from io import BytesIO import numpy from PIL import Image import pytest from pytest import fixture import time import torch from typing import Union, Dict import json import subprocess import websocket #NOTE: websocket-client (https://github.com/websocket-client/websocket-client) import uuid import urllib.request import urllib.parse import urllib.error from comfy_execution.graph_utils import GraphBuilder, Node def run_warmup(client, prefix="warmup"): """Run a simple workflow to warm up the server.""" warmup_g = GraphBuilder(prefix=prefix) warmup_image = warmup_g.node("StubImage", content="BLACK", height=32, width=32, batch_size=1) warmup_g.node("PreviewImage", images=warmup_image.out(0)) client.run(warmup_g) class RunResult: def __init__(self, prompt_id: str): self.outputs: Dict[str,Dict] = {} self.runs: Dict[str,bool] = {} self.cached: Dict[str,bool] = {} self.prompt_id: str = prompt_id def get_output(self, node: Node): return self.outputs.get(node.id, None) def did_run(self, node: Node): return self.runs.get(node.id, False) def was_cached(self, node: Node): return self.cached.get(node.id, False) def was_executed(self, node: Node): """Returns True if node was either run or cached""" return self.did_run(node) or self.was_cached(node) def get_images(self, node: Node): output = self.get_output(node) if output is None: return [] return output.get('image_objects', []) def get_prompt_id(self): return self.prompt_id class ComfyClient: def __init__(self): self.test_name = "" def connect(self, listen:str = '127.0.0.1', port:Union[str,int] = 8188, client_id: str = str(uuid.uuid4()) ): self.client_id = client_id self.server_address = f"{listen}:{port}" ws = websocket.WebSocket() ws.connect("ws://{}/ws?clientId={}".format(self.server_address, self.client_id)) self.ws = ws def queue_prompt(self, prompt, partial_execution_targets=None): p = {"prompt": prompt, "client_id": self.client_id} if partial_execution_targets is not None: p["partial_execution_targets"] = partial_execution_targets data = json.dumps(p).encode('utf-8') req = urllib.request.Request("http://{}/prompt".format(self.server_address), data=data) return json.loads(urllib.request.urlopen(req).read()) def get_image(self, filename, subfolder, folder_type): data = {"filename": filename, "subfolder": subfolder, "type": folder_type} url_values = urllib.parse.urlencode(data) with urllib.request.urlopen("http://{}/view?{}".format(self.server_address, url_values)) as response: return response.read() def get_history(self, prompt_id): with urllib.request.urlopen("http://{}/history/{}".format(self.server_address, prompt_id)) as response: return json.loads(response.read()) def set_test_name(self, name): self.test_name = name def run(self, graph, partial_execution_targets=None): prompt = graph.finalize() for node in graph.nodes.values(): if node.class_type == 'SaveImage': node.inputs['filename_prefix'] = self.test_name prompt_id = self.queue_prompt(prompt, partial_execution_targets)['prompt_id'] result = RunResult(prompt_id) while True: out = self.ws.recv() if isinstance(out, str): message = json.loads(out) if message['type'] == 'executing': data = message['data'] if data['prompt_id'] != prompt_id: continue if data['node'] is None: break result.runs[data['node']] = True elif message['type'] == 'execution_error': raise Exception(message['data']) elif message['type'] == 'execution_cached': if message['data']['prompt_id'] == prompt_id: cached_nodes = message['data'].get('nodes', []) for node_id in cached_nodes: result.cached[node_id] = True history = self.get_history(prompt_id)[prompt_id] for node_id in history['outputs']: node_output = history['outputs'][node_id] result.outputs[node_id] = node_output images_output = [] if 'images' in node_output: for image in node_output['images']: image_data = self.get_image(image['filename'], image['subfolder'], image['type']) image_obj = Image.open(BytesIO(image_data)) images_output.append(image_obj) node_output['image_objects'] = images_output return result # # Loop through these variables # @pytest.mark.execution class TestExecution: # # Initialize server and client # @fixture(scope="class", autouse=True, params=[ # (use_lru, lru_size) (False, 0), (True, 0), (True, 100), ]) def _server(self, args_pytest, request): # Start server pargs = [ 'python','main.py', '--output-directory', args_pytest["output_dir"], '--listen', args_pytest["listen"], '--port', str(args_pytest["port"]), '--extra-model-paths-config', 'tests/inference/extra_model_paths.yaml', '--cpu', ] use_lru, lru_size = request.param if use_lru: pargs += ['--cache-lru', str(lru_size)] print("Running server with args:", pargs) # noqa: T201 p = subprocess.Popen(pargs) yield p.kill() torch.cuda.empty_cache() def start_client(self, listen:str, port:int): # Start client comfy_client = ComfyClient() # Connect to server (with retries) n_tries = 5 for i in range(n_tries): time.sleep(4) try: comfy_client.connect(listen=listen, port=port) except ConnectionRefusedError as e: print(e) # noqa: T201 print(f"({i+1}/{n_tries}) Retrying...") # noqa: T201 else: break return comfy_client @fixture(scope="class", autouse=True) def shared_client(self, args_pytest, _server): client = self.start_client(args_pytest["listen"], args_pytest["port"]) yield client del client torch.cuda.empty_cache() @fixture def client(self, shared_client, request): shared_client.set_test_name(f"execution[{request.node.name}]") yield shared_client @fixture def builder(self, request): yield GraphBuilder(prefix=request.node.name) def test_lazy_input(self, client: ComfyClient, builder: GraphBuilder): g = builder input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1) input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1) mask = g.node("StubMask", value=0.0, height=512, width=512, batch_size=1) lazy_mix = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0)) output = g.node("SaveImage", images=lazy_mix.out(0)) result = client.run(g) result_image = result.get_images(output)[0] assert numpy.array(result_image).any() == 0, "Image should be black" assert result.did_run(input1) assert not result.did_run(input2) assert result.did_run(mask) assert result.did_run(lazy_mix) def test_full_cache(self, client: ComfyClient, builder: GraphBuilder): g = builder input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1) input2 = g.node("StubImage", content="NOISE", height=512, width=512, batch_size=1) mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1) lazy_mix = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0)) g.node("SaveImage", images=lazy_mix.out(0)) client.run(g) result2 = client.run(g) for node_id, node in g.nodes.items(): assert not result2.did_run(node), f"Node {node_id} ran, but should have been cached" def test_partial_cache(self, client: ComfyClient, builder: GraphBuilder): g = builder input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1) input2 = g.node("StubImage", content="NOISE", height=512, width=512, batch_size=1) mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1) lazy_mix = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0)) g.node("SaveImage", images=lazy_mix.out(0)) client.run(g) mask.inputs['value'] = 0.4 result2 = client.run(g) assert not result2.did_run(input1), "Input1 should have been cached" assert not result2.did_run(input2), "Input2 should have been cached" def test_error(self, client: ComfyClient, builder: GraphBuilder): g = builder input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1) # Different size of the two images input2 = g.node("StubImage", content="NOISE", height=256, width=256, batch_size=1) mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1) lazy_mix = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0)) g.node("SaveImage", images=lazy_mix.out(0)) try: client.run(g) assert False, "Should have raised an error" except Exception as e: assert 'prompt_id' in e.args[0], f"Did not get back a proper error message: {e}" @pytest.mark.parametrize("test_value, expect_error", [ (5, True), ("foo", True), (5.0, False), ]) def test_validation_error_literal(self, test_value, expect_error, client: ComfyClient, builder: GraphBuilder): g = builder validation1 = g.node("TestCustomValidation1", input1=test_value, input2=3.0) g.node("SaveImage", images=validation1.out(0)) if expect_error: with pytest.raises(urllib.error.HTTPError): client.run(g) else: client.run(g) @pytest.mark.parametrize("test_type, test_value", [ ("StubInt", 5), ("StubMask", 5.0) ]) def test_validation_error_edge1(self, test_type, test_value, client: ComfyClient, builder: GraphBuilder): g = builder stub = g.node(test_type, value=test_value) validation1 = g.node("TestCustomValidation1", input1=stub.out(0), input2=3.0) g.node("SaveImage", images=validation1.out(0)) with pytest.raises(urllib.error.HTTPError): client.run(g) @pytest.mark.parametrize("test_type, test_value, expect_error", [ ("StubInt", 5, True), ("StubFloat", 5.0, False) ]) def test_validation_error_edge2(self, test_type, test_value, expect_error, client: ComfyClient, builder: GraphBuilder): g = builder stub = g.node(test_type, value=test_value) validation2 = g.node("TestCustomValidation2", input1=stub.out(0), input2=3.0) g.node("SaveImage", images=validation2.out(0)) if expect_error: with pytest.raises(urllib.error.HTTPError): client.run(g) else: client.run(g) @pytest.mark.parametrize("test_type, test_value, expect_error", [ ("StubInt", 5, True), ("StubFloat", 5.0, False) ]) def test_validation_error_edge3(self, test_type, test_value, expect_error, client: ComfyClient, builder: GraphBuilder): g = builder stub = g.node(test_type, value=test_value) validation3 = g.node("TestCustomValidation3", input1=stub.out(0), input2=3.0) g.node("SaveImage", images=validation3.out(0)) if expect_error: with pytest.raises(urllib.error.HTTPError): client.run(g) else: client.run(g) @pytest.mark.parametrize("test_type, test_value, expect_error", [ ("StubInt", 5, True), ("StubFloat", 5.0, False) ]) def test_validation_error_edge4(self, test_type, test_value, expect_error, client: ComfyClient, builder: GraphBuilder): g = builder stub = g.node(test_type, value=test_value) validation4 = g.node("TestCustomValidation4", input1=stub.out(0), input2=3.0) g.node("SaveImage", images=validation4.out(0)) if expect_error: with pytest.raises(urllib.error.HTTPError): client.run(g) else: client.run(g) @pytest.mark.parametrize("test_value1, test_value2, expect_error", [ (0.0, 0.5, False), (0.0, 5.0, False), (0.0, 7.0, True) ]) def test_validation_error_kwargs(self, test_value1, test_value2, expect_error, client: ComfyClient, builder: GraphBuilder): g = builder validation5 = g.node("TestCustomValidation5", input1=test_value1, input2=test_value2) g.node("SaveImage", images=validation5.out(0)) if expect_error: with pytest.raises(urllib.error.HTTPError): client.run(g) else: client.run(g) def test_cycle_error(self, client: ComfyClient, builder: GraphBuilder): g = builder input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1) input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1) mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1) lazy_mix1 = g.node("TestLazyMixImages", image1=input1.out(0), mask=mask.out(0)) lazy_mix2 = g.node("TestLazyMixImages", image1=lazy_mix1.out(0), image2=input2.out(0), mask=mask.out(0)) g.node("SaveImage", images=lazy_mix2.out(0)) # When the cycle exists on initial submission, it should raise a validation error with pytest.raises(urllib.error.HTTPError): client.run(g) def test_dynamic_cycle_error(self, client: ComfyClient, builder: GraphBuilder): g = builder input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1) input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1) generator = g.node("TestDynamicDependencyCycle", input1=input1.out(0), input2=input2.out(0)) g.node("SaveImage", images=generator.out(0)) # When the cycle is in a graph that is generated dynamically, it should raise a runtime error try: client.run(g) assert False, "Should have raised an error" except Exception as e: assert 'prompt_id' in e.args[0], f"Did not get back a proper error message: {e}" assert e.args[0]['node_id'] == generator.id, "Error should have been on the generator node" def test_missing_node_error(self, client: ComfyClient, builder: GraphBuilder): g = builder input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1) input2 = g.node("StubImage", id="removeme", content="WHITE", height=512, width=512, batch_size=1) input3 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1) mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1) mix1 = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0)) mix2 = g.node("TestLazyMixImages", image1=input1.out(0), image2=input3.out(0), mask=mask.out(0)) # We have multiple outputs. The first is invalid, but the second is valid g.node("SaveImage", images=mix1.out(0)) g.node("SaveImage", images=mix2.out(0)) g.remove_node("removeme") client.run(g) # Add back in the missing node to make sure the error doesn't break the server input2 = g.node("StubImage", id="removeme", content="WHITE", height=512, width=512, batch_size=1) client.run(g) def test_custom_is_changed(self, client: ComfyClient, builder: GraphBuilder): g = builder # Creating the nodes in this specific order previously caused a bug save = g.node("SaveImage") is_changed = g.node("TestCustomIsChanged", should_change=False) input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1) save.set_input('images', is_changed.out(0)) is_changed.set_input('image', input1.out(0)) result1 = client.run(g) result2 = client.run(g) is_changed.set_input('should_change', True) result3 = client.run(g) result4 = client.run(g) assert result1.did_run(is_changed), "is_changed should have been run" assert not result2.did_run(is_changed), "is_changed should have been cached" assert result3.did_run(is_changed), "is_changed should have been re-run" assert result4.did_run(is_changed), "is_changed should not have been cached" def test_undeclared_inputs(self, client: ComfyClient, builder: GraphBuilder): g = builder input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1) input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1) input3 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1) input4 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1) average = g.node("TestVariadicAverage", input1=input1.out(0), input2=input2.out(0), input3=input3.out(0), input4=input4.out(0)) output = g.node("SaveImage", images=average.out(0)) result = client.run(g) result_image = result.get_images(output)[0] expected = 255 // 4 assert numpy.array(result_image).min() == expected and numpy.array(result_image).max() == expected, "Image should be grey" def test_for_loop(self, client: ComfyClient, builder: GraphBuilder): g = builder iterations = 4 input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1) input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1) is_changed = g.node("TestCustomIsChanged", should_change=True, image=input2.out(0)) for_open = g.node("TestForLoopOpen", remaining=iterations, initial_value1=is_changed.out(0)) average = g.node("TestVariadicAverage", input1=input1.out(0), input2=for_open.out(2)) for_close = g.node("TestForLoopClose", flow_control=for_open.out(0), initial_value1=average.out(0)) output = g.node("SaveImage", images=for_close.out(0)) for iterations in range(1, 5): for_open.set_input('remaining', iterations) result = client.run(g) result_image = result.get_images(output)[0] expected = 255 // (2 ** iterations) assert numpy.array(result_image).min() == expected and numpy.array(result_image).max() == expected, "Image should be grey" assert result.did_run(is_changed) def test_mixed_expansion_returns(self, client: ComfyClient, builder: GraphBuilder): g = builder val_list = g.node("TestMakeListNode", value1=0.1, value2=0.2, value3=0.3) mixed = g.node("TestMixedExpansionReturns", input1=val_list.out(0)) output_dynamic = g.node("SaveImage", images=mixed.out(0)) output_literal = g.node("SaveImage", images=mixed.out(1)) result = client.run(g) images_dynamic = result.get_images(output_dynamic) assert len(images_dynamic) == 3, "Should have 2 images" assert numpy.array(images_dynamic[0]).min() == 25 and numpy.array(images_dynamic[0]).max() == 25, "First image should be 0.1" assert numpy.array(images_dynamic[1]).min() == 51 and numpy.array(images_dynamic[1]).max() == 51, "Second image should be 0.2" assert numpy.array(images_dynamic[2]).min() == 76 and numpy.array(images_dynamic[2]).max() == 76, "Third image should be 0.3" images_literal = result.get_images(output_literal) assert len(images_literal) == 3, "Should have 2 images" for i in range(3): assert numpy.array(images_literal[i]).min() == 255 and numpy.array(images_literal[i]).max() == 255, "All images should be white" def test_mixed_lazy_results(self, client: ComfyClient, builder: GraphBuilder): g = builder val_list = g.node("TestMakeListNode", value1=0.0, value2=0.5, value3=1.0) mask = g.node("StubMask", value=val_list.out(0), height=512, width=512, batch_size=1) input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1) input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1) mix = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0)) rebatch = g.node("RebatchImages", images=mix.out(0), batch_size=3) output = g.node("SaveImage", images=rebatch.out(0)) result = client.run(g) images = result.get_images(output) assert len(images) == 3, "Should have 3 image" assert numpy.array(images[0]).min() == 0 and numpy.array(images[0]).max() == 0, "First image should be 0.0" assert numpy.array(images[1]).min() == 127 and numpy.array(images[1]).max() == 127, "Second image should be 0.5" assert numpy.array(images[2]).min() == 255 and numpy.array(images[2]).max() == 255, "Third image should be 1.0" def test_output_reuse(self, client: ComfyClient, builder: GraphBuilder): g = builder input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1) output1 = g.node("SaveImage", images=input1.out(0)) output2 = g.node("SaveImage", images=input1.out(0)) result = client.run(g) images1 = result.get_images(output1) images2 = result.get_images(output2) assert len(images1) == 1, "Should have 1 image" assert len(images2) == 1, "Should have 1 image" # This tests that only constant outputs are used in the call to `IS_CHANGED` def test_is_changed_with_outputs(self, client: ComfyClient, builder: GraphBuilder): g = builder input1 = g.node("StubConstantImage", value=0.5, height=512, width=512, batch_size=1) test_node = g.node("TestIsChangedWithConstants", image=input1.out(0), value=0.5) output = g.node("PreviewImage", images=test_node.out(0)) result = client.run(g) images = result.get_images(output) assert len(images) == 1, "Should have 1 image" assert numpy.array(images[0]).min() == 63 and numpy.array(images[0]).max() == 63, "Image should have value 0.25" result = client.run(g) images = result.get_images(output) assert len(images) == 1, "Should have 1 image" assert numpy.array(images[0]).min() == 63 and numpy.array(images[0]).max() == 63, "Image should have value 0.25" assert not result.did_run(test_node), "The execution should have been cached" def test_parallel_sleep_nodes(self, client: ComfyClient, builder: GraphBuilder): # Warmup execution to ensure server is fully initialized run_warmup(client) g = builder image = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1) # Create sleep nodes for each duration sleep_node1 = g.node("TestSleep", value=image.out(0), seconds=2.9) sleep_node2 = g.node("TestSleep", value=image.out(0), seconds=3.1) sleep_node3 = g.node("TestSleep", value=image.out(0), seconds=3.0) # Add outputs to verify the execution _output1 = g.node("PreviewImage", images=sleep_node1.out(0)) _output2 = g.node("PreviewImage", images=sleep_node2.out(0)) _output3 = g.node("PreviewImage", images=sleep_node3.out(0)) start_time = time.time() result = client.run(g) elapsed_time = time.time() - start_time # The test should take around 3.0 seconds (the longest sleep duration) # plus some overhead, but definitely less than the sum of all sleeps (9.0s) assert elapsed_time < 8.9, f"Parallel execution took {elapsed_time}s, expected less than 8.9s" # Verify that all nodes executed assert result.did_run(sleep_node1), "Sleep node 1 should have run" assert result.did_run(sleep_node2), "Sleep node 2 should have run" assert result.did_run(sleep_node3), "Sleep node 3 should have run" def test_parallel_sleep_expansion(self, client: ComfyClient, builder: GraphBuilder): # Warmup execution to ensure server is fully initialized run_warmup(client) g = builder # Create input images with different values image1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1) image2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1) image3 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1) # Create a TestParallelSleep node that expands into multiple TestSleep nodes parallel_sleep = g.node("TestParallelSleep", image1=image1.out(0), image2=image2.out(0), image3=image3.out(0), sleep1=4.8, sleep2=4.9, sleep3=5.0) output = g.node("SaveImage", images=parallel_sleep.out(0)) start_time = time.time() result = client.run(g) elapsed_time = time.time() - start_time # Similar to the previous test, expect parallel execution of the sleep nodes # which should complete in less than the sum of all sleeps assert elapsed_time < 10.0, f"Expansion execution took {elapsed_time}s, expected less than 5.5s" # Verify the parallel sleep node executed assert result.did_run(parallel_sleep), "ParallelSleep node should have run" # Verify we get an image as output (blend of the three input images) result_images = result.get_images(output) assert len(result_images) == 1, "Should have 1 image" # Average pixel value should be around 170 (255 * 2 // 3) avg_value = numpy.array(result_images[0]).mean() assert avg_value == 170, f"Image average value {avg_value} should be 170" # This tests that nodes with OUTPUT_IS_LIST function correctly when they receive an ExecutionBlocker # as input. We also test that when that list (containing an ExecutionBlocker) is passed to a node, # only that one entry in the list is blocked. def test_execution_block_list_output(self, client: ComfyClient, builder: GraphBuilder): g = builder image1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1) image2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1) image3 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1) image_list = g.node("TestMakeListNode", value1=image1.out(0), value2=image2.out(0), value3=image3.out(0)) int1 = g.node("StubInt", value=1) int2 = g.node("StubInt", value=2) int3 = g.node("StubInt", value=3) int_list = g.node("TestMakeListNode", value1=int1.out(0), value2=int2.out(0), value3=int3.out(0)) compare = g.node("TestIntConditions", a=int_list.out(0), b=2, operation="==") blocker = g.node("TestExecutionBlocker", input=image_list.out(0), block=compare.out(0), verbose=False) list_output = g.node("TestMakeListNode", value1=blocker.out(0)) output = g.node("PreviewImage", images=list_output.out(0)) result = client.run(g) assert result.did_run(output), "The execution should have run" images = result.get_images(output) assert len(images) == 2, "Should have 2 images" assert numpy.array(images[0]).min() == 0 and numpy.array(images[0]).max() == 0, "First image should be black" assert numpy.array(images[1]).min() == 0 and numpy.array(images[1]).max() == 0, "Second image should also be black" # Output nodes included in the partial execution list are executed def test_partial_execution_included_outputs(self, client: ComfyClient, builder: GraphBuilder): g = builder input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1) input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1) # Create two separate output nodes output1 = g.node("SaveImage", images=input1.out(0)) output2 = g.node("SaveImage", images=input2.out(0)) # Run with partial execution targeting only output1 result = client.run(g, partial_execution_targets=[output1.id]) assert result.was_executed(input1), "Input1 should have been executed (run or cached)" assert result.was_executed(output1), "Output1 should have been executed (run or cached)" assert not result.did_run(input2), "Input2 should not have run" assert not result.did_run(output2), "Output2 should not have run" # Verify only output1 produced results assert len(result.get_images(output1)) == 1, "Output1 should have produced an image" assert len(result.get_images(output2)) == 0, "Output2 should not have produced an image" # Output nodes NOT included in the partial execution list are NOT executed def test_partial_execution_excluded_outputs(self, client: ComfyClient, builder: GraphBuilder): g = builder input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1) input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1) input3 = g.node("StubImage", content="NOISE", height=512, width=512, batch_size=1) # Create three output nodes output1 = g.node("SaveImage", images=input1.out(0)) output2 = g.node("SaveImage", images=input2.out(0)) output3 = g.node("SaveImage", images=input3.out(0)) # Run with partial execution targeting only output1 and output3 result = client.run(g, partial_execution_targets=[output1.id, output3.id]) assert result.was_executed(input1), "Input1 should have been executed" assert result.was_executed(input3), "Input3 should have been executed" assert result.was_executed(output1), "Output1 should have been executed" assert result.was_executed(output3), "Output3 should have been executed" assert not result.did_run(input2), "Input2 should not have run" assert not result.did_run(output2), "Output2 should not have run" # Output nodes NOT in list ARE executed if necessary for nodes that are in the list def test_partial_execution_dependencies(self, client: ComfyClient, builder: GraphBuilder): g = builder input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1) # Create a processing chain with an OUTPUT_NODE that has socket outputs output_with_socket = g.node("TestOutputNodeWithSocketOutput", image=input1.out(0), value=2.0) # Create another node that depends on the output_with_socket dependent_node = g.node("TestLazyMixImages", image1=output_with_socket.out(0), image2=input1.out(0), mask=g.node("StubMask", value=0.5, height=512, width=512, batch_size=1).out(0)) # Create the final output final_output = g.node("SaveImage", images=dependent_node.out(0)) # Run with partial execution targeting only the final output result = client.run(g, partial_execution_targets=[final_output.id]) # All nodes should have been executed because they're dependencies assert result.was_executed(input1), "Input1 should have been executed" assert result.was_executed(output_with_socket), "Output with socket should have been executed (dependency)" assert result.was_executed(dependent_node), "Dependent node should have been executed" assert result.was_executed(final_output), "Final output should have been executed" # Lazy execution works with partial execution def test_partial_execution_with_lazy_nodes(self, client: ComfyClient, builder: GraphBuilder): g = builder input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1) input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1) input3 = g.node("StubImage", content="NOISE", height=512, width=512, batch_size=1) # Create masks that will trigger different lazy execution paths mask1 = g.node("StubMask", value=0.0, height=512, width=512, batch_size=1) # Will only need image1 mask2 = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1) # Will need both images # Create two lazy mix nodes lazy_mix1 = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask1.out(0)) lazy_mix2 = g.node("TestLazyMixImages", image1=input2.out(0), image2=input3.out(0), mask=mask2.out(0)) output1 = g.node("SaveImage", images=lazy_mix1.out(0)) output2 = g.node("SaveImage", images=lazy_mix2.out(0)) # Run with partial execution targeting only output1 result = client.run(g, partial_execution_targets=[output1.id]) # For output1 path - only input1 should run due to lazy evaluation (mask=0.0) assert result.was_executed(input1), "Input1 should have been executed" assert not result.did_run(input2), "Input2 should not have run (lazy evaluation)" assert result.was_executed(mask1), "Mask1 should have been executed" assert result.was_executed(lazy_mix1), "Lazy mix1 should have been executed" assert result.was_executed(output1), "Output1 should have been executed" # Nothing from output2 path should run assert not result.did_run(input3), "Input3 should not have run" assert not result.did_run(mask2), "Mask2 should not have run" assert not result.did_run(lazy_mix2), "Lazy mix2 should not have run" assert not result.did_run(output2), "Output2 should not have run" # Multiple OUTPUT_NODEs with dependencies def test_partial_execution_multiple_output_nodes(self, client: ComfyClient, builder: GraphBuilder): g = builder input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1) input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1) # Create a chain of OUTPUT_NODEs output_node1 = g.node("TestOutputNodeWithSocketOutput", image=input1.out(0), value=1.5) output_node2 = g.node("TestOutputNodeWithSocketOutput", image=output_node1.out(0), value=2.0) # Create regular output nodes save1 = g.node("SaveImage", images=output_node1.out(0)) save2 = g.node("SaveImage", images=output_node2.out(0)) save3 = g.node("SaveImage", images=input2.out(0)) # Run targeting only save2 result = client.run(g, partial_execution_targets=[save2.id]) # Should run: input1, output_node1, output_node2, save2 assert result.was_executed(input1), "Input1 should have been executed" assert result.was_executed(output_node1), "Output node 1 should have been executed (dependency)" assert result.was_executed(output_node2), "Output node 2 should have been executed (dependency)" assert result.was_executed(save2), "Save2 should have been executed" # Should NOT run: input2, save1, save3 assert not result.did_run(input2), "Input2 should not have run" assert not result.did_run(save1), "Save1 should not have run" assert not result.did_run(save3), "Save3 should not have run" # Empty partial execution list (should execute nothing) def test_partial_execution_empty_list(self, client: ComfyClient, builder: GraphBuilder): g = builder input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1) _output1 = g.node("SaveImage", images=input1.out(0)) # Run with empty partial execution list try: _result = client.run(g, partial_execution_targets=[]) # Should get an error because no outputs are selected assert False, "Should have raised an error for empty partial execution list" except urllib.error.HTTPError: pass # Expected behavior