# Copyright (c) 2015-2019 Rocky Bernstein # Copyright (c) 2005 by Dan Pascu # Copyright (c) 2000-2002 by hartmut Goebel # Copyright (c) 1999 John Aycock # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . """ A spark grammar for Python 3.x. However instead of terminal symbols being the usual ASCII text, e.g. 5, myvariable, "for", etc. they are CPython Bytecode tokens, e.g. "LOAD_CONST 5", "STORE NAME myvariable", "SETUP_LOOP", etc. If we succeed in creating a parse tree, then we have a Python program that a later phase can turn into a sequence of ASCII text. """ from uncompyle6.scanners.tok import Token from uncompyle6.parser import PythonParser, PythonParserSingle, nop_func from uncompyle6.parsers.treenode import SyntaxTree from spark_parser import DEFAULT_DEBUG as PARSER_DEFAULT_DEBUG from xdis import PYTHON3 class Python3Parser(PythonParser): def __init__(self, debug_parser=PARSER_DEFAULT_DEBUG): self.added_rules = set() super(Python3Parser, self).__init__(SyntaxTree, 'stmts', debug=debug_parser) self.new_rules = set() def p_comprehension3(self, args): """ # Python3 scanner adds LOAD_LISTCOMP. Python3 does list comprehension like # other comprehensions (set, dictionary). # Our "continue" heuristic - in two successive JUMP_BACKS, the first # one may be a continue - sometimes classifies a JUMP_BACK # as a CONTINUE. The two are kind of the same in a comprehension. comp_for ::= expr for_iter store comp_iter CONTINUE comp_for ::= expr for_iter store comp_iter JUMP_BACK list_comp ::= BUILD_LIST_0 list_iter lc_body ::= expr LIST_APPEND list_for ::= expr FOR_ITER store list_iter jb_or_c # This is seen in PyPy, but possibly it appears on other Python 3? list_if ::= expr jmp_false list_iter COME_FROM list_if_not ::= expr jmp_true list_iter COME_FROM jb_or_c ::= JUMP_BACK jb_or_c ::= CONTINUE stmt ::= set_comp_func set_comp_func ::= BUILD_SET_0 LOAD_FAST FOR_ITER store comp_iter JUMP_BACK RETURN_VALUE RETURN_LAST set_comp_func ::= BUILD_SET_0 LOAD_FAST FOR_ITER store comp_iter COME_FROM JUMP_BACK RETURN_VALUE RETURN_LAST comp_body ::= dict_comp_body comp_body ::= set_comp_body dict_comp_body ::= expr expr MAP_ADD set_comp_body ::= expr SET_ADD # See also common Python p_list_comprehension """ def p_dict_comp3(self, args): """" expr ::= dict_comp stmt ::= dict_comp_func dict_comp_func ::= BUILD_MAP_0 LOAD_FAST FOR_ITER store comp_iter JUMP_BACK RETURN_VALUE RETURN_LAST comp_iter ::= comp_if comp_iter ::= comp_if_not comp_if_not ::= expr jmp_true comp_iter comp_iter ::= comp_body """ def p_grammar(self, args): ''' sstmt ::= stmt sstmt ::= ifelsestmtr sstmt ::= return RETURN_LAST return_if_stmts ::= return_if_stmt come_from_opt return_if_stmts ::= _stmts return_if_stmt return_if_stmt ::= ret_expr RETURN_END_IF returns ::= _stmts return_if_stmt stmt ::= break break ::= BREAK_LOOP stmt ::= continue continue ::= CONTINUE continues ::= _stmts lastl_stmt continue continues ::= lastl_stmt continue continues ::= continue kwarg ::= LOAD_CONST expr kwargs ::= kwarg+ classdef ::= build_class store # FIXME: we need to add these because don't detect this properly # in custom rules. Specifically if one of the exprs is CALL_FUNCTION # then we'll mistake that for the final CALL_FUNCTION. # We can fix by triggering on the CALL_FUNCTION op # Python3 introduced LOAD_BUILD_CLASS # Other definitions are in a custom rule build_class ::= LOAD_BUILD_CLASS mkfunc expr call CALL_FUNCTION_3 build_class ::= LOAD_BUILD_CLASS mkfunc expr call expr CALL_FUNCTION_4 stmt ::= classdefdeco classdefdeco ::= classdefdeco1 store expr ::= LOAD_ASSERT assert ::= assert_expr jmp_true LOAD_ASSERT RAISE_VARARGS_1 COME_FROM assert_expr ::= expr assert_expr ::= assert_expr_or assert_expr ::= assert_expr_and assert_expr_or ::= assert_expr jmp_true expr assert_expr_and ::= assert_expr jmp_false expr ifstmt ::= testexpr _ifstmts_jump testexpr ::= testfalse testexpr ::= testtrue testfalse ::= expr jmp_false testtrue ::= expr jmp_true _ifstmts_jump ::= return_if_stmts _ifstmts_jump ::= c_stmts_opt COME_FROM iflaststmt ::= testexpr c_stmts_opt JUMP_ABSOLUTE iflaststmtl ::= testexpr c_stmts_opt JUMP_BACK iflaststmtl ::= testexpr c_stmts_opt JUMP_BACK COME_FROM_LOOP iflaststmtl ::= testexpr c_stmts_opt JUMP_BACK POP_BLOCK # These are used to keep parse tree indices the same jump_forward_else ::= JUMP_FORWARD ELSE jump_absolute_else ::= JUMP_ABSOLUTE ELSE # Note: in if/else kinds of statements, we err on the side # of missing "else" clauses. Therefore we include grammar # rules with and without ELSE. ifelsestmt ::= testexpr c_stmts_opt JUMP_FORWARD else_suite opt_come_from_except ifelsestmt ::= testexpr c_stmts_opt jump_forward_else else_suite _come_froms # ifelsestmt ::= testexpr c_stmts_opt jump_forward_else # pass _come_froms ifelsestmtc ::= testexpr c_stmts_opt JUMP_ABSOLUTE else_suitec ifelsestmtc ::= testexpr c_stmts_opt jump_absolute_else else_suitec ifelsestmtr ::= testexpr return_if_stmts returns ifelsestmtl ::= testexpr c_stmts_opt JUMP_BACK else_suitel ifelsestmtl ::= testexpr c_stmts_opt cf_jump_back else_suitel cf_jump_back ::= COME_FROM JUMP_BACK # FIXME: this feels like a hack. Is it just 1 or two # COME_FROMs? the parsed tree for this and even with just the # one COME_FROM for Python 2.7 seems to associate the # COME_FROM targets from the wrong places # this is nested inside a try_except tryfinallystmt ::= SETUP_FINALLY suite_stmts_opt POP_BLOCK LOAD_CONST COME_FROM_FINALLY suite_stmts_opt END_FINALLY except_handler ::= jmp_abs COME_FROM except_stmts END_FINALLY except_handler ::= jmp_abs COME_FROM_EXCEPT except_stmts END_FINALLY # FIXME: remove this except_handler ::= JUMP_FORWARD COME_FROM except_stmts END_FINALLY COME_FROM except_handler ::= JUMP_FORWARD COME_FROM except_stmts END_FINALLY COME_FROM_EXCEPT except_stmts ::= except_stmts except_stmt except_stmts ::= except_stmt except_stmt ::= except_cond1 except_suite except_stmt ::= except_cond2 except_suite except_stmt ::= except_cond2 except_suite_finalize except_stmt ::= except ## FIXME: what's except_pop_except? except_stmt ::= except_pop_except # Python3 introduced POP_EXCEPT except_suite ::= c_stmts_opt POP_EXCEPT jump_except jump_except ::= JUMP_ABSOLUTE jump_except ::= JUMP_BACK jump_except ::= JUMP_FORWARD jump_except ::= CONTINUE # This is used in Python 3 in # "except ... as e" to remove 'e' after the c_stmts_opt finishes except_suite_finalize ::= SETUP_FINALLY c_stmts_opt except_var_finalize END_FINALLY _jump except_var_finalize ::= POP_BLOCK POP_EXCEPT LOAD_CONST COME_FROM_FINALLY LOAD_CONST store del_stmt except_suite ::= returns except_cond1 ::= DUP_TOP expr COMPARE_OP jmp_false POP_TOP POP_TOP POP_TOP except_cond2 ::= DUP_TOP expr COMPARE_OP jmp_false POP_TOP store POP_TOP except ::= POP_TOP POP_TOP POP_TOP c_stmts_opt POP_EXCEPT _jump except ::= POP_TOP POP_TOP POP_TOP returns jmp_abs ::= JUMP_ABSOLUTE jmp_abs ::= JUMP_BACK withstmt ::= expr SETUP_WITH POP_TOP suite_stmts_opt POP_BLOCK LOAD_CONST COME_FROM_WITH WITH_CLEANUP END_FINALLY withasstmt ::= expr SETUP_WITH store suite_stmts_opt POP_BLOCK LOAD_CONST COME_FROM_WITH WITH_CLEANUP END_FINALLY ## FIXME: Right now we have erroneous jump targets ## This below is probably not correct when the COME_FROM is put in the right place and ::= expr jmp_false expr COME_FROM or ::= expr jmp_true expr COME_FROM # # something like the below is needed when the jump targets are fixed ## or ::= expr JUMP_IF_TRUE_OR_POP COME_FROM expr ## and ::= expr JUMP_IF_FALSE_OR_POP COME_FROM expr ''' def p_misc3(self, args): """ except_handler ::= JUMP_FORWARD COME_FROM_EXCEPT except_stmts END_FINALLY COME_FROM except_handler ::= JUMP_FORWARD COME_FROM_EXCEPT except_stmts END_FINALLY COME_FROM_EXCEPT_CLAUSE for_block ::= l_stmts_opt COME_FROM_LOOP JUMP_BACK for_block ::= l_stmts iflaststmtl ::= testexpr c_stmts_opt """ def p_def_annotations3(self, args): """ # Annotated functions stmt ::= function_def_annotate function_def_annotate ::= mkfunc_annotate store mkfuncdeco0 ::= mkfunc_annotate # This has the annotation value. # LOAD_NAME is used in an annotation type like # int, float, str annotate_arg ::= LOAD_NAME # LOAD_CONST is used in an annotation string annotate_arg ::= expr # This stores the tuple of parameter names # that have been annotated annotate_tuple ::= LOAD_CONST """ def p_come_from3(self, args): """ opt_come_from_except ::= COME_FROM_EXCEPT opt_come_from_except ::= _come_froms opt_come_from_except ::= come_from_except_clauses come_from_except_clauses ::= COME_FROM_EXCEPT_CLAUSE+ """ def p_jump3(self, args): """ jmp_false ::= POP_JUMP_IF_FALSE jmp_true ::= POP_JUMP_IF_TRUE # FIXME: Common with 2.7 ret_and ::= expr JUMP_IF_FALSE_OR_POP ret_expr_or_cond COME_FROM ret_or ::= expr JUMP_IF_TRUE_OR_POP ret_expr_or_cond COME_FROM ret_cond ::= expr POP_JUMP_IF_FALSE expr RETURN_END_IF COME_FROM ret_expr_or_cond or ::= expr JUMP_IF_TRUE_OR_POP expr COME_FROM and ::= expr JUMP_IF_FALSE_OR_POP expr COME_FROM # compare_chained1 is used exclusively in chained_compare compare_chained1 ::= expr DUP_TOP ROT_THREE COMPARE_OP JUMP_IF_FALSE_OR_POP compare_chained1 COME_FROM compare_chained1 ::= expr DUP_TOP ROT_THREE COMPARE_OP JUMP_IF_FALSE_OR_POP compare_chained2 COME_FROM """ def p_stmt3(self, args): """ stmt ::= conditional_lambda stmt ::= conditional_not_lambda conditional_lambda ::= expr jmp_false expr return_if_lambda return_stmt_lambda LAMBDA_MARKER conditional_not_lambda ::= expr jmp_true expr return_if_lambda return_stmt_lambda LAMBDA_MARKER return_stmt_lambda ::= ret_expr RETURN_VALUE_LAMBDA return_if_lambda ::= RETURN_END_IF_LAMBDA stmt ::= return_closure return_closure ::= LOAD_CLOSURE RETURN_VALUE RETURN_LAST stmt ::= whileTruestmt ifelsestmt ::= testexpr c_stmts_opt JUMP_FORWARD else_suite _come_froms """ def p_loop_stmt3(self, args): """ for ::= SETUP_LOOP expr for_iter store for_block POP_BLOCK COME_FROM_LOOP forelsestmt ::= SETUP_LOOP expr for_iter store for_block POP_BLOCK else_suite COME_FROM_LOOP forelselaststmt ::= SETUP_LOOP expr for_iter store for_block POP_BLOCK else_suitec COME_FROM_LOOP forelselaststmtl ::= SETUP_LOOP expr for_iter store for_block POP_BLOCK else_suitel COME_FROM_LOOP whilestmt ::= SETUP_LOOP testexpr l_stmts_opt COME_FROM JUMP_BACK POP_BLOCK COME_FROM_LOOP whilestmt ::= SETUP_LOOP testexpr l_stmts_opt JUMP_BACK POP_BLOCK COME_FROM_LOOP whilestmt ::= SETUP_LOOP testexpr returns POP_BLOCK COME_FROM_LOOP while1elsestmt ::= SETUP_LOOP l_stmts JUMP_BACK else_suitel whileelsestmt ::= SETUP_LOOP testexpr l_stmts_opt JUMP_BACK POP_BLOCK else_suitel COME_FROM_LOOP whileTruestmt ::= SETUP_LOOP l_stmts_opt JUMP_BACK POP_BLOCK COME_FROM_LOOP # FIXME: Python 3.? starts adding branch optimization? Put this starting there. while1stmt ::= SETUP_LOOP l_stmts COME_FROM_LOOP while1stmt ::= SETUP_LOOP l_stmts COME_FROM JUMP_BACK COME_FROM_LOOP while1elsestmt ::= SETUP_LOOP l_stmts JUMP_BACK else_suite COME_FROM_LOOP # FIXME: investigate - can code really produce a NOP? whileTruestmt ::= SETUP_LOOP l_stmts_opt JUMP_BACK NOP COME_FROM_LOOP whileTruestmt ::= SETUP_LOOP l_stmts_opt JUMP_BACK POP_BLOCK NOP COME_FROM_LOOP for ::= SETUP_LOOP expr for_iter store for_block POP_BLOCK NOP COME_FROM_LOOP """ def p_generator_exp3(self, args): ''' load_genexpr ::= LOAD_GENEXPR load_genexpr ::= BUILD_TUPLE_1 LOAD_GENEXPR LOAD_CONST ''' def p_expr3(self, args): """ expr ::= conditionalnot conditionalnot ::= expr jmp_true expr jump_forward_else expr COME_FROM # a JUMP_FORWARD to another JUMP_FORWARD can get turned into # a JUMP_ABSOLUTE with no COME_FROM conditional ::= expr jmp_false expr jump_absolute_else expr # conditional_true are for conditions which always evaluate true # There is dead or non-optional remnants of the condition code though, # and we use that to match on to reconstruct the source more accurately expr ::= conditional_true conditional_true ::= expr JUMP_FORWARD expr COME_FROM """ @staticmethod def call_fn_name(token): """Customize CALL_FUNCTION to add the number of positional arguments""" if token.attr is not None: return '%s_%i' % (token.kind, token.attr) else: return '%s_0' % (token.kind) def custom_build_class_rule(self, opname, i, token, tokens, customize): ''' # Should the first rule be somehow folded into the 2nd one? build_class ::= LOAD_BUILD_CLASS mkfunc LOAD_CLASSNAME {expr}^n-1 CALL_FUNCTION_n LOAD_CONST CALL_FUNCTION_n build_class ::= LOAD_BUILD_CLASS mkfunc expr call CALL_FUNCTION_3 ''' # FIXME: I bet this can be simplified # look for next MAKE_FUNCTION for i in range(i+1, len(tokens)): if tokens[i].kind.startswith('MAKE_FUNCTION'): break elif tokens[i].kind.startswith('MAKE_CLOSURE'): break pass assert i < len(tokens), "build_class needs to find MAKE_FUNCTION or MAKE_CLOSURE" assert tokens[i+1].kind == 'LOAD_CONST', \ "build_class expecting CONST after MAKE_FUNCTION/MAKE_CLOSURE" call_fn_tok = None for i in range(i, len(tokens)): if tokens[i].kind.startswith('CALL_FUNCTION'): call_fn_tok = tokens[i] break if not call_fn_tok: raise RuntimeError("build_class custom rule for %s needs to find CALL_FUNCTION" % opname) # customize build_class rule # FIXME: What's the deal with the two rules? Different Python versions? # Different situations? Note that the above rule is based on the CALL_FUNCTION # token found, while this one doesn't. if self.version < 3.6: call_function = self.call_fn_name(call_fn_tok) args_pos, args_kw = self.get_pos_kw(call_fn_tok) rule = ("build_class ::= LOAD_BUILD_CLASS mkfunc %s" "%s" % (('expr ' * (args_pos - 1) + ('kwarg ' * args_kw)), call_function)) else: # 3.6+ handling call_function = call_fn_tok.kind if call_function.startswith("CALL_FUNCTION_KW"): self.addRule("classdef ::= build_class_kw store", nop_func) rule = ("build_class_kw ::= LOAD_BUILD_CLASS mkfunc %sLOAD_CONST %s" % ('expr ' * (call_fn_tok.attr - 1), call_function)) else: call_function = self.call_fn_name(call_fn_tok) rule = ("build_class ::= LOAD_BUILD_CLASS mkfunc %s%s" % ('expr ' * (call_fn_tok.attr - 1), call_function)) self.addRule(rule, nop_func) return def custom_classfunc_rule(self, opname, token, customize, next_token): """ call ::= expr {expr}^n CALL_FUNCTION_n call ::= expr {expr}^n CALL_FUNCTION_VAR_n call ::= expr {expr}^n CALL_FUNCTION_VAR_KW_n call ::= expr {expr}^n CALL_FUNCTION_KW_n classdefdeco2 ::= LOAD_BUILD_CLASS mkfunc {expr}^n-1 CALL_FUNCTION_n """ args_pos, args_kw = self.get_pos_kw(token) # Additional exprs for * and ** args: # 0 if neither # 1 for CALL_FUNCTION_VAR or CALL_FUNCTION_KW # 2 for * and ** args (CALL_FUNCTION_VAR_KW). # Yes, this computation based on instruction name is a little bit hoaky. nak = ( len(opname)-len('CALL_FUNCTION') ) // 3 token.kind = self.call_fn_name(token) uniq_param = args_kw + args_pos # Note: 3.5+ have subclassed this method; so we don't handle # 'CALL_FUNCTION_VAR' or 'CALL_FUNCTION_EX' here. rule = ('call ::= expr ' + ('pos_arg ' * args_pos) + ('kwarg ' * args_kw) + 'expr ' * nak + token.kind) self.add_unique_rule(rule, token.kind, uniq_param, customize) if 'LOAD_BUILD_CLASS' in self.seen_ops: if (next_token == 'CALL_FUNCTION' and next_token.attr == 1 and args_pos > 1): rule = ('classdefdeco2 ::= LOAD_BUILD_CLASS mkfunc %s%s_%d' % (('expr ' * (args_pos-1)), opname, args_pos)) self.add_unique_rule(rule, token.kind, uniq_param, customize) def add_make_function_rule(self, rule, opname, attr, customize): """Python 3.3 added a an addtional LOAD_CONST before MAKE_FUNCTION and this has an effect on many rules. """ if self.version >= 3.3: new_rule = rule % (('LOAD_CONST ') * 1) else: new_rule = rule % (('LOAD_CONST ') * 0) self.add_unique_rule(new_rule, opname, attr, customize) def customize_grammar_rules(self, tokens, customize): """The base grammar we start out for a Python version even with the subclassing is, well, is pretty base. And we want it that way: lean and mean so that parsing will go faster. Here, we add additional grammar rules based on specific instructions that are in the instruction/token stream. In classes that inherit from from here and other versions, grammar rules may also be removed. For example if we see a pretty rare DELETE_DEREF instruction we'll add the grammar for that. More importantly, here we add grammar rules for instructions that may access a variable number of stack items. CALL_FUNCTION, BUILD_LIST and so on are like this. Without custom rules, there can be an super-exponential number of derivations. See the deparsing paper for an elaboration of this. """ is_pypy = False # For a rough break out on the first word. This may # include instructions that don't need customization, # but we'll do a finer check after the rough breakout. customize_instruction_basenames = frozenset( ('BUILD', 'CALL', 'CONTINUE', 'DELETE', 'GET', 'JUMP', 'LOAD', 'LOOKUP', 'MAKE', 'RETURN', 'RAISE', 'SETUP', 'UNPACK')) # Opcode names in the custom_ops_processed set have rules that get added # unconditionally and the rules are constant. So they need to be done # only once and if we see the opcode a second we don't have to consider # adding more rules. # # Note: BUILD_TUPLE_UNPACK_WITH_CALL gets considered by # default because it starts with BUILD. So we'll set to ignore it from # the start. custom_ops_processed = set(('BUILD_TUPLE_UNPACK_WITH_CALL',)) # A set of instruction operation names that exist in the token stream. # We use this customize the grammar that we create. # 2.6-compatible set comprehensions self.seen_ops = frozenset([t.kind for t in tokens]) self.seen_op_basenames = frozenset([opname[:opname.rfind('_')] for opname in self.seen_ops]) # Loop over instructions adding custom grammar rules based on # a specific instruction seen. if 'PyPy' in customize: is_pypy = True self.addRule(""" stmt ::= assign3_pypy stmt ::= assign2_pypy assign3_pypy ::= expr expr expr store store store assign2_pypy ::= expr expr store store stmt ::= conditional_lambda stmt ::= conditional_not_lambda conditional_lambda ::= expr jmp_false expr return_if_lambda return_lambda LAMBDA_MARKER conditional_not_lambda ::= expr jmp_true expr return_if_lambda return_lambda LAMBDA_MARKER """, nop_func) n = len(tokens) # Determine if we have an iteration CALL_FUNCTION_1. has_get_iter_call_function1 = False max_branches = 0 for i, token in enumerate(tokens): if token == 'GET_ITER' and i < n-2 and self.call_fn_name(tokens[i+1]) == 'CALL_FUNCTION_1': has_get_iter_call_function1 = True max_branches += 1 elif (token == 'GET_AWAITABLE' and i < n-3 and tokens[i+1] == 'LOAD_CONST' and tokens[i+2] == 'YIELD_FROM'): max_branches += 1 if max_branches > 2: break for i, token in enumerate(tokens): opname = token.kind # Do a quick breakout before testing potentially # each of the dozen or so instruction in if elif. if (opname[:opname.find('_')] not in customize_instruction_basenames or opname in custom_ops_processed): continue opname_base = opname[:opname.rfind('_')] # The order of opname listed is roughly sorted below if opname_base == 'BUILD_CONST_KEY_MAP': # This is in 3.6+ kvlist_n = 'expr ' * (token.attr) rule = "dict ::= %sLOAD_CONST %s" % (kvlist_n, opname) self.addRule(rule, nop_func) elif opname.startswith('BUILD_LIST_UNPACK'): v = token.attr rule = 'build_list_unpack ::= %s%s' % ('expr ' * v, opname) self.addRule(rule, nop_func) rule = 'expr ::= build_list_unpack' self.addRule(rule, nop_func) elif opname_base in ('BUILD_MAP', 'BUILD_MAP_UNPACK'): kvlist_n = "kvlist_%s" % token.attr if opname == 'BUILD_MAP_n': # PyPy sometimes has no count. Sigh. rule = ('dict_comp_func ::= BUILD_MAP_n LOAD_FAST FOR_ITER store ' 'comp_iter JUMP_BACK RETURN_VALUE RETURN_LAST') self.add_unique_rule(rule, 'dict_comp_func', 1, customize) kvlist_n = 'kvlist_n' rule = 'kvlist_n ::= kvlist_n kv3' self.add_unique_rule(rule, 'kvlist_n', 0, customize) rule = 'kvlist_n ::=' self.add_unique_rule(rule, 'kvlist_n', 1, customize) rule = "dict ::= BUILD_MAP_n kvlist_n" elif self.version >= 3.5: if not opname.startswith('BUILD_MAP_WITH_CALL'): # FIXME: Use the attr # so this doesn't run into exponential parsing time. if opname.startswith('BUILD_MAP_UNPACK'): self.add_unique_rule(rule, opname, token.attr, customize) rule = 'dict_entry ::= ' + 'expr ' * (token.attr*2) self.add_unique_rule(rule, opname, token.attr, customize) # FIXME: start here. The LHS should be unmap_dict, not dict. # FIXME: really we need a combination of dict_entry-like things. # It just so happens the most common case is not to mix # dictionary comphensions with dictionary, elements if 'LOAD_DICTCOMP' in self.seen_ops: rule = 'dict ::= %s%s' % ('dict_comp ' * token.attr, opname) self.addRule(rule, nop_func) rule = """ expr ::= unmap_dict unmap_dict ::= %s%s """ % ('expr ' * token.attr, opname) else: rule = "%s ::= %s %s" % (kvlist_n, 'expr ' * (token.attr*2), opname) self.add_unique_rule(rule, opname, token.attr, customize) rule = "dict ::= %s" % kvlist_n else: rule = kvlist_n + ' ::= ' + 'expr expr STORE_MAP ' * token.attr self.add_unique_rule(rule, opname, token.attr, customize) rule = "dict ::= %s %s" % (opname, kvlist_n) self.add_unique_rule(rule, opname, token.attr, customize) elif opname.startswith('BUILD_MAP_UNPACK_WITH_CALL'): v = token.attr rule = 'build_map_unpack_with_call ::= %s%s' % ('expr ' * v, opname) self.addRule(rule, nop_func) elif opname.startswith('BUILD_TUPLE_UNPACK_WITH_CALL'): v = token.attr rule = ('starred ::= %s %s' % ('expr ' * v, opname)) self.addRule(rule, nop_func) elif opname_base in ('BUILD_LIST', 'BUILD_SET', 'BUILD_TUPLE', 'BUILD_TUPLE_UNPACK'): v = token.attr is_LOAD_CLOSURE = False if opname_base == 'BUILD_TUPLE': # If is part of a "load_closure", then it is not part of a # "list". is_LOAD_CLOSURE = True for j in range(v): if tokens[i-j-1].kind != 'LOAD_CLOSURE': is_LOAD_CLOSURE = False break if is_LOAD_CLOSURE: rule = ('load_closure ::= %s%s' % (('LOAD_CLOSURE ' * v), opname)) self.add_unique_rule(rule, opname, token.attr, customize) if not is_LOAD_CLOSURE or v == 0: # We do this complicated test to speed up parsing of # pathelogically long literals, especially those over 1024. build_count = token.attr thousands = (build_count//1024) thirty32s = ((build_count//32) % 32) if thirty32s > 0: rule = "expr32 ::=%s" % (' expr' * 32) self.add_unique_rule(rule, opname_base, build_count, customize) pass if thousands > 0: self.add_unique_rule("expr1024 ::=%s" % (' expr32' * 32), opname_base, build_count, customize) pass collection = opname_base[opname_base.find('_')+1:].lower() rule = (('%s ::= ' % collection) + 'expr1024 '*thousands + 'expr32 '*thirty32s + 'expr '*(build_count % 32) + opname) self.add_unique_rules([ "expr ::= %s" % collection, rule], customize) continue continue elif opname_base == 'BUILD_SLICE': if token.attr == 2: self.add_unique_rules([ 'expr ::= build_slice2', 'build_slice2 ::= expr expr BUILD_SLICE_2' ], customize) else: assert token.attr == 3, "BUILD_SLICE value must be 2 or 3; is %s" % v self.add_unique_rules([ 'expr ::= build_slice3', 'build_slice3 ::= expr expr expr BUILD_SLICE_3', ], customize) elif (opname in frozenset(('CALL_FUNCTION', 'CALL_FUNCTION_EX', 'CALL_FUNCTION_EX_KW', 'CALL_FUNCTION_VAR', 'CALL_FUNCTION_VAR_KW')) or opname.startswith('CALL_FUNCTION_KW')): if opname == 'CALL_FUNCTION' and token.attr == 1: rule = """ dict_comp ::= LOAD_DICTCOMP LOAD_CONST MAKE_FUNCTION_0 expr GET_ITER CALL_FUNCTION_1 classdefdeco1 ::= expr classdefdeco2 CALL_FUNCTION_1 """ if self.version < 3.5: rule += """ classdefdeco1 ::= expr classdefdeco1 CALL_FUNCTION_1 """ self.addRule(rule, nop_func) self.custom_classfunc_rule(opname, token, customize, tokens[i+1]) # Note: don't add to custom_ops_processed. elif opname_base == 'CALL_METHOD': # PyPy only - DRY with parse2 args_pos, args_kw = self.get_pos_kw(token) # number of apply equiv arguments: nak = ( len(opname_base)-len('CALL_METHOD') ) // 3 rule = ('call ::= expr ' + ('pos_arg ' * args_pos) + ('kwarg ' * args_kw) + 'expr ' * nak + opname) self.add_unique_rule(rule, opname, token.attr, customize) elif opname == 'CONTINUE': self.addRule('continue ::= CONTINUE', nop_func) custom_ops_processed.add(opname) elif opname == 'CONTINUE_LOOP': self.addRule('continue ::= CONTINUE_LOOP', nop_func) custom_ops_processed.add(opname) elif opname == 'DELETE_ATTR': self.addRule('del_stmt ::= expr DELETE_ATTR', nop_func) custom_ops_processed.add(opname) elif opname == 'DELETE_DEREF': self.addRule(""" stmt ::= del_deref_stmt del_deref_stmt ::= DELETE_DEREF """, nop_func) custom_ops_processed.add(opname) elif opname == 'DELETE_SUBSCR': self.addRule(""" del_stmt ::= delete_subscr delete_subscr ::= expr expr DELETE_SUBSCR """, nop_func) custom_ops_processed.add(opname) elif opname == 'GET_ITER': self.addRule(""" expr ::= get_iter attribute ::= expr GET_ITER """, nop_func) custom_ops_processed.add(opname) elif opname == 'JUMP_IF_NOT_DEBUG': v = token.attr self.addRule(""" stmt ::= assert_pypy stmt ::= assert2_pypy", nop_func) assert_pypy ::= JUMP_IF_NOT_DEBUG assert_expr jmp_true LOAD_ASSERT RAISE_VARARGS_1 COME_FROM assert2_pypy ::= JUMP_IF_NOT_DEBUG assert_expr jmp_true LOAD_ASSERT expr CALL_FUNCTION_1 RAISE_VARARGS_1 COME_FROM assert2_pypy ::= JUMP_IF_NOT_DEBUG assert_expr jmp_true LOAD_ASSERT expr CALL_FUNCTION_1 RAISE_VARARGS_1 COME_FROM, """, nop_func) custom_ops_processed.add(opname) elif opname == 'LOAD_BUILD_CLASS': self.custom_build_class_rule(opname, i, token, tokens, customize) # Note: don't add to custom_ops_processed. elif opname == 'LOAD_CLASSDEREF': # Python 3.4+ self.addRule("expr ::= LOAD_CLASSDEREF", nop_func) custom_ops_processed.add(opname) elif opname == 'LOAD_CLASSNAME': self.addRule("expr ::= LOAD_CLASSNAME", nop_func) custom_ops_processed.add(opname) elif opname == 'LOAD_DICTCOMP': if has_get_iter_call_function1: rule_pat = ("dict_comp ::= LOAD_DICTCOMP %sMAKE_FUNCTION_0 expr " "GET_ITER CALL_FUNCTION_1") self.add_make_function_rule(rule_pat, opname, token.attr, customize) pass custom_ops_processed.add(opname) elif opname == 'LOAD_ATTR': self.addRule(""" expr ::= attribute attribute ::= expr LOAD_ATTR """, nop_func) custom_ops_processed.add(opname) elif opname == 'LOAD_LISTCOMP': self.add_unique_rule("expr ::= listcomp", opname, token.attr, customize) custom_ops_processed.add(opname) elif opname == 'LOAD_SETCOMP': # Should this be generalized and put under MAKE_FUNCTION? if has_get_iter_call_function1: self.addRule("expr ::= set_comp", nop_func) rule_pat = ("set_comp ::= LOAD_SETCOMP %sMAKE_FUNCTION_0 expr " "GET_ITER CALL_FUNCTION_1") self.add_make_function_rule(rule_pat, opname, token.attr, customize) pass custom_ops_processed.add(opname) elif opname == 'LOOKUP_METHOD': # A PyPy speciality - DRY with parse3 self.addRule(""" expr ::= attribute attribute ::= expr LOOKUP_METHOD """, nop_func) custom_ops_processed.add(opname) elif opname.startswith('MAKE_CLOSURE'): # DRY with MAKE_FUNCTION # Note: this probably doesn't handle kwargs proprerly if opname == 'MAKE_CLOSURE_0' and 'LOAD_DICTCOMP' in self.seen_ops: # Is there something general going on here? # Note that 3.6+ doesn't do this, but we'll remove # this rule in parse36.py rule = """ dict_comp ::= load_closure LOAD_DICTCOMP LOAD_CONST MAKE_CLOSURE_0 expr GET_ITER CALL_FUNCTION_1 """ self.addRule(rule, nop_func) args_pos, args_kw, annotate_args = token.attr # FIXME: Fold test into add_make_function_rule if self.version < 3.3: j = 1 else: j = 2 if is_pypy or (i >= j and tokens[i-j] == 'LOAD_LAMBDA'): rule_pat = ('mklambda ::= %sload_closure LOAD_LAMBDA %%s%s' % ('pos_arg ' * args_pos, opname)) self.add_make_function_rule(rule_pat, opname, token.attr, customize) if has_get_iter_call_function1: rule_pat = ("generator_exp ::= %sload_closure load_genexpr %%s%s expr " "GET_ITER CALL_FUNCTION_1" % ('pos_arg ' * args_pos, opname)) self.add_make_function_rule(rule_pat, opname, token.attr, customize) if has_get_iter_call_function1: if (is_pypy or (i >= j and tokens[i-j] == 'LOAD_LISTCOMP')): # In the tokens we saw: # LOAD_LISTCOMP LOAD_CONST MAKE_FUNCTION (>= 3.3) or # LOAD_LISTCOMP MAKE_FUNCTION (< 3.3) or # and have GET_ITER CALL_FUNCTION_1 # Todo: For Pypy we need to modify this slightly rule_pat = ('listcomp ::= %sload_closure LOAD_LISTCOMP %%s%s expr ' 'GET_ITER CALL_FUNCTION_1' % ('pos_arg ' * args_pos, opname)) self.add_make_function_rule(rule_pat, opname, token.attr, customize) if (is_pypy or (i >= j and tokens[i-j] == 'LOAD_SETCOMP')): rule_pat = ('set_comp ::= %sload_closure LOAD_SETCOMP %%s%s expr ' 'GET_ITER CALL_FUNCTION_1' % ('pos_arg ' * args_pos, opname)) self.add_make_function_rule(rule_pat, opname, token.attr, customize) if (is_pypy or (i >= j and tokens[i-j] == 'LOAD_DICTCOMP')): self.add_unique_rule('dict_comp ::= %sload_closure LOAD_DICTCOMP %s ' 'expr GET_ITER CALL_FUNCTION_1' % ('pos_arg ' * args_pos, opname), opname, token.attr, customize) if args_kw > 0: kwargs_str = 'kwargs ' else: kwargs_str = '' # Note order of kwargs and pos args changed between 3.3-3.4 if self.version <= 3.2: rule = ('mkfunc ::= %s%sload_closure LOAD_CONST %s' % (kwargs_str, 'expr ' * args_pos, opname)) elif self.version == 3.3: rule = ('mkfunc ::= %s%sload_closure LOAD_CONST LOAD_CONST %s' % (kwargs_str, 'expr ' * args_pos, opname)) elif self.version >= 3.4: rule = ('mkfunc ::= %s%s load_closure LOAD_CONST LOAD_CONST %s' % ('expr ' * args_pos, kwargs_str, opname)) self.add_unique_rule(rule, opname, token.attr, customize) if args_kw == 0: rule = ('mkfunc ::= %sload_closure load_genexpr %s' % ('pos_arg ' * args_pos, opname)) self.add_unique_rule(rule, opname, token.attr, customize) if self.version < 3.4: rule = ('mkfunc ::= %sload_closure LOAD_CONST %s' % ('expr ' * args_pos, opname)) self.add_unique_rule(rule, opname, token.attr, customize) pass elif opname_base.startswith('MAKE_FUNCTION'): # DRY with MAKE_CLOSURE if self.version >= 3.6: # The semantics of MAKE_FUNCTION in 3.6 are totally different from # before. args_pos, args_kw, annotate_args, closure = token.attr stack_count = args_pos + args_kw + annotate_args if closure: if args_pos: rule = ('mklambda ::= %s%s%s%s' % ('expr ' * stack_count, 'load_closure ' * closure, 'BUILD_TUPLE_1 LOAD_LAMBDA LOAD_CONST ', opname)) else: rule = ('mklambda ::= %s%s%s' % ('load_closure ' * closure, 'LOAD_LAMBDA LOAD_CONST ', opname)) self.add_unique_rule(rule, opname, token.attr, customize) else: rule = ('mklambda ::= %sLOAD_LAMBDA LOAD_CONST %s' % (('expr ' * stack_count), opname)) self.add_unique_rule(rule, opname, token.attr, customize) rule = ('mkfunc ::= %s%s%s%s' % ('expr ' * stack_count, 'load_closure ' * closure, 'LOAD_CONST ' * 2, opname)) self.add_unique_rule(rule, opname, token.attr, customize) if has_get_iter_call_function1: rule_pat = ("generator_exp ::= %sload_genexpr %%s%s expr " "GET_ITER CALL_FUNCTION_1" % ('pos_arg ' * args_pos, opname)) self.add_make_function_rule(rule_pat, opname, token.attr, customize) rule_pat = ("generator_exp ::= %sload_closure load_genexpr %%s%s expr " "GET_ITER CALL_FUNCTION_1" % ('pos_arg ' * args_pos, opname)) self.add_make_function_rule(rule_pat, opname, token.attr, customize) if is_pypy or (i >= 2 and tokens[i-2] == 'LOAD_LISTCOMP'): if self.version >= 3.6: # 3.6+ sometimes bundles all of the # 'exprs' in the rule above into a # tuple. rule_pat = ("listcomp ::= load_closure LOAD_LISTCOMP %%s%s " "expr GET_ITER CALL_FUNCTION_1" % (opname,)) self.add_make_function_rule(rule_pat, opname, token.attr, customize) rule_pat = ("listcomp ::= %sLOAD_LISTCOMP %%s%s expr " "GET_ITER CALL_FUNCTION_1" % ('expr ' * args_pos, opname)) self.add_make_function_rule(rule_pat, opname, token.attr, customize) if is_pypy or (i >= 2 and tokens[i-2] == 'LOAD_LAMBDA'): rule_pat = ('mklambda ::= %s%sLOAD_LAMBDA %%s%s' % (('pos_arg ' * args_pos), ('kwarg ' * args_kw), opname)) self.add_make_function_rule(rule_pat, opname, token.attr, customize) continue if self.version < 3.6: args_pos, args_kw, annotate_args = token.attr else: args_pos, args_kw, annotate_args, closure = token.attr if self.version < 3.3: j = 1 else: j = 2 if has_get_iter_call_function1: rule_pat = ("generator_exp ::= %sload_genexpr %%s%s expr " "GET_ITER CALL_FUNCTION_1" % ('pos_arg ' * args_pos, opname)) self.add_make_function_rule(rule_pat, opname, token.attr, customize) if is_pypy or (i >= j and tokens[i-j] == 'LOAD_LISTCOMP'): # In the tokens we saw: # LOAD_LISTCOMP LOAD_CONST MAKE_FUNCTION (>= 3.3) or # LOAD_LISTCOMP MAKE_FUNCTION (< 3.3) or # and have GET_ITER CALL_FUNCTION_1 # Todo: For Pypy we need to modify this slightly rule_pat = ("listcomp ::= %sLOAD_LISTCOMP %%s%s expr " "GET_ITER CALL_FUNCTION_1" % ('expr ' * args_pos, opname)) self.add_make_function_rule(rule_pat, opname, token.attr, customize) # FIXME: Fold test into add_make_function_rule if is_pypy or (i >= j and tokens[i-j] == 'LOAD_LAMBDA'): rule_pat = ('mklambda ::= %s%sLOAD_LAMBDA %%s%s' % (('pos_arg ' * args_pos), ('kwarg ' * args_kw), opname)) self.add_make_function_rule(rule_pat, opname, token.attr, customize) if args_kw == 0: kwargs = 'no_kwargs' self.add_unique_rule("no_kwargs ::=", opname, token.attr, customize) else: kwargs = 'kwargs' if self.version < 3.3: # positional args after keyword args rule = ('mkfunc ::= %s %s%s%s' % (kwargs, 'pos_arg ' * args_pos, 'LOAD_CONST ', opname)) self.add_unique_rule(rule, opname, token.attr, customize) rule = ('mkfunc ::= %s%s%s' % ('pos_arg ' * args_pos, 'LOAD_CONST ', opname)) elif self.version == 3.3: # positional args after keyword args rule = ('mkfunc ::= %s %s%s%s' % (kwargs, 'pos_arg ' * args_pos, 'LOAD_CONST '*2, opname)) elif self.version > 3.5: # positional args before keyword args rule = ('mkfunc ::= %s%s %s%s' % ('pos_arg ' * args_pos, kwargs, 'LOAD_CONST '*2, opname)) elif self.version > 3.3: # positional args before keyword args rule = ('mkfunc ::= %s%s %s%s' % ('pos_arg ' * args_pos, kwargs, 'LOAD_CONST '*2, opname)) else: rule = ('mkfunc ::= %s%sexpr %s' % (kwargs, 'pos_arg ' * args_pos, opname)) self.add_unique_rule(rule, opname, token.attr, customize) if opname.startswith('MAKE_FUNCTION_A'): if self.version >= 3.6: rule = ('mkfunc_annotate ::= %s%sannotate_tuple LOAD_CONST LOAD_CONST %s' % (('pos_arg ' * (args_pos)), ('call ' * (annotate_args-1)), opname)) self.add_unique_rule(rule, opname, token.attr, customize) rule = ('mkfunc_annotate ::= %s%sannotate_tuple LOAD_CONST LOAD_CONST %s' % (('pos_arg ' * (args_pos)), ('annotate_arg ' * (annotate_args-1)), opname)) if self.version >= 3.3: # Normally we remove EXTENDED_ARG from the opcodes, but in the case of # annotated functions can use the EXTENDED_ARG tuple to signal we have an annotated function. # Yes this is a little hacky rule = ('mkfunc_annotate ::= %s%sannotate_tuple LOAD_CONST LOAD_CONST EXTENDED_ARG %s' % (('pos_arg ' * (args_pos)), ('call ' * (annotate_args-1)), opname)) self.add_unique_rule(rule, opname, token.attr, customize) rule = ('mkfunc_annotate ::= %s%sannotate_tuple LOAD_CONST LOAD_CONST EXTENDED_ARG %s' % (('pos_arg ' * (args_pos)), ('annotate_arg ' * (annotate_args-1)), opname)) else: # See above comment about use of EXTENDED_ARG rule = ('mkfunc_annotate ::= %s%sannotate_tuple LOAD_CONST EXTENDED_ARG %s' % (('pos_arg ' * (args_pos)), ('annotate_arg ' * (annotate_args-1)), opname)) self.add_unique_rule(rule, opname, token.attr, customize) rule = ('mkfunc_annotate ::= %s%sannotate_tuple LOAD_CONST EXTENDED_ARG %s' % (('pos_arg ' * (args_pos)), ('call ' * (annotate_args-1)), opname)) self.addRule(rule, nop_func) elif opname == 'RETURN_VALUE_LAMBDA': self.addRule(""" return_lambda ::= ret_expr RETURN_VALUE_LAMBDA """, nop_func) custom_ops_processed.add(opname) elif opname == 'RAISE_VARARGS_0': self.addRule(""" stmt ::= raise_stmt0 raise_stmt0 ::= RAISE_VARARGS_0 """, nop_func) custom_ops_processed.add(opname) elif opname == 'RAISE_VARARGS_1': self.addRule(""" stmt ::= raise_stmt1 raise_stmt1 ::= expr RAISE_VARARGS_1 """, nop_func) custom_ops_processed.add(opname) elif opname == 'RAISE_VARARGS_2': self.addRule(""" stmt ::= raise_stmt2 raise_stmt2 ::= expr expr RAISE_VARARGS_2 """, nop_func) custom_ops_processed.add(opname) elif opname == 'SETUP_EXCEPT': self.addRule(""" try_except ::= SETUP_EXCEPT suite_stmts_opt POP_BLOCK except_handler opt_come_from_except tryelsestmt ::= SETUP_EXCEPT suite_stmts_opt POP_BLOCK except_handler else_suite come_from_except_clauses tryelsestmt ::= SETUP_EXCEPT suite_stmts_opt POP_BLOCK except_handler else_suite come_froms tryelsestmtl ::= SETUP_EXCEPT suite_stmts_opt POP_BLOCK except_handler else_suitel come_from_except_clauses stmt ::= tryelsestmtl3 tryelsestmtl3 ::= SETUP_EXCEPT suite_stmts_opt POP_BLOCK except_handler COME_FROM else_suitel opt_come_from_except """, nop_func) custom_ops_processed.add(opname) elif opname_base in ('UNPACK_EX',): before_count, after_count = token.attr rule = 'unpack ::= ' + opname + ' store' * (before_count + after_count + 1) self.addRule(rule, nop_func) elif opname_base in ('UNPACK_TUPLE', 'UNPACK_SEQUENCE'): rule = 'unpack ::= ' + opname + ' store' * token.attr self.addRule(rule, nop_func) elif opname_base == 'UNPACK_LIST': rule = 'unpack_list ::= ' + opname + ' store' * token.attr self.addRule(rule, nop_func) custom_ops_processed.add(opname) pass pass self.check_reduce['aug_assign1'] = 'AST' self.check_reduce['aug_assign2'] = 'AST' self.check_reduce['while1stmt'] = 'noAST' self.check_reduce['while1elsestmt'] = 'noAST' self.check_reduce['ifelsestmt'] = 'AST' self.check_reduce['annotate_tuple'] = 'noAST' self.check_reduce['kwarg'] = 'noAST' if self.version < 3.6: # 3.6+ can remove a JUMP_FORWARD which messes up our testing here self.check_reduce['try_except'] = 'AST' # FIXME: remove parser errors caused by the below # self.check_reduce['while1elsestmt'] = 'noAST' return def reduce_is_invalid(self, rule, ast, tokens, first, last): lhs = rule[0] if lhs in ('aug_assign1', 'aug_assign2') and ast[0][0] == 'and': return True elif lhs == 'annotate_tuple': return not isinstance(tokens[first].attr, tuple) elif lhs == 'kwarg': arg = tokens[first].attr if PYTHON3: return not isinstance(arg, str) else: return not (isinstance(arg, str) or isinstance(arg, unicode)) elif lhs == 'while1elsestmt': n = len(tokens) if last == n: # Adjust for fuzziness in parsing last -= 1 if tokens[last] == 'COME_FROM_LOOP': last -= 1 elif tokens[last-1] == 'COME_FROM_LOOP': last -= 2 if tokens[last] in ('JUMP_BACK', 'CONTINUE'): # These indicate inside a loop, but token[last] # should not be in a loop. # FIXME: Not quite right: refine by using target return True # if SETUP_LOOP target spans the else part, then this is # not while1else. Also do for whileTrue? last += 1 while last < n and isinstance(tokens[last].offset, str): last += 1 if last == n: return False # 3.8+ Doesn't have SETUP_LOOP return self.version < 3.8 and tokens[first].attr > tokens[last].offset elif rule == ('try_except', ('SETUP_EXCEPT', 'suite_stmts_opt', 'POP_BLOCK', 'except_handler', 'opt_come_from_except')): come_from_except = ast[-1] if come_from_except[0] == 'COME_FROM': # There should be at last two COME_FROMs, one from an # exception handler and one from the try. Otherwise # we have a try/else. return True pass elif lhs == 'while1stmt': # If there is a fall through to the COME_FROM_LOOP. then this is # not a while 1. So the instruction before should either be a # JUMP_BACK or the instruction before should not be the target of a # jump. (Well that last clause i not quite right; that target could be # from dead code. Ugh. We need a more uniform control flow analysis.) if last == len(tokens) or tokens[last-1] == 'COME_FROM_LOOP': cfl = last-1 else: cfl = last assert tokens[cfl] == 'COME_FROM_LOOP' if tokens[cfl-1] != 'JUMP_BACK': cfl_offset = tokens[cfl-1].offset insn = next(i for i in self.insts if cfl_offset == i.offset) if insn and insn.is_jump_target: return True # Check that the SETUP_LOOP jumps to the offset after the # COME_FROM_LOOP if (0 <= last < len(tokens) and tokens[last] in ('COME_FROM_LOOP', 'JUMP_BACK')): # jump_back should be right before COME_FROM_LOOP? last += 1 while last < len(tokens) and isinstance(tokens[last].offset, str): last += 1 if last < len(tokens): offset = tokens[last].offset assert tokens[first] == 'SETUP_LOOP' if offset != tokens[first].attr: return True return False elif rule == ('ifelsestmt', ('testexpr', 'c_stmts_opt', 'jump_forward_else', 'else_suite', '_come_froms')): # Make sure the highest/smallest "come from" offset comes inside the "if". come_froms = ast[-1] if not isinstance(come_froms, Token): return tokens[first].offset > come_froms[-1].attr return False return False class Python30Parser(Python3Parser): def p_30(self, args): """ jmp_true ::= JUMP_IF_TRUE_OR_POP POP_TOP _ifstmts_jump ::= c_stmts_opt JUMP_FORWARD POP_TOP COME_FROM """ class Python3ParserSingle(Python3Parser, PythonParserSingle): pass def info(args): # Check grammar p = Python3Parser() if len(args) > 0: arg = args[0] if arg == '3.5': from uncompyle6.parser.parse35 import Python35Parser p = Python35Parser() elif arg == '3.3': from uncompyle6.parser.parse33 import Python33Parser p = Python33Parser() elif arg == '3.2': from uncompyle6.parser.parse32 import Python32Parser p = Python32Parser() elif arg == '3.0': p = Python30Parser() p.check_grammar() if len(sys.argv) > 1 and sys.argv[1] == 'dump': print('-' * 50) p.dump_grammar() if __name__ == '__main__': import sys info(sys.argv)