)
x, gate = torch.chunk(x, 2, dim=1)
gate = self.glu_act(gate)
x = x * gate
x = self.point_conv(x)
x = x.transpose(1, 2)
return x
class LinearTransformerBlock(nn.Module):
"""
A Sana block with global shared adaptive layer norm (adaLN-single) conditioning.
"""
def __init__(
self,
dim,
num_attention_heads,
attention_head_dim,
use_adaln_single=True,
cross_attention_dim=None,
added_kv_proj_dim=None,
context_pre_only=False,
mlp_ratio=4.0,
add_cross_attention=False,
add_cross_attention_dim=None,
qk_norm=None,
dtype=None, device=None, operations=None
):
super().__init__()
self.norm1 = operations.RMSNorm(dim, elementwise_affine=False, eps=1e-6)
self.attn = Attention(
query_dim=dim,
cross_attention_dim=cross_attention_dim,
added_kv_proj_dim=added_kv_proj_dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
bias=True,
qk_norm=qk_norm,
processor=CustomLiteLAProcessor2_0(),
dtype=dtype,
device=device,
operations=operations,
)
self.add_cross_attention = add_cross_attention
self.context_pre_only = context_pre_only
if add_cross_attention and add_cross_attention_dim is not None:
self.cross_attn = Attention(
query_dim=dim,
cross_attention_dim=add_cross_attention_dim,
added_kv_proj_dim=add_cross_attention_dim,
dim_head=attention_head_dim,
heads=num_attention_heads,
out_dim=dim,
context_pre_only=context_pre_only,
bias=True,
qk_norm=qk_norm,
processor=CustomerAttnProcessor2_0(),
dtype=dtype,
device=device,
operations=operations,
)
self.norm2 = operations.RMSNorm(dim, 1e-06, elementwise_affine=False)
self.ff = GLUMBConv(
in_features=dim,
hidden_features=int(dim * mlp_ratio),
use_bias=(True, True, False),
norm=(None, None, None),
act=("silu", "silu", None),
dtype=dtype,
device=device,
operations=operations,
)
self.use_adaln_single = use_adaln_single
if use_adaln_single:
self.scale_shift_table = nn.Parameter(torch.empty(6, dim, dtype=dtype, device=device))
def forward(
self,
hidden_states: torch.FloatTensor,
encoder_hidden_states: torch.FloatTensor = None,
attention_mask: torch.FloatTensor = None,
encoder_attention_mask: torch.FloatTensor = None,
rotary_freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
rotary_freqs_cis_cross: Union[torch.Tensor, Tuple[torch.Tensor]] = None,
temb: torch.FloatTensor = None,
):
N = hidden_states.shape[0]
# step 1: AdaLN single
if self.use_adaln_single:
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
comfy.model_management.cast_to(self.scale_shift_table[None], dtype=temb.dtype, device=temb.device) + temb.reshape(N, 6, -1)
).chunk(6, dim=1)
norm_hidden_states = self.norm1(hidden_states)
if self.use_adaln_single:
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
# step 2: attention
if not self.add_cross_attention:
attn_output, encoder_hidden_states = self.attn(
hidden_states=norm_hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=rotary_freqs_cis_cross,
)
else:
attn_output, _ = self.attn(
hidden_states=norm_hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=None,
encoder_attention_mask=None,
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=None,
)
if self.use_adaln_single:
attn_output = gate_msa * attn_output
hidden_states = attn_output + hidden_states
if self.add_cross_attention:
attn_output = self.cross_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
rotary_freqs_cis=rotary_freqs_cis,
rotary_freqs_cis_cross=rotary_freqs_cis_cross,
)
hidden_states = attn_output + hidden_states
# step 3: add norm
norm_hidden_states = self.norm2(hidden_states)
if self.use_adaln_single:
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
# step 4: feed forward
ff_output = self.ff(norm_hidden_states)
if self.use_adaln_single:
ff_output = gate_mlp * ff_output
hidden_states = hidden_states + ff_output
return hidden_states

File diff suppressed because it is too large Load Diff

Some files were not shown because too many files have changed in this diff Show More