# original version: https://github.com/Wan-Video/Wan2.2/blob/main/wan/modules/vae2_2.py # Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from .vae import AttentionBlock, CausalConv3d, RMS_norm import comfy.ops ops = comfy.ops.disable_weight_init CACHE_T = 2 class Resample(nn.Module): def __init__(self, dim, mode): assert mode in ( "none", "upsample2d", "upsample3d", "downsample2d", "downsample3d", ) super().__init__() self.dim = dim self.mode = mode # layers if mode == "upsample2d": self.resample = nn.Sequential( nn.Upsample(scale_factor=(2.0, 2.0), mode="nearest-exact"), ops.Conv2d(dim, dim, 3, padding=1), ) elif mode == "upsample3d": self.resample = nn.Sequential( nn.Upsample(scale_factor=(2.0, 2.0), mode="nearest-exact"), ops.Conv2d(dim, dim, 3, padding=1), # ops.Conv2d(dim, dim//2, 3, padding=1) ) self.time_conv = CausalConv3d( dim, dim * 2, (3, 1, 1), padding=(1, 0, 0)) elif mode == "downsample2d": self.resample = nn.Sequential( nn.ZeroPad2d((0, 1, 0, 1)), ops.Conv2d(dim, dim, 3, stride=(2, 2))) elif mode == "downsample3d": self.resample = nn.Sequential( nn.ZeroPad2d((0, 1, 0, 1)), ops.Conv2d(dim, dim, 3, stride=(2, 2))) self.time_conv = CausalConv3d( dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0)) else: self.resample = nn.Identity() def forward(self, x, feat_cache=None, feat_idx=[0]): b, c, t, h, w = x.size() if self.mode == "upsample3d": if feat_cache is not None: idx = feat_idx[0] if feat_cache[idx] is None: feat_cache[idx] = "Rep" feat_idx[0] += 1 else: cache_x = x[:, :, -CACHE_T:, :, :].clone() if (cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] != "Rep"): # cache last frame of last two chunk cache_x = torch.cat( [ feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( cache_x.device), cache_x, ], dim=2, ) if (cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] == "Rep"): cache_x = torch.cat( [ torch.zeros_like(cache_x).to(cache_x.device), cache_x ], dim=2, ) if feat_cache[idx] == "Rep": x = self.time_conv(x) else: x = self.time_conv(x, feat_cache[idx]) feat_cache[idx] = cache_x feat_idx[0] += 1 x = x.reshape(b, 2, c, t, h, w) x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]), 3) x = x.reshape(b, c, t * 2, h, w) t = x.shape[2] x = rearrange(x, "b c t h w -> (b t) c h w") x = self.resample(x) x = rearrange(x, "(b t) c h w -> b c t h w", t=t) if self.mode == "downsample3d": if feat_cache is not None: idx = feat_idx[0] if feat_cache[idx] is None: feat_cache[idx] = x.clone() feat_idx[0] += 1 else: cache_x = x[:, :, -1:, :, :].clone() x = self.time_conv( torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2)) feat_cache[idx] = cache_x feat_idx[0] += 1 return x class ResidualBlock(nn.Module): def __init__(self, in_dim, out_dim, dropout=0.0): super().__init__() self.in_dim = in_dim self.out_dim = out_dim # layers self.residual = nn.Sequential( RMS_norm(in_dim, images=False), nn.SiLU(), CausalConv3d(in_dim, out_dim, 3, padding=1), RMS_norm(out_dim, images=False), nn.SiLU(), nn.Dropout(dropout), CausalConv3d(out_dim, out_dim, 3, padding=1), ) self.shortcut = ( CausalConv3d(in_dim, out_dim, 1) if in_dim != out_dim else nn.Identity()) def forward(self, x, feat_cache=None, feat_idx=[0]): old_x = x for layer in self.residual: if isinstance(layer, CausalConv3d) and feat_cache is not None: idx = feat_idx[0] cache_x = x[:, :, -CACHE_T:, :, :].clone() if cache_x.shape[2] < 2 and feat_cache[idx] is not None: # cache last frame of last two chunk cache_x = torch.cat( [ feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( cache_x.device), cache_x, ], dim=2, ) x = layer(x, feat_cache[idx]) feat_cache[idx] = cache_x feat_idx[0] += 1 else: x = layer(x) return x + self.shortcut(old_x) def patchify(x, patch_size): if patch_size == 1: return x if x.dim() == 4: x = rearrange( x, "b c (h q) (w r) -> b (c r q) h w", q=patch_size, r=patch_size) elif x.dim() == 5: x = rearrange( x, "b c f (h q) (w r) -> b (c r q) f h w", q=patch_size, r=patch_size, ) else: raise ValueError(f"Invalid input shape: {x.shape}") return x def unpatchify(x, patch_size): if patch_size == 1: return x if x.dim() == 4: x = rearrange( x, "b (c r q) h w -> b c (h q) (w r)", q=patch_size, r=patch_size) elif x.dim() == 5: x = rearrange( x, "b (c r q) f h w -> b c f (h q) (w r)", q=patch_size, r=patch_size, ) return x class AvgDown3D(nn.Module): def __init__( self, in_channels, out_channels, factor_t, factor_s=1, ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.factor_t = factor_t self.factor_s = factor_s self.factor = self.factor_t * self.factor_s * self.factor_s assert in_channels * self.factor % out_channels == 0 self.group_size = in_channels * self.factor // out_channels def forward(self, x: torch.Tensor) -> torch.Tensor: pad_t = (self.factor_t - x.shape[2] % self.factor_t) % self.factor_t pad = (0, 0, 0, 0, pad_t, 0) x = F.pad(x, pad) B, C, T, H, W = x.shape x = x.view( B, C, T // self.factor_t, self.factor_t, H // self.factor_s, self.factor_s, W // self.factor_s, self.factor_s, ) x = x.permute(0, 1, 3, 5, 7, 2, 4, 6).contiguous() x = x.view( B, C * self.factor, T // self.factor_t, H // self.factor_s, W // self.factor_s, ) x = x.view( B, self.out_channels, self.group_size, T // self.factor_t, H // self.factor_s, W // self.factor_s, ) x = x.mean(dim=2) return x class DupUp3D(nn.Module): def __init__( self, in_channels: int, out_channels: int, factor_t, factor_s=1, ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.factor_t = factor_t self.factor_s = factor_s self.factor = self.factor_t * self.factor_s * self.factor_s assert out_channels * self.factor % in_channels == 0 self.repeats = out_channels * self.factor // in_channels def forward(self, x: torch.Tensor, first_chunk=False) -> torch.Tensor: x = x.repeat_interleave(self.repeats, dim=1) x = x.view( x.size(0), self.out_channels, self.factor_t, self.factor_s, self.factor_s, x.size(2), x.size(3), x.size(4), ) x = x.permute(0, 1, 5, 2, 6, 3, 7, 4).contiguous() x = x.view( x.size(0), self.out_channels, x.size(2) * self.factor_t, x.size(4) * self.factor_s, x.size(6) * self.factor_s, ) if first_chunk: x = x[:, :, self.factor_t - 1:, :, :] return x class Down_ResidualBlock(nn.Module): def __init__(self, in_dim, out_dim, dropout, mult, temperal_downsample=False, down_flag=False): super().__init__() # Shortcut path with downsample self.avg_shortcut = AvgDown3D( in_dim, out_dim, factor_t=2 if temperal_downsample else 1, factor_s=2 if down_flag else 1, ) # Main path with residual blocks and downsample downsamples = [] for _ in range(mult): downsamples.append(ResidualBlock(in_dim, out_dim, dropout)) in_dim = out_dim # Add the final downsample block if down_flag: mode = "downsample3d" if temperal_downsample else "downsample2d" downsamples.append(Resample(out_dim, mode=mode)) self.downsamples = nn.Sequential(*downsamples) def forward(self, x, feat_cache=None, feat_idx=[0]): x_copy = x for module in self.downsamples: x = module(x, feat_cache, feat_idx) return x + self.avg_shortcut(x_copy) class Up_ResidualBlock(nn.Module): def __init__(self, in_dim, out_dim, dropout, mult, temperal_upsample=False, up_flag=False): super().__init__() # Shortcut path with upsample if up_flag: self.avg_shortcut = DupUp3D( in_dim, out_dim, factor_t=2 if temperal_upsample else 1, factor_s=2 if up_flag else 1, ) else: self.avg_shortcut = None # Main path with residual blocks and upsample upsamples = [] for _ in range(mult): upsamples.append(ResidualBlock(in_dim, out_dim, dropout)) in_dim = out_dim # Add the final upsample block if up_flag: mode = "upsample3d" if temperal_upsample else "upsample2d" upsamples.append(Resample(out_dim, mode=mode)) self.upsamples = nn.Sequential(*upsamples) def forward(self, x, feat_cache=None, feat_idx=[0], first_chunk=False): x_main = x for module in self.upsamples: x_main = module(x_main, feat_cache, feat_idx) if self.avg_shortcut is not None: x_shortcut = self.avg_shortcut(x, first_chunk) return x_main + x_shortcut else: return x_main class Encoder3d(nn.Module): def __init__( self, dim=128, z_dim=4, dim_mult=[1, 2, 4, 4], num_res_blocks=2, attn_scales=[], temperal_downsample=[True, True, False], dropout=0.0, ): super().__init__() self.dim = dim self.z_dim = z_dim self.dim_mult = dim_mult self.num_res_blocks = num_res_blocks self.attn_scales = attn_scales self.temperal_downsample = temperal_downsample # dimensions dims = [dim * u for u in [1] + dim_mult] scale = 1.0 # init block self.conv1 = CausalConv3d(12, dims[0], 3, padding=1) # downsample blocks downsamples = [] for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])): t_down_flag = ( temperal_downsample[i] if i < len(temperal_downsample) else False) downsamples.append( Down_ResidualBlock( in_dim=in_dim, out_dim=out_dim, dropout=dropout, mult=num_res_blocks, temperal_downsample=t_down_flag, down_flag=i != len(dim_mult) - 1, )) scale /= 2.0 self.downsamples = nn.Sequential(*downsamples) # middle blocks self.middle = nn.Sequential( ResidualBlock(out_dim, out_dim, dropout), AttentionBlock(out_dim), ResidualBlock(out_dim, out_dim, dropout), ) # # output blocks self.head = nn.Sequential( RMS_norm(out_dim, images=False), nn.SiLU(), CausalConv3d(out_dim, z_dim, 3, padding=1), ) def forward(self, x, feat_cache=None, feat_idx=[0]): if feat_cache is not None: idx = feat_idx[0] cache_x = x[:, :, -CACHE_T:, :, :].clone() if cache_x.shape[2] < 2 and feat_cache[idx] is not None: cache_x = torch.cat( [ feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( cache_x.device), cache_x, ], dim=2, ) x = self.conv1(x, feat_cache[idx]) feat_cache[idx] = cache_x feat_idx[0] += 1 else: x = self.conv1(x) ## downsamples for layer in self.downsamples: if feat_cache is not None: x = layer(x, feat_cache, feat_idx) else: x = layer(x) ## middle for layer in self.middle: if isinstance(layer, ResidualBlock) and feat_cache is not None: x = layer(x, feat_cache, feat_idx) else: x = layer(x) ## head for layer in self.head: if isinstance(layer, CausalConv3d) and feat_cache is not None: idx = feat_idx[0] cache_x = x[:, :, -CACHE_T:, :, :].clone() if cache_x.shape[2] < 2 and feat_cache[idx] is not None: cache_x = torch.cat( [ feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( cache_x.device), cache_x, ], dim=2, ) x = layer(x, feat_cache[idx]) feat_cache[idx] = cache_x feat_idx[0] += 1 else: x = layer(x) return x class Decoder3d(nn.Module): def __init__( self, dim=128, z_dim=4, dim_mult=[1, 2, 4, 4], num_res_blocks=2, attn_scales=[], temperal_upsample=[False, True, True], dropout=0.0, ): super().__init__() self.dim = dim self.z_dim = z_dim self.dim_mult = dim_mult self.num_res_blocks = num_res_blocks self.attn_scales = attn_scales self.temperal_upsample = temperal_upsample # dimensions dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]] # init block self.conv1 = CausalConv3d(z_dim, dims[0], 3, padding=1) # middle blocks self.middle = nn.Sequential( ResidualBlock(dims[0], dims[0], dropout), AttentionBlock(dims[0]), ResidualBlock(dims[0], dims[0], dropout), ) # upsample blocks upsamples = [] for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])): t_up_flag = temperal_upsample[i] if i < len( temperal_upsample) else False upsamples.append( Up_ResidualBlock( in_dim=in_dim, out_dim=out_dim, dropout=dropout, mult=num_res_blocks + 1, temperal_upsample=t_up_flag, up_flag=i != len(dim_mult) - 1, )) self.upsamples = nn.Sequential(*upsamples) # output blocks self.head = nn.Sequential( RMS_norm(out_dim, images=False), nn.SiLU(), CausalConv3d(out_dim, 12, 3, padding=1), ) def forward(self, x, feat_cache=None, feat_idx=[0], first_chunk=False): if feat_cache is not None: idx = feat_idx[0] cache_x = x[:, :, -CACHE_T:, :, :].clone() if cache_x.shape[2] < 2 and feat_cache[idx] is not None: cache_x = torch.cat( [ feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( cache_x.device), cache_x, ], dim=2, ) x = self.conv1(x, feat_cache[idx]) feat_cache[idx] = cache_x feat_idx[0] += 1 else: x = self.conv1(x) for layer in self.middle: if isinstance(layer, ResidualBlock) and feat_cache is not None: x = layer(x, feat_cache, feat_idx) else: x = layer(x) ## upsamples for layer in self.upsamples: if feat_cache is not None: x = layer(x, feat_cache, feat_idx, first_chunk) else: x = layer(x) ## head for layer in self.head: if isinstance(layer, CausalConv3d) and feat_cache is not None: idx = feat_idx[0] cache_x = x[:, :, -CACHE_T:, :, :].clone() if cache_x.shape[2] < 2 and feat_cache[idx] is not None: cache_x = torch.cat( [ feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to( cache_x.device), cache_x, ], dim=2, ) x = layer(x, feat_cache[idx]) feat_cache[idx] = cache_x feat_idx[0] += 1 else: x = layer(x) return x def count_conv3d(model): count = 0 for m in model.modules(): if isinstance(m, CausalConv3d): count += 1 return count class WanVAE(nn.Module): def __init__( self, dim=160, dec_dim=256, z_dim=16, dim_mult=[1, 2, 4, 4], num_res_blocks=2, attn_scales=[], temperal_downsample=[True, True, False], dropout=0.0, ): super().__init__() self.dim = dim self.z_dim = z_dim self.dim_mult = dim_mult self.num_res_blocks = num_res_blocks self.attn_scales = attn_scales self.temperal_downsample = temperal_downsample self.temperal_upsample = temperal_downsample[::-1] # modules self.encoder = Encoder3d( dim, z_dim * 2, dim_mult, num_res_blocks, attn_scales, self.temperal_downsample, dropout, ) self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1) self.conv2 = CausalConv3d(z_dim, z_dim, 1) self.decoder = Decoder3d( dec_dim, z_dim, dim_mult, num_res_blocks, attn_scales, self.temperal_upsample, dropout, ) def encode(self, x): self.clear_cache() x = patchify(x, patch_size=2) t = x.shape[2] iter_ = 1 + (t - 1) // 4 for i in range(iter_): self._enc_conv_idx = [0] if i == 0: out = self.encoder( x[:, :, :1, :, :], feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx, ) else: out_ = self.encoder( x[:, :, 1 + 4 * (i - 1):1 + 4 * i, :, :], feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx, ) out = torch.cat([out, out_], 2) mu, log_var = self.conv1(out).chunk(2, dim=1) self.clear_cache() return mu def decode(self, z): self.clear_cache() iter_ = z.shape[2] x = self.conv2(z) for i in range(iter_): self._conv_idx = [0] if i == 0: out = self.decoder( x[:, :, i:i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx, first_chunk=True, ) else: out_ = self.decoder( x[:, :, i:i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx, ) out = torch.cat([out, out_], 2) out = unpatchify(out, patch_size=2) self.clear_cache() return out def reparameterize(self, mu, log_var): std = torch.exp(0.5 * log_var) eps = torch.randn_like(std) return eps * std + mu def sample(self, imgs, deterministic=False): mu, log_var = self.encode(imgs) if deterministic: return mu std = torch.exp(0.5 * log_var.clamp(-30.0, 20.0)) return mu + std * torch.randn_like(std) def clear_cache(self): self._conv_num = count_conv3d(self.decoder) self._conv_idx = [0] self._feat_map = [None] * self._conv_num # cache encode self._enc_conv_num = count_conv3d(self.encoder) self._enc_conv_idx = [0] self._enc_feat_map = [None] * self._enc_conv_num