mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-08-02 15:04:50 +08:00
Properly tokenize the template for hunyuan video.
This commit is contained in:
@@ -10,6 +10,7 @@ import comfy.clip_model
|
||||
import json
|
||||
import logging
|
||||
import numbers
|
||||
import re
|
||||
|
||||
def gen_empty_tokens(special_tokens, length):
|
||||
start_token = special_tokens.get("start", None)
|
||||
@@ -429,13 +430,14 @@ class SDTokenizer:
|
||||
self.end_token = None
|
||||
|
||||
empty = self.tokenizer('')["input_ids"]
|
||||
self.tokenizer_adds_end_token = has_end_token
|
||||
if has_start_token:
|
||||
self.tokens_start = 1
|
||||
self.start_token = empty[0]
|
||||
if has_end_token:
|
||||
if end_token is not None:
|
||||
self.end_token = end_token
|
||||
else:
|
||||
if end_token is not None:
|
||||
self.end_token = end_token
|
||||
else:
|
||||
if has_end_token:
|
||||
self.end_token = empty[1]
|
||||
else:
|
||||
self.tokens_start = 0
|
||||
@@ -468,7 +470,7 @@ class SDTokenizer:
|
||||
Takes a potential embedding name and tries to retrieve it.
|
||||
Returns a Tuple consisting of the embedding and any leftover string, embedding can be None.
|
||||
'''
|
||||
split_embed = embedding_name.split(' ')
|
||||
split_embed = embedding_name.split()
|
||||
embedding_name = split_embed[0]
|
||||
leftover = ' '.join(split_embed[1:])
|
||||
embed = load_embed(embedding_name, self.embedding_directory, self.embedding_size, self.embedding_key)
|
||||
@@ -491,18 +493,18 @@ class SDTokenizer:
|
||||
text = escape_important(text)
|
||||
parsed_weights = token_weights(text, 1.0)
|
||||
|
||||
#tokenize words
|
||||
# tokenize words
|
||||
tokens = []
|
||||
for weighted_segment, weight in parsed_weights:
|
||||
to_tokenize = unescape_important(weighted_segment).replace("\n", " ")
|
||||
split = to_tokenize.split(' {}'.format(self.embedding_identifier))
|
||||
to_tokenize = unescape_important(weighted_segment)
|
||||
split = re.split(' {0}|\n{0}'.format(self.embedding_identifier), to_tokenize)
|
||||
to_tokenize = [split[0]]
|
||||
for i in range(1, len(split)):
|
||||
to_tokenize.append("{}{}".format(self.embedding_identifier, split[i]))
|
||||
|
||||
to_tokenize = [x for x in to_tokenize if x != ""]
|
||||
for word in to_tokenize:
|
||||
#if we find an embedding, deal with the embedding
|
||||
# if we find an embedding, deal with the embedding
|
||||
if word.startswith(self.embedding_identifier) and self.embedding_directory is not None:
|
||||
embedding_name = word[len(self.embedding_identifier):].strip('\n')
|
||||
embed, leftover = self._try_get_embedding(embedding_name)
|
||||
@@ -519,7 +521,7 @@ class SDTokenizer:
|
||||
else:
|
||||
continue
|
||||
end = 999999999999
|
||||
if self.end_token is not None:
|
||||
if self.tokenizer_adds_end_token:
|
||||
end = -1
|
||||
#parse word
|
||||
tokens.append([(t, weight) for t in self.tokenizer(word)["input_ids"][self.tokens_start:end]])
|
||||
|
Reference in New Issue
Block a user