mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-08-02 23:14:49 +08:00
Add ConditioningSetArea node.
to apply conditioning/prompts only to a specific area of the image. Add ConditioningCombine node. so that multiple conditioning/prompts can be applied to the image at the same time
This commit is contained in:
@@ -9,7 +9,7 @@ class CFGDenoiser(torch.nn.Module):
|
||||
self.inner_model = model
|
||||
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale):
|
||||
if len(uncond[0]) == len(cond[0]) and x.shape[0] * x.shape[2] * x.shape[3] <= (96 * 96): #TODO check memory instead
|
||||
if len(uncond[0]) == len(cond[0]) and x.shape[0] * x.shape[2] * x.shape[3] < (96 * 96): #TODO check memory instead
|
||||
x_in = torch.cat([x] * 2)
|
||||
sigma_in = torch.cat([sigma] * 2)
|
||||
cond_in = torch.cat([uncond, cond])
|
||||
@@ -19,6 +19,61 @@ class CFGDenoiser(torch.nn.Module):
|
||||
uncond = self.inner_model(x, sigma, cond=uncond)
|
||||
return uncond + (cond - uncond) * cond_scale
|
||||
|
||||
class CFGDenoiserComplex(torch.nn.Module):
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.inner_model = model
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale):
|
||||
def calc_cond(cond, x_in, sigma):
|
||||
out_cond = torch.zeros_like(x_in)
|
||||
out_count = torch.ones_like(x_in)/100000.0
|
||||
sigma_cmp = sigma[0]
|
||||
|
||||
for x in cond:
|
||||
area = (x_in.shape[2], x_in.shape[3], 0, 0)
|
||||
strength = 1.0
|
||||
min_sigma = 0.0
|
||||
max_sigma = 999.0
|
||||
if 'area' in x[1]:
|
||||
area = x[1]['area']
|
||||
if 'strength' in x[1]:
|
||||
strength = x[1]['strength']
|
||||
if 'min_sigma' in x[1]:
|
||||
min_sigma = x[1]['min_sigma']
|
||||
if 'max_sigma' in x[1]:
|
||||
max_sigma = x[1]['max_sigma']
|
||||
if sigma_cmp < min_sigma or sigma_cmp > max_sigma:
|
||||
continue
|
||||
input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]]
|
||||
mult = torch.ones_like(input_x) * strength
|
||||
|
||||
rr = 8
|
||||
if area[2] != 0:
|
||||
for t in range(rr):
|
||||
mult[:,:,area[2]+t:area[2]+1+t,:] *= ((1.0/rr) * (t + 1))
|
||||
if (area[0] + area[2]) < x_in.shape[2]:
|
||||
for t in range(rr):
|
||||
mult[:,:,area[0] + area[2] - 1 - t:area[0] + area[2] - t,:] *= ((1.0/rr) * (t + 1))
|
||||
if area[3] != 0:
|
||||
for t in range(rr):
|
||||
mult[:,:,:,area[3]+t:area[3]+1+t] *= ((1.0/rr) * (t + 1))
|
||||
if (area[1] + area[3]) < x_in.shape[3]:
|
||||
for t in range(rr):
|
||||
mult[:,:,:,area[1] + area[3] - 1 - t:area[1] + area[3] - t] *= ((1.0/rr) * (t + 1))
|
||||
|
||||
out_cond[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] += self.inner_model(input_x, sigma, cond=x[0]) * mult
|
||||
out_count[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] += mult
|
||||
del input_x
|
||||
del mult
|
||||
|
||||
out_cond /= out_count
|
||||
del out_count
|
||||
return out_cond
|
||||
|
||||
cond = calc_cond(cond, x, sigma)
|
||||
uncond = calc_cond(uncond, x, sigma)
|
||||
|
||||
return uncond + (cond - uncond) * cond_scale
|
||||
|
||||
def simple_scheduler(model, steps):
|
||||
sigs = []
|
||||
@@ -28,6 +83,35 @@ def simple_scheduler(model, steps):
|
||||
sigs += [0.0]
|
||||
return torch.FloatTensor(sigs)
|
||||
|
||||
def create_cond_with_same_area_if_none(conds, c):
|
||||
if 'area' not in c[1]:
|
||||
return
|
||||
|
||||
c_area = c[1]['area']
|
||||
smallest = None
|
||||
for x in conds:
|
||||
if 'area' in x[1]:
|
||||
a = x[1]['area']
|
||||
if c_area[2] >= a[2] and c_area[3] >= a[3]:
|
||||
if a[0] + a[2] >= c_area[0] + c_area[2]:
|
||||
if a[1] + a[3] >= c_area[1] + c_area[3]:
|
||||
if smallest is None:
|
||||
smallest = x
|
||||
elif 'area' not in smallest[1]:
|
||||
smallest = x
|
||||
else:
|
||||
if smallest[1]['area'][0] * smallest[1]['area'][1] > a[0] * a[1]:
|
||||
smallest = x
|
||||
else:
|
||||
if smallest is None:
|
||||
smallest = x
|
||||
if smallest is None:
|
||||
return
|
||||
if 'area' in smallest[1]:
|
||||
if smallest[1]['area'] == c_area:
|
||||
return
|
||||
n = c[1].copy()
|
||||
conds += [[smallest[0], n]]
|
||||
|
||||
class KSampler:
|
||||
SCHEDULERS = ["karras", "normal", "simple"]
|
||||
@@ -41,7 +125,7 @@ class KSampler:
|
||||
self.model_wrap = k_diffusion.external.CompVisVDenoiser(self.model, quantize=True)
|
||||
else:
|
||||
self.model_wrap = k_diffusion.external.CompVisDenoiser(self.model, quantize=True)
|
||||
self.model_k = CFGDenoiser(self.model_wrap)
|
||||
self.model_k = CFGDenoiserComplex(self.model_wrap)
|
||||
self.device = device
|
||||
if scheduler not in self.SCHEDULERS:
|
||||
scheduler = self.SCHEDULERS[0]
|
||||
@@ -94,11 +178,18 @@ class KSampler:
|
||||
if start_step is not None:
|
||||
sigmas = sigmas[start_step:]
|
||||
|
||||
|
||||
noise *= sigmas[0]
|
||||
if latent_image is not None:
|
||||
noise += latent_image
|
||||
|
||||
positive = positive[:]
|
||||
negative = negative[:]
|
||||
#make sure each cond area has an opposite one with the same area
|
||||
for c in positive:
|
||||
create_cond_with_same_area_if_none(negative, c)
|
||||
for c in negative:
|
||||
create_cond_with_same_area_if_none(positive, c)
|
||||
|
||||
if self.model.model.diffusion_model.dtype == torch.float16:
|
||||
precision_scope = torch.autocast
|
||||
else:
|
||||
|
Reference in New Issue
Block a user