Files
python-uncompyle6/uncompyle6/scanners/scanner3.py
2024-02-04 13:56:28 -05:00

1529 lines
62 KiB
Python

# Copyright (c) 2015-2019, 2021-2023 by Rocky Bernstein
# Copyright (c) 2005 by Dan Pascu <dan@windowmaker.org>
# Copyright (c) 2000-2002 by hartmut Goebel <h.goebel@crazy-compilers.com>
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
Python 3 Generic bytecode scanner/deparser
This overlaps various Python3's dis module, but it can be run from
Python versions other than the version running this code. Notably,
run from Python version 2.
Also we *modify* the instruction sequence to assist deparsing code.
For example:
- we add "COME_FROM" instructions to help in figuring out
conditional branching and looping.
- LOAD_CONSTs are classified further into the type of thing
they load:
lambda's, genexpr's, {dict,set,list} comprehension's,
- PARAMETER counts appended {CALL,MAKE}_FUNCTION, BUILD_{TUPLE,SET,SLICE}
Finally we save token information.
"""
import xdis
# Get all the opcodes into globals
import xdis.opcodes.opcode_33 as op3
from xdis import Instruction, instruction_size, iscode
from xdis.bytecode import _get_const_info
from uncompyle6.scanner import CONST_COLLECTIONS, Scanner, parse_fn_counts_30_35
from uncompyle6.scanners.tok import Token
from uncompyle6.util import get_code_name
globals().update(op3.opmap)
class Scanner3(Scanner):
def __init__(self, version, show_asm=None, is_pypy=False):
Scanner.__init__(self, version, show_asm, is_pypy)
# Create opcode classification sets
# Note: super initialization above initializes self.opc
# For ops that start SETUP_ ... we will add COME_FROM with these names
# at the their targets.
# Some blocks and END_ statements. And they can start
# a new statement
if self.version < (3, 8):
setup_ops = [
self.opc.SETUP_LOOP,
self.opc.SETUP_EXCEPT,
self.opc.SETUP_FINALLY,
]
self.setup_ops_no_loop = frozenset(setup_ops) - frozenset(
[self.opc.SETUP_LOOP]
)
else:
setup_ops = [self.opc.SETUP_FINALLY]
self.setup_ops_no_loop = frozenset(setup_ops)
if self.version >= (3, 2):
setup_ops.append(self.opc.SETUP_WITH)
self.setup_ops = frozenset(setup_ops)
if self.version[:2] == (3, 0):
self.pop_jump_tf = frozenset(
[self.opc.JUMP_IF_FALSE, self.opc.JUMP_IF_TRUE]
)
self.not_continue_follow = ("END_FINALLY", "POP_BLOCK", "POP_TOP")
else:
self.pop_jump_tf = frozenset([self.opc.PJIF, self.opc.PJIT])
self.not_continue_follow = ("END_FINALLY", "POP_BLOCK")
# Opcodes that can start a statement.
statement_opcodes = [
self.opc.POP_BLOCK,
self.opc.STORE_FAST,
self.opc.DELETE_FAST,
self.opc.STORE_DEREF,
self.opc.STORE_GLOBAL,
self.opc.DELETE_GLOBAL,
self.opc.STORE_NAME,
self.opc.DELETE_NAME,
self.opc.STORE_ATTR,
self.opc.DELETE_ATTR,
self.opc.STORE_SUBSCR,
self.opc.POP_TOP,
self.opc.DELETE_SUBSCR,
self.opc.END_FINALLY,
self.opc.RETURN_VALUE,
self.opc.RAISE_VARARGS,
self.opc.PRINT_EXPR,
self.opc.JUMP_ABSOLUTE,
]
if self.version < (3, 8):
statement_opcodes += [self.opc.BREAK_LOOP, self.opc.CONTINUE_LOOP]
self.statement_opcodes = frozenset(statement_opcodes) | self.setup_ops_no_loop
# Opcodes that can start a "store" non-terminal.
# FIXME: JUMP_ABSOLUTE is weird. What's up with that?
self.designator_ops = frozenset(
[
self.opc.STORE_FAST,
self.opc.STORE_NAME,
self.opc.STORE_GLOBAL,
self.opc.STORE_DEREF,
self.opc.STORE_ATTR,
self.opc.STORE_SUBSCR,
self.opc.UNPACK_SEQUENCE,
self.opc.JUMP_ABSOLUTE,
self.opc.UNPACK_EX,
]
)
if self.version > (3, 0):
self.jump_if_pop = frozenset(
[self.opc.JUMP_IF_FALSE_OR_POP, self.opc.JUMP_IF_TRUE_OR_POP]
)
self.pop_jump_if_pop = frozenset(
[
self.opc.JUMP_IF_FALSE_OR_POP,
self.opc.JUMP_IF_TRUE_OR_POP,
self.opc.POP_JUMP_IF_TRUE,
self.opc.POP_JUMP_IF_FALSE,
]
)
# Not really a set, but still clasification-like
self.statement_opcode_sequences = [
(self.opc.POP_JUMP_IF_FALSE, self.opc.JUMP_FORWARD),
(self.opc.POP_JUMP_IF_FALSE, self.opc.JUMP_ABSOLUTE),
(self.opc.POP_JUMP_IF_TRUE, self.opc.JUMP_FORWARD),
(self.opc.POP_JUMP_IF_TRUE, self.opc.JUMP_ABSOLUTE),
]
else:
self.jump_if_pop = frozenset([])
self.pop_jump_if_pop = frozenset([])
# Not really a set, but still clasification-like
self.statement_opcode_sequences = [
(self.opc.JUMP_FORWARD,),
(self.opc.JUMP_ABSOLUTE,),
(self.opc.JUMP_FORWARD,),
(self.opc.JUMP_ABSOLUTE,),
]
# FIXME: remove this and use instead info from xdis.
# Opcodes that take a variable number of arguments
# (expr's)
varargs_ops = set(
[
self.opc.BUILD_LIST,
self.opc.BUILD_TUPLE,
self.opc.BUILD_SET,
self.opc.BUILD_SLICE,
self.opc.BUILD_MAP,
self.opc.UNPACK_SEQUENCE,
self.opc.RAISE_VARARGS,
]
)
if is_pypy or self.version >= (3, 7):
varargs_ops.add(self.opc.CALL_METHOD)
if self.version >= (3, 5):
varargs_ops |= set(
[
self.opc.BUILD_SET_UNPACK,
self.opc.BUILD_MAP_UNPACK, # we will handle this later
self.opc.BUILD_LIST_UNPACK,
self.opc.BUILD_TUPLE_UNPACK,
]
)
if self.version >= (3, 6):
varargs_ops.add(self.opc.BUILD_CONST_KEY_MAP)
# Below is in bit order, "default = bit 0, closure = bit 3
self.MAKE_FUNCTION_FLAGS = tuple(
"""
default keyword-only annotation closure""".split()
)
self.varargs_ops = frozenset(varargs_ops)
# FIXME: remove the above in favor of:
# self.varargs_ops = frozenset(self.opc.hasvargs)
return
def bound_collection_from_inst(
self, insts, next_tokens, inst, t, i, collection_type
):
"""
Try to a replace sequence of instruction that ends with a
BUILD_xxx with a sequence that can be parsed much faster, but
inserting the token boundary at the beginning of the sequence.
"""
count = t.attr
assert isinstance(count, int)
assert count <= i
if collection_type == "CONST_DICT":
# constant dictionaries work via BUILD_CONST_KEY_MAP and
# handle the values() like sets and lists.
# However the keys() are an LOAD_CONST of the keys.
# adjust offset to account for this
count += 1
# For small lists don't bother
if count < 5:
return None
collection_start = i - count
for j in range(collection_start, i):
if insts[j].opname not in (
"LOAD_ASSERT",
"LOAD_CODE",
"LOAD_CONST",
"LOAD_FAST",
"LOAD_GLOBAL",
"LOAD_NAME",
"LOAD_STR",
):
return None
collection_enum = CONST_COLLECTIONS.index(collection_type)
# If we get here, all instructions before tokens[i] are LOAD_CONST and we can replace
# add a boundary marker and change LOAD_CONST to something else
new_tokens = next_tokens[:-count]
start_offset = insts[collection_start].offset
new_tokens.append(
Token(
opname="COLLECTION_START",
attr=collection_enum,
pattr=collection_type,
offset="%s_0" % start_offset,
linestart=False,
has_arg=True,
has_extended_arg=False,
opc=self.opc,
)
)
for j in range(collection_start, i):
new_tokens.append(
Token(
opname="ADD_VALUE",
attr=insts[j].argval,
pattr=insts[j].argrepr,
offset=insts[j].offset,
linestart=insts[j].starts_line,
has_arg=True,
has_extended_arg=False,
opc=self.opc,
)
)
new_tokens.append(
Token(
opname="BUILD_%s" % collection_type,
attr=t.attr,
pattr=t.pattr,
offset=t.offset,
linestart=t.linestart,
has_arg=t.has_arg,
has_extended_arg=False,
opc=t.opc,
)
)
return new_tokens
def bound_map_from_inst(self, insts, next_tokens, inst, t, i):
"""
Try to a sequence of instruction that ends with a BUILD_MAP into
a sequence that can be parsed much faster, but inserting the
token boundary at the beginning of the sequence.
"""
count = t.attr
assert isinstance(count, int)
if count > i:
return None
# For small lists don't bother
if count < 5:
return None
collection_start = i - (count * 2)
assert (count * 2) <= i
for j in range(collection_start, i, 2):
if insts[j].opname not in ("LOAD_CONST",):
return None
if insts[j + 1].opname not in ("LOAD_CONST",):
return None
collection_start = i - (2 * count)
collection_enum = CONST_COLLECTIONS.index("CONST_MAP")
# If we get here, all instructions before tokens[i] are LOAD_CONST and
# we can replace add a boundary marker and change LOAD_CONST to
# something else.
new_tokens = next_tokens[: -(2 * count)]
start_offset = insts[collection_start].offset
new_tokens.append(
Token(
opname="COLLECTION_START",
attr=collection_enum,
pattr="CONST_MAP",
offset="%s_0" % start_offset,
linestart=False,
has_arg=True,
has_extended_arg=False,
opc=self.opc,
)
)
for j in range(collection_start, i, 2):
new_tokens.append(
Token(
opname="ADD_KEY",
attr=insts[j].argval,
pattr=insts[j].argrepr,
offset=insts[j].offset,
linestart=insts[j].starts_line,
has_arg=True,
has_extended_arg=False,
opc=self.opc,
)
)
new_tokens.append(
Token(
opname="ADD_VALUE",
attr=insts[j + 1].argval,
pattr=insts[j + 1].argrepr,
offset=insts[j + 1].offset,
linestart=insts[j + 1].starts_line,
has_arg=True,
has_extended_arg=False,
opc=self.opc,
)
)
new_tokens.append(
Token(
opname="BUILD_DICT_OLDER",
attr=t.attr,
pattr=t.pattr,
offset=t.offset,
linestart=t.linestart,
has_arg=t.has_arg,
has_extended_arg=False,
opc=t.opc,
)
)
return new_tokens
def ingest(self, co, classname=None, code_objects={}, show_asm=None):
"""
Create "tokens" the bytecode of an Python code object. Largely these
are the opcode name, but in some cases that has been modified to make parsing
easier.
returning a list of uncompyle6 Token's.
Some transformations are made to assist the deparsing grammar:
- various types of LOAD_CONST's are categorized in terms of what they load
- COME_FROM instructions are added to assist parsing control structures
- operands with stack argument counts or flag masks are appended to the
opcode name, e.g.:
* BUILD_LIST, BUILD_SET
* MAKE_FUNCTION and FUNCTION_CALLS append the number of positional
arguments
- EXTENDED_ARGS instructions are removed
Also, when we encounter certain tokens, we add them to a set
which will cause custom grammar rules. Specifically, variable
arg tokens like MAKE_FUNCTION or BUILD_LIST cause specific rules
for the specific number of arguments they take.
"""
if not show_asm:
show_asm = self.show_asm
if not show_asm:
show_asm = self.show_asm
bytecode = self.build_instructions(co)
# show_asm = 'both'
if show_asm in ("both", "before"):
print("\n# ---- before tokenization:")
bytecode.disassemble_bytes(
co.co_code,
varnames=co.co_varnames,
names=co.co_names,
constants=co.co_consts,
cells=bytecode._cell_names,
linestarts=bytecode._linestarts,
asm_format="extended",
)
# "customize" is in the process of going away here
customize = {}
if self.is_pypy:
customize["PyPy"] = 0
# Scan for assertions. Later we will
# turn 'LOAD_GLOBAL' to 'LOAD_ASSERT'.
# 'LOAD_ASSERT' is used in assert statements.
self.load_asserts = set()
n = len(self.insts)
for i, inst in enumerate(self.insts):
opname = inst.opname
# We need to detect the difference between:
# raise AssertionError
# and
# assert ...
# If we have a JUMP_FORWARD after the
# RAISE_VARARGS then we have a "raise" statement
# else we have an "assert" statement.
if self.version[:2] == (3, 0):
# Like 2.6, 3.0 doesn't have POP_JUMP_IF... so we have
# to go through more machinations
assert_can_follow = opname == "POP_TOP" and i + 1 < n
if assert_can_follow:
prev_inst = self.insts[i - 1]
assert_can_follow = (
prev_inst.opname in ("JUMP_IF_TRUE", "JUMP_IF_FALSE")
and i + 1 < n
)
jump_if_inst = prev_inst
else:
assert_can_follow = (
opname in ("POP_JUMP_IF_TRUE", "POP_JUMP_IF_FALSE") and i + 1 < n
)
jump_if_inst = inst
if assert_can_follow:
next_inst = self.insts[i + 1]
if (
next_inst.opname == "LOAD_GLOBAL"
and next_inst.argval == "AssertionError"
and jump_if_inst.argval
):
raise_idx = self.offset2inst_index[
self.prev_op[jump_if_inst.argval]
]
raise_inst = self.insts[raise_idx]
if raise_inst.opname.startswith("RAISE_VARARGS"):
self.load_asserts.add(next_inst.offset)
pass
pass
# Get jump targets
# Format: {target offset: [jump offsets]}
jump_targets = self.find_jump_targets(show_asm)
# print("XXX2", jump_targets)
last_op_was_break = False
new_tokens = []
for i, inst in enumerate(self.insts):
opname = inst.opname
argval = inst.argval
pattr = inst.argrepr
t = Token(
opname=opname,
attr=argval,
pattr=pattr,
offset=inst.offset,
linestart=inst.starts_line,
op=inst.opcode,
has_arg=inst.has_arg,
has_extended_arg=inst.has_extended_arg,
opc=self.opc,
)
# things that smash new_tokens like BUILD_LIST have to come first.
if opname in (
"BUILD_CONST_KEY_MAP",
"BUILD_LIST",
"BUILD_SET",
):
if opname.startswith("BUILD_CONST_KEY_MAP"):
collection_type = "DICT"
else:
collection_type = opname.split("_")[1]
try_tokens = self.bound_collection_from_inst(
self.insts, new_tokens, inst, t, i, "CONST_%s" % collection_type
)
if try_tokens is not None:
new_tokens = try_tokens
continue
elif opname in ("BUILD_MAP",):
try_tokens = self.bound_map_from_inst(
self.insts,
new_tokens,
inst,
t,
i,
)
if try_tokens is not None:
new_tokens = try_tokens
continue
argval = inst.argval
op = inst.opcode
if opname == "EXTENDED_ARG":
# FIXME: The EXTENDED_ARG is used to signal annotation
# parameters
if i + 1 < n and self.insts[i + 1].opcode != self.opc.MAKE_FUNCTION:
continue
if inst.offset in jump_targets:
jump_idx = 0
# We want to process COME_FROMs to the same offset to be in *descending*
# offset order so we have the larger range or biggest instruction interval
# last. (I think they are sorted in increasing order, but for safety
# we sort them). That way, specific COME_FROM tags will match up
# properly. For example, a "loop" with an "if" nested in it should have the
# "loop" tag last so the grammar rule matches that properly.
for jump_offset in sorted(jump_targets[inst.offset], reverse=True):
come_from_name = "COME_FROM"
come_from_opname = self.opname_for_offset(jump_offset)
if come_from_opname == "EXTENDED_ARG":
j = xdis.next_offset(op, self.opc, jump_offset)
come_from_opname = self.opname_for_offset(j)
if come_from_opname.startswith("SETUP_"):
come_from_type = come_from_opname[len("SETUP_") :]
come_from_name = "COME_FROM_%s" % come_from_type
pass
elif inst.offset in self.except_targets:
come_from_name = "COME_FROM_EXCEPT_CLAUSE"
new_tokens.append(
Token(
come_from_name,
jump_offset,
repr(jump_offset),
offset="%s_%s" % (inst.offset, jump_idx),
has_arg=True,
opc=self.opc,
)
)
jump_idx += 1
pass
pass
elif inst.offset in self.else_start:
end_offset = self.else_start[inst.offset]
new_tokens.append(
Token(
"ELSE",
None,
repr(end_offset),
offset="%s" % (inst.offset),
has_arg=True,
opc=self.opc,
)
)
pass
if op in self.opc.CONST_OPS:
const = argval
if iscode(const):
co_name = const.co_name
if co_name == "<lambda>":
assert opname == "LOAD_CONST"
opname = "LOAD_LAMBDA"
elif co_name == "<genexpr>":
opname = "LOAD_GENEXPR"
elif co_name == "<dictcomp>":
opname = "LOAD_DICTCOMP"
elif co_name == "<setcomp>":
opname = "LOAD_SETCOMP"
elif co_name == "<listcomp>":
opname = "LOAD_LISTCOMP"
else:
opname = "LOAD_CODE"
# verify() uses 'pattr' for comparison, since 'attr'
# now holds Code(const) and thus can not be used
# for comparison (todo: think about changing this)
# pattr = 'code_object @ 0x%x %s->%s' %\
# (id(const), const.co_filename, const.co_name)
pattr = "<code_object " + const.co_name + ">"
elif isinstance(const, str) or isinstance(const, unicode):
opname = "LOAD_STR"
else:
if isinstance(inst.arg, int) and inst.arg < len(co.co_consts):
argval, _ = _get_const_info(inst.arg, co.co_consts)
# Why don't we use _ above for "pattr" rather than "const"?
# This *is* a little hoaky, but we have to coordinate with
# other parts like n_LOAD_CONST in pysource.py for example.
pattr = const
pass
elif opname == "LOAD_FAST" and argval == ".0":
# Used as the parameter of a list expression
opname = "LOAD_ARG"
elif opname in ("MAKE_FUNCTION", "MAKE_CLOSURE"):
if self.version >= (3, 6):
# 3.6+ doesn't have MAKE_CLOSURE, so opname == 'MAKE_FUNCTION'
flags = argval
# FIXME: generalize this
if flags == 8:
opname = "MAKE_FUNCTION_CLOSURE"
elif flags == 9:
opname = "MAKE_FUNCTION_CLOSURE_POS"
else:
opname = "MAKE_FUNCTION_%d" % (flags)
attr = []
for flag in self.MAKE_FUNCTION_FLAGS:
bit = flags & 1
attr.append(bit)
flags >>= 1
attr = attr[:4] # remove last value: attr[5] == False
else:
pos_args, name_pair_args, annotate_args = parse_fn_counts_30_35(
inst.argval
)
pattr = "%s positional, %s keyword only, %s annotated" % (
pos_args,
name_pair_args,
annotate_args,
)
if name_pair_args > 0 and annotate_args > 0:
# FIXME: this should probably be K_
opname += "_N%s_A%s" % (name_pair_args, annotate_args)
pass
elif annotate_args > 0:
opname += "_A_%s" % annotate_args
pass
elif name_pair_args > 0:
opname += "_N_%s" % name_pair_args
pass
else:
# Rule customization mathics, MAKE_FUNCTION_...
# so make sure to add the "_"
opname += "_0"
attr = (pos_args, name_pair_args, annotate_args)
new_tokens.append(
Token(
opname=opname,
attr=attr,
pattr=pattr,
offset=inst.offset,
linestart=inst.starts_line,
op=op,
has_arg=inst.has_arg,
opc=self.opc,
)
)
continue
elif op in self.varargs_ops:
pos_args = argval
if self.is_pypy and not pos_args and opname == "BUILD_MAP":
opname = "BUILD_MAP_n"
else:
opname = "%s_%d" % (opname, pos_args)
elif self.is_pypy and opname in ("JUMP_IF_NOT_DEBUG", "CALL_FUNCTION"):
if opname == "JUMP_IF_NOT_DEBUG":
# The value in the dict is in special cases in semantic actions, such
# as JUMP_IF_NOT_DEBUG. The value is not used in these cases, so we put
# in arbitrary value 0.
customize[opname] = 0
elif self.version >= (3, 6) and argval > 255:
opname = "CALL_FUNCTION_KW"
pass
elif opname == "UNPACK_EX":
# FIXME: try with scanner and parser by
# changing argval
before_args = argval & 0xFF
after_args = (argval >> 8) & 0xFF
pattr = "%d before vararg, %d after" % (before_args, after_args)
argval = (before_args, after_args)
opname = "%s_%d+%d" % (opname, before_args, after_args)
elif op == self.opc.JUMP_ABSOLUTE:
# Further classify JUMP_ABSOLUTE into backward jumps
# which are used in loops, and "CONTINUE" jumps which
# may appear in a "continue" statement. The loop-type
# and continue-type jumps will help us classify loop
# boundaries The continue-type jumps help us get
# "continue" statements with would otherwise be turned
# into a "pass" statement because JUMPs are sometimes
# ignored in rules as just boundary overhead. In
# comprehensions we might sometimes classify JUMP_BACK
# as CONTINUE, but that's okay since we add a grammar
# rule for that.
pattr = argval
target = self.get_target(inst.offset)
if target <= inst.offset:
next_opname = self.insts[i + 1].opname
# 'Continue's include jumps to loops that are not
# and the end of a block which follow with POP_BLOCK and COME_FROM_LOOP.
# If the JUMP_ABSOLUTE is to a FOR_ITER and it is followed by another JUMP_FORWARD
# then we'll take it as a "continue".
is_continue = (
self.insts[self.offset2inst_index[target]].opname == "FOR_ITER"
and self.insts[i + 1].opname == "JUMP_FORWARD"
)
if (
self.version[:2] == (3, 0)
and self.insts[i + 1].opname == "JUMP_FORWARD"
and not is_continue
):
target_prev = self.offset2inst_index[self.prev_op[target]]
is_continue = self.insts[target_prev].opname == "SETUP_LOOP"
if is_continue or (
inst.offset in self.stmts
and (
inst.starts_line
and next_opname not in self.not_continue_follow
)
):
opname = "CONTINUE"
else:
opname = "JUMP_BACK"
# FIXME: this is a hack to catch stuff like:
# if x: continue
# the "continue" is not on a new line.
# There are other situations where we don't catch
# CONTINUE as well.
if (
new_tokens[-1].kind == "JUMP_BACK"
and new_tokens[-1].attr <= argval
):
if new_tokens[-2].kind == "BREAK_LOOP":
del new_tokens[-1]
else:
# intern is used because we are changing the *previous* token
new_tokens[-1].kind = intern("CONTINUE")
if last_op_was_break and opname == "CONTINUE":
last_op_was_break = False
continue
# FIXME: go over for Python 3.6+. This is sometimes wrong
elif op == self.opc.RETURN_VALUE:
if inst.offset in self.return_end_ifs:
opname = "RETURN_END_IF"
elif inst.offset in self.load_asserts:
opname = "LOAD_ASSERT"
last_op_was_break = opname == "BREAK_LOOP"
t.kind = opname
t.attr = argval
t.pattr = pattr
new_tokens.append(t)
pass
if show_asm in ("both", "after"):
print("\n# ---- after tokenization:")
for t in new_tokens:
print(t.format(line_prefix=""))
print()
return new_tokens, customize
def find_jump_targets(self, debug):
"""
Detect all offsets in a byte code which are jump targets
where we might insert a COME_FROM instruction.
Return the list of offsets.
Return the list of offsets. An instruction can be jumped
to in from multiple instructions.
"""
code = self.code
n = len(code)
self.structs = [{"type": "root", "start": 0, "end": n - 1}]
# All loop entry points
self.loops = []
# Map fixed jumps to their real destination
self.fixed_jumps = {}
self.except_targets = {}
self.ignore_if = set()
self.build_statement_indices()
self.else_start = {}
# Containers filled by detect_control_flow()
self.not_continue = set()
self.return_end_ifs = set()
self.setup_loop_targets = {} # target given setup_loop offset
self.setup_loops = {} # setup_loop offset given target
targets = {}
for i, inst in enumerate(self.insts):
offset = inst.offset
op = inst.opcode
# Determine structures and fix jumps in Python versions
# since 2.3
self.detect_control_flow(offset, targets, i)
if inst.has_arg:
label = self.fixed_jumps.get(offset)
oparg = inst.arg
if (
self.version >= (3, 6)
and self.code[offset] == self.opc.EXTENDED_ARG
):
j = xdis.next_offset(op, self.opc, offset)
next_offset = xdis.next_offset(op, self.opc, j)
else:
next_offset = xdis.next_offset(op, self.opc, offset)
if label is None:
if op in self.opc.hasjrel and op != self.opc.FOR_ITER:
label = next_offset + oparg
elif op in self.opc.hasjabs:
if op in self.jump_if_pop:
if oparg > offset:
label = oparg
if label is not None and label != -1:
targets[label] = targets.get(label, []) + [offset]
elif op == self.opc.END_FINALLY and offset in self.fixed_jumps:
label = self.fixed_jumps[offset]
targets[label] = targets.get(label, []) + [offset]
pass
pass # for loop
# DEBUG:
if debug in ("both", "after"):
import pprint as pp
pp.pprint(self.structs)
return targets
def build_statement_indices(self):
code = self.code
start = 0
end = codelen = len(code)
# Compose preliminary list of indices with statements,
# using plain statement opcodes
prelim = self.inst_matches(start, end, self.statement_opcodes)
# Initialize final container with statements with
# preliminary data
stmts = self.stmts = set(prelim)
# Same for opcode sequences
pass_stmts = set()
for sequence in self.statement_opcode_sequences:
for i in self.op_range(start, end - (len(sequence) + 1)):
match = True
for elem in sequence:
if elem != code[i]:
match = False
break
i += instruction_size(code[i], self.opc)
if match is True:
i = self.prev_op[i]
stmts.add(i)
pass_stmts.add(i)
# Initialize statement list with the full data we've gathered so far
if pass_stmts:
stmt_offset_list = list(stmts)
stmt_offset_list.sort()
else:
stmt_offset_list = prelim
# 'List-map' which contains offset of start of
# next statement, when op offset is passed as index
self.next_stmt = slist = []
last_stmt_offset = -1
i = 0
# Go through all statement offsets
for stmt_offset in stmt_offset_list:
# Process absolute jumps, but do not remove 'pass' statements
# from the set
if (
code[stmt_offset] == self.opc.JUMP_ABSOLUTE
and stmt_offset not in pass_stmts
):
# If absolute jump occurs in forward direction or it takes off from the
# same line as previous statement, this is not a statement
# FIXME: 0 isn't always correct
target = self.get_target(stmt_offset)
if (
target > stmt_offset
or self.lines[last_stmt_offset].l_no == self.lines[stmt_offset].l_no
):
stmts.remove(stmt_offset)
continue
# Rewing ops till we encounter non-JUMP_ABSOLUTE one
j = self.prev_op[stmt_offset]
while code[j] == self.opc.JUMP_ABSOLUTE:
j = self.prev_op[j]
# If we got here, then it's list comprehension which
# is not a statement too
if code[j] == self.opc.LIST_APPEND:
stmts.remove(stmt_offset)
continue
# Exclude ROT_TWO + POP_TOP
elif (
code[stmt_offset] == self.opc.POP_TOP
and code[self.prev_op[stmt_offset]] == self.opc.ROT_TWO
):
stmts.remove(stmt_offset)
continue
# Exclude FOR_ITER + designators
elif code[stmt_offset] in self.designator_ops:
j = self.prev_op[stmt_offset]
while code[j] in self.designator_ops:
j = self.prev_op[j]
if code[j] == self.opc.FOR_ITER:
stmts.remove(stmt_offset)
continue
# Add to list another list with offset of current statement,
# equal to length of previous statement
slist += [stmt_offset] * (stmt_offset - i)
last_stmt_offset = stmt_offset
i = stmt_offset
# Finish filling the list for last statement
slist += [codelen] * (codelen - len(slist))
def detect_control_flow(self, offset, targets, inst_index):
"""
Detect type of block structures and their boundaries to fix optimized jumps
in python2.3+
"""
code = self.code
inst = self.insts[inst_index]
op = inst.opcode
# Detect parent structure
parent = self.structs[0]
start = parent["start"]
end = parent["end"]
# Pick inner-most parent for our offset
for struct in self.structs:
current_start = struct["start"]
current_end = struct["end"]
if (current_start <= offset < current_end) and (
current_start >= start and current_end <= end
):
start = current_start
end = current_end
parent = struct
if self.version < (3, 8) and op == self.opc.SETUP_LOOP:
# We categorize loop types: 'for', 'while', 'while 1' with
# possibly suffixes '-loop' and '-else'
# Try to find the jump_back instruction of the loop.
# It could be a return instruction.
start += inst.inst_size
target = self.get_target(offset)
end = self.restrict_to_parent(target, parent)
self.setup_loops[target] = offset
if target != end:
self.fixed_jumps[offset] = end
(line_no, next_line_byte) = self.lines[offset]
jump_back = self.last_instr(
start, end, self.opc.JUMP_ABSOLUTE, next_line_byte, False
)
if jump_back:
jump_forward_offset = xdis.next_offset(
code[jump_back], self.opc, jump_back
)
else:
jump_forward_offset = None
return_val_offset1 = self.prev[self.prev[end]]
if (
jump_back
and jump_back != self.prev_op[end]
and self.is_jump_forward(jump_forward_offset)
):
if code[self.prev_op[end]] == self.opc.RETURN_VALUE or (
code[self.prev_op[end]] == self.opc.POP_BLOCK
and code[return_val_offset1] == self.opc.RETURN_VALUE
):
jump_back = None
if not jump_back:
# loop suite ends in return
jump_back = self.last_instr(start, end, self.opc.RETURN_VALUE)
if not jump_back:
return
jb_inst = self.get_inst(jump_back)
jump_back = self.next_offset(jb_inst.opcode, jump_back)
if_offset = None
if code[self.prev_op[next_line_byte]] not in self.pop_jump_tf:
if_offset = self.prev[next_line_byte]
if if_offset:
loop_type = "while"
self.ignore_if.add(if_offset)
else:
loop_type = "for"
target = next_line_byte
end = xdis.next_offset(code[jump_back], self.opc, jump_back)
else:
if self.get_target(jump_back) >= next_line_byte:
jump_back = self.last_instr(
start, end, self.opc.JUMP_ABSOLUTE, start, False
)
jb_inst = self.get_inst(jump_back)
jb_next_offset = self.next_offset(jb_inst.opcode, jump_back)
if end > jb_next_offset and self.is_jump_forward(end):
if self.is_jump_forward(jb_next_offset):
if self.get_target(jb_next_offset) == self.get_target(end):
self.fixed_jumps[offset] = jb_next_offset
end = jb_next_offset
elif target < offset:
self.fixed_jumps[offset] = jb_next_offset
end = jb_next_offset
target = self.get_target(jump_back)
if code[target] in (self.opc.FOR_ITER, self.opc.GET_ITER):
loop_type = "for"
else:
loop_type = "while"
test = self.prev_op[next_line_byte]
if test == offset:
loop_type = "while 1"
elif self.code[test] in self.opc.JUMP_OPs:
self.ignore_if.add(test)
test_target = self.get_target(test)
if test_target > (jump_back + 3):
jump_back = test_target
self.not_continue.add(jump_back)
self.loops.append(target)
self.structs.append(
{"type": loop_type + "-loop", "start": target, "end": jump_back}
)
after_jump_offset = xdis.next_offset(code[jump_back], self.opc, jump_back)
if after_jump_offset != end:
self.structs.append(
{
"type": loop_type + "-else",
"start": after_jump_offset,
"end": end,
}
)
elif op in self.pop_jump_tf:
start = offset + inst.inst_size
target = inst.argval
rtarget = self.restrict_to_parent(target, parent)
prev_op = self.prev_op
# Do not let jump to go out of parent struct bounds
if target != rtarget and parent["type"] == "and/or":
self.fixed_jumps[offset] = rtarget
return
# Does this jump to right after another conditional jump that is
# not myself? If so, it's part of a larger conditional.
# rocky: if we have a conditional jump to the next instruction, then
# possibly I am "skipping over" a "pass" or null statement.
pretarget = self.get_inst(prev_op[target])
if (
pretarget.opcode in self.pop_jump_if_pop
and (target > offset)
and pretarget.offset != offset
):
# FIXME: hack upon hack...
# In some cases the pretarget can be a jump to the next instruction
# and these aren't and/or's either. We limit to 3.5+ since we experienced there
# but it might be earlier versions, or might be a general principle.
if self.version < (3, 5) or pretarget.argval != target:
# FIXME: this is not accurate The commented out below
# is what it should be. However grammar rules right now
# assume the incorrect offsets.
# self.fixed_jumps[offset] = target
self.fixed_jumps[offset] = pretarget.offset
self.structs.append(
{"type": "and/or", "start": start, "end": pretarget.offset}
)
return
# The opcode *two* instructions before the target jump offset is important
# in making a determination of what we have. Save that.
pre_rtarget = prev_op[rtarget]
# Is it an "and" inside an "if" or "while" block
if op == self.opc.POP_JUMP_IF_FALSE:
# Search for another POP_JUMP_IF_FALSE targeting the same op,
# in current statement, starting from current offset, and filter
# everything inside inner 'or' jumps and midline ifs
match = self.rem_or(
start, self.next_stmt[offset], self.opc.POP_JUMP_IF_FALSE, target
)
# FIXME: Remove this whole "if" block
# If we still have any offsets in set, start working on it
if match:
is_jump_forward = self.is_jump_forward(pre_rtarget)
if (
is_jump_forward
and pre_rtarget not in self.stmts
and self.restrict_to_parent(
self.get_target(pre_rtarget), parent
)
== rtarget
):
if (
code[prev_op[pre_rtarget]] == self.opc.JUMP_ABSOLUTE
and self.remove_mid_line_ifs([offset])
and target == self.get_target(prev_op[pre_rtarget])
and (
prev_op[pre_rtarget] not in self.stmts
or self.get_target(prev_op[pre_rtarget])
> prev_op[pre_rtarget]
)
and 1
== len(
self.remove_mid_line_ifs(
self.rem_or(
start,
prev_op[pre_rtarget],
self.pop_jump_tf,
target,
)
)
)
):
pass
elif (
code[prev_op[pre_rtarget]] == self.opc.RETURN_VALUE
and self.remove_mid_line_ifs([offset])
and 1
== (
len(
set(
self.remove_mid_line_ifs(
self.rem_or(
start,
prev_op[pre_rtarget],
self.pop_jump_tf,
target,
)
)
)
| set(
self.remove_mid_line_ifs(
self.rem_or(
start,
prev_op[pre_rtarget],
(
self.opc.POP_JUMP_IF_FALSE,
self.opc.POP_JUMP_IF_TRUE,
self.opc.JUMP_ABSOLUTE,
),
pre_rtarget,
True,
)
)
)
)
)
):
pass
elif self.version <= (3, 2):
fix = None
jump_ifs = self.inst_matches(
start,
self.next_stmt[offset],
self.opc.POP_JUMP_IF_FALSE,
)
last_jump_good = True
for j in jump_ifs:
if target == self.get_target(j):
# FIXME: remove magic number
if self.lines[j].next == j + 3 and last_jump_good:
fix = j
break
else:
last_jump_good = False
self.fixed_jumps[offset] = fix or match[-1]
return
else:
if self.version < (3, 6):
# FIXME: this is putting in COME_FROMs in the wrong place.
# Fix up grammar so we don't need to do this.
# See cf_for_iter use in parser36.py
self.fixed_jumps[offset] = match[-1]
elif target > offset:
# Right now we only add COME_FROMs in forward (not loop) jumps
self.fixed_jumps[offset] = target
return
# op == POP_JUMP_IF_TRUE
else:
next = self.next_stmt[offset]
if prev_op[next] == offset:
pass
elif self.is_jump_forward(next) and target == self.get_target(next):
if code[prev_op[next]] == self.opc.POP_JUMP_IF_FALSE:
if (
code[next] == self.opc.JUMP_FORWARD
or target != rtarget
or code[prev_op[pre_rtarget]]
not in (self.opc.JUMP_ABSOLUTE, self.opc.RETURN_VALUE)
):
self.fixed_jumps[offset] = prev_op[next]
return
elif (
code[next] == self.opc.JUMP_ABSOLUTE
and self.is_jump_forward(target)
and self.get_target(target) == self.get_target(next)
):
self.fixed_jumps[offset] = prev_op[next]
return
# Don't add a struct for a while test, it's already taken care of
if offset in self.ignore_if:
return
rtarget_is_ja = code[pre_rtarget] == self.opc.JUMP_ABSOLUTE
if (
rtarget_is_ja
and pre_rtarget in self.stmts
and pre_rtarget != offset
and prev_op[pre_rtarget] != offset
and not (
code[rtarget] == self.opc.JUMP_ABSOLUTE
and code[rtarget + 3] == self.opc.POP_BLOCK
and code[prev_op[pre_rtarget]] != self.opc.JUMP_ABSOLUTE
)
):
rtarget = pre_rtarget
# Does the "jump if" jump beyond a jump op?
# That is, we have something like:
# POP_JUMP_IF_FALSE HERE
# ...
# JUMP_FORWARD
# HERE:
#
# If so, this can be block inside an "if" statement
# or a conditional assignment like:
# x = 1 if x else 2
#
# For 3.5, in addition the JUMP_FORWARD above we could have
# JUMP_BACK or CONTINUE
#
# There are other situations we may need to consider, like
# if the condition jump is to a forward location.
# Also the existence of a jump to the instruction after "END_FINALLY"
# will distinguish "try/else" from "try".
if self.version < (3, 8):
rtarget_break = (self.opc.RETURN_VALUE, self.opc.BREAK_LOOP)
else:
rtarget_break = (self.opc.RETURN_VALUE,)
if self.is_jump_forward(pre_rtarget) or (
rtarget_is_ja and self.version >= (3, 5)
):
if_end = self.get_target(pre_rtarget)
# If the jump target is back, we are looping
if (
if_end < pre_rtarget
and self.version < (3, 8)
and (code[prev_op[if_end]] == self.opc.SETUP_LOOP)
):
if if_end > start:
return
end = self.restrict_to_parent(if_end, parent)
self.structs.append(
{"type": "if-then", "start": start, "end": pre_rtarget}
)
# FIXME: add this
# self.fixed_jumps[offset] = rtarget
self.not_continue.add(pre_rtarget)
if rtarget < end and (
code[rtarget] not in (self.opc.END_FINALLY, self.opc.JUMP_ABSOLUTE)
and code[prev_op[pre_rtarget]]
not in (self.opc.POP_EXCEPT, self.opc.END_FINALLY)
):
self.structs.append({"type": "else", "start": rtarget, "end": end})
self.else_start[rtarget] = end
elif self.is_jump_back(pre_rtarget, 0):
if_end = rtarget
self.structs.append(
{"type": "if-then", "start": start, "end": pre_rtarget}
)
self.not_continue.add(pre_rtarget)
elif code[pre_rtarget] in rtarget_break:
self.structs.append({"type": "if-then", "start": start, "end": rtarget})
# It is important to distinguish if this return is inside some sort
# except block return
jump_prev = prev_op[offset]
if self.is_pypy and code[jump_prev] == self.opc.COMPARE_OP:
if self.opc.cmp_op[code[jump_prev + 1]] == "exception-match":
return
if self.version >= (3, 5):
# Python 3.5 may remove as dead code a JUMP
# instruction after a RETURN_VALUE. So we check
# based on seeing SETUP_EXCEPT various places.
if self.version < (3, 6) and code[rtarget] == self.opc.SETUP_EXCEPT:
return
# Check that next instruction after pops and jump is
# not from SETUP_EXCEPT
next_op = rtarget
if code[next_op] == self.opc.POP_BLOCK:
next_op += instruction_size(self.code[next_op], self.opc)
if code[next_op] == self.opc.JUMP_ABSOLUTE:
next_op += instruction_size(self.code[next_op], self.opc)
if next_op in targets:
for try_op in targets[next_op]:
come_from_op = code[try_op]
if (
self.version < (3, 8)
and come_from_op == self.opc.SETUP_EXCEPT
):
return
pass
pass
if self.version >= (3, 4):
self.fixed_jumps[offset] = rtarget
if code[pre_rtarget] == self.opc.RETURN_VALUE:
# If we are at some sort of POP_JUMP_IF and the instruction before was
# COMPARE_OP exception-match, then pre_rtarget is not an end_if
if not (
inst_index > 0
and self.insts[inst_index - 1].argval == "exception-match"
):
self.return_end_ifs.add(pre_rtarget)
else:
self.fixed_jumps[offset] = rtarget
self.not_continue.add(pre_rtarget)
else:
# FIXME: this is very convoluted and based on rather hacky
# empirical evidence. It should go a way when
# we have better control-flow analysis
normal_jump = self.version >= (3, 6)
if self.version[:2] == (3, 5):
j = self.offset2inst_index[target]
if j + 2 < len(self.insts) and self.insts[j + 2].is_jump_target:
normal_jump = self.insts[j + 1].opname == "POP_BLOCK"
if normal_jump:
# For now, we'll only tag forward jump.
if target > offset:
self.fixed_jumps[offset] = target
pass
else:
# FIXME: This is probably a bug in < 3.5 and we should
# instead use the above code. But until we smoke things
# out we'll stick with it.
if rtarget > offset:
self.fixed_jumps[offset] = rtarget
elif self.version < (3, 8) and op == self.opc.SETUP_EXCEPT:
target = self.get_target(offset)
end = self.restrict_to_parent(target, parent)
self.fixed_jumps[offset] = end
elif op == self.opc.POP_EXCEPT:
next_offset = xdis.next_offset(op, self.opc, offset)
target = self.get_target(next_offset)
if target > next_offset:
next_op = code[next_offset]
if (
self.opc.JUMP_ABSOLUTE == next_op
and self.opc.END_FINALLY
!= code[xdis.next_offset(next_op, self.opc, next_offset)]
):
self.fixed_jumps[next_offset] = target
self.except_targets[target] = next_offset
elif op == self.opc.SETUP_FINALLY:
target = self.get_target(offset)
end = self.restrict_to_parent(target, parent)
self.fixed_jumps[offset] = end
elif op in self.jump_if_pop:
target = self.get_target(offset)
if target > offset:
unop_target = self.last_instr(
offset, target, self.opc.JUMP_FORWARD, target
)
if unop_target and code[unop_target + 3] != self.opc.ROT_TWO:
self.fixed_jumps[offset] = unop_target
else:
self.fixed_jumps[offset] = self.restrict_to_parent(target, parent)
pass
pass
elif self.version >= (3, 5):
# 3.5+ has Jump optimization which too often causes RETURN_VALUE to get
# misclassified as RETURN_END_IF. Handle that here.
# In RETURN_VALUE, JUMP_ABSOLUTE, RETURN_VALUE is never RETURN_END_IF
if op == self.opc.RETURN_VALUE:
next_offset = xdis.next_offset(op, self.opc, offset)
if next_offset < len(code) and (
code[next_offset] == self.opc.JUMP_ABSOLUTE
and offset in self.return_end_ifs
):
self.return_end_ifs.remove(offset)
pass
pass
elif op == self.opc.JUMP_FORWARD:
# If we have:
# JUMP_FORWARD x, [non-jump, insns], RETURN_VALUE, x:
# then RETURN_VALUE is not RETURN_END_IF
rtarget = self.get_target(offset)
rtarget_prev = self.prev[rtarget]
if (
code[rtarget_prev] == self.opc.RETURN_VALUE
and rtarget_prev in self.return_end_ifs
):
i = rtarget_prev
while i != offset:
if code[i] in [op3.JUMP_FORWARD, op3.JUMP_ABSOLUTE]:
return
i = self.prev[i]
self.return_end_ifs.remove(rtarget_prev)
pass
return
def is_jump_back(self, offset, extended_arg):
"""
Return True if the code at offset is some sort of jump back.
That is, it is ether "JUMP_FORWARD" or an absolute jump that
goes forward.
"""
if self.code[offset] != self.opc.JUMP_ABSOLUTE:
return False
return offset > self.get_target(offset, extended_arg)
def next_except_jump(self, start):
"""
Return the next jump that was generated by an except SomeException:
construct in a try...except...else clause or None if not found.
"""
if self.code[start] == self.opc.DUP_TOP:
except_match = self.first_instr(
start, len(self.code), self.opc.POP_JUMP_IF_FALSE
)
if except_match:
jmp = self.prev_op[self.get_target(except_match)]
self.ignore_if.add(except_match)
self.not_continue.add(jmp)
return jmp
count_END_FINALLY = 0
count_SETUP_ = 0
for i in self.op_range(start, len(self.code)):
op = self.code[i]
if op == self.opc.END_FINALLY:
if count_END_FINALLY == count_SETUP_:
assert self.code[self.prev_op[i]] in frozenset(
[
self.opc.JUMP_ABSOLUTE,
self.opc.JUMP_FORWARD,
self.opc.RETURN_VALUE,
]
)
self.not_continue.add(self.prev_op[i])
return self.prev_op[i]
count_END_FINALLY += 1
elif op in self.setup_opts_no_loop:
count_SETUP_ += 1
def rem_or(self, start, end, instr, target=None, include_beyond_target=False):
"""
Find offsets of all requested <instr> between <start> and <end>,
optionally <target>ing specified offset, and return list found
<instr> offsets which are not within any POP_JUMP_IF_TRUE jumps.
"""
assert start >= 0 and end <= len(self.code) and start <= end
# Find all offsets of requested instructions
instr_offsets = self.inst_matches(
start, end, instr, target, include_beyond_target
)
# Get all POP_JUMP_IF_TRUE (or) offsets
if self.version[:2] == (3, 0):
jump_true_op = self.opc.JUMP_IF_TRUE
else:
jump_true_op = self.opc.POP_JUMP_IF_TRUE
pjit_offsets = self.inst_matches(start, end, jump_true_op)
filtered = []
for pjit_offset in pjit_offsets:
pjit_tgt = self.get_target(pjit_offset) - 3
for instr_offset in instr_offsets:
if instr_offset <= pjit_offset or instr_offset >= pjit_tgt:
filtered.append(instr_offset)
instr_offsets = filtered
filtered = []
return instr_offsets