1
mirror of https://github.com/comfyanonymous/ComfyUI.git synced 2025-08-02 23:14:49 +08:00

Support loading unet files in diffusers format.

This commit is contained in:
comfyanonymous
2023-07-05 17:34:45 -04:00
parent e57cba4c61
commit af7a49916b
9 changed files with 123 additions and 15 deletions

View File

@@ -1049,7 +1049,7 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
offload_device = model_management.unet_offload_device()
model = model_config.get_model(sd)
model = model_config.get_model(sd, "model.diffusion_model.")
model = model.to(offload_device)
model.load_model_weights(sd, "model.diffusion_model.")
@@ -1073,6 +1073,73 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
return (ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae, clipvision)
def load_unet(unet_path): #load unet in diffusers format
sd = utils.load_torch_file(unet_path)
parameters = calculate_parameters(sd, "")
fp16 = model_management.should_use_fp16(model_params=parameters)
match = {}
match["context_dim"] = sd["down_blocks.0.attentions.1.transformer_blocks.0.attn2.to_k.weight"].shape[1]
match["model_channels"] = sd["conv_in.weight"].shape[0]
match["in_channels"] = sd["conv_in.weight"].shape[1]
match["adm_in_channels"] = None
if "class_embedding.linear_1.weight" in sd:
match["adm_in_channels"] = sd["class_embedding.linear_1.weight"].shape[1]
SDXL = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
'num_classes': 'sequential', 'adm_in_channels': 2816, 'use_fp16': fp16, 'in_channels': 4, 'model_channels': 320,
'num_res_blocks': 2, 'attention_resolutions': [2, 4], 'transformer_depth': [0, 2, 10], 'channel_mult': [1, 2, 4],
'transformer_depth_middle': 10, 'use_linear_in_transformer': True, 'context_dim': 2048}
SDXL_refiner = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
'num_classes': 'sequential', 'adm_in_channels': 2560, 'use_fp16': fp16, 'in_channels': 4, 'model_channels': 384,
'num_res_blocks': 2, 'attention_resolutions': [2, 4], 'transformer_depth': [0, 4, 4, 0], 'channel_mult': [1, 2, 4, 4],
'transformer_depth_middle': 4, 'use_linear_in_transformer': True, 'context_dim': 1280}
SD21 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
'adm_in_channels': None, 'use_fp16': fp16, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': 2,
'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024}
SD21_uncliph = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
'num_classes': 'sequential', 'adm_in_channels': 2048, 'use_fp16': True, 'in_channels': 4, 'model_channels': 320,
'num_res_blocks': 2, 'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024}
SD21_unclipl = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
'num_classes': 'sequential', 'adm_in_channels': 1536, 'use_fp16': True, 'in_channels': 4, 'model_channels': 320,
'num_res_blocks': 2, 'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024}
SD15 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False,
'adm_in_channels': None, 'use_fp16': True, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': 2,
'attention_resolutions': [1, 2, 4], 'transformer_depth': [1, 1, 1, 0], 'channel_mult': [1, 2, 4, 4],
'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768}
supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl]
print("match", match)
for unet_config in supported_models:
matches = True
for k in match:
if match[k] != unet_config[k]:
matches = False
break
if matches:
diffusers_keys = utils.unet_to_diffusers(unet_config)
new_sd = {}
for k in diffusers_keys:
if k in sd:
new_sd[diffusers_keys[k]] = sd.pop(k)
else:
print(diffusers_keys[k], k)
offload_device = model_management.unet_offload_device()
model_config = model_detection.model_config_from_unet_config(unet_config)
model = model_config.get_model(new_sd, "")
model = model.to(offload_device)
model.load_model_weights(new_sd, "")
return ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device)
def save_checkpoint(output_path, model, clip, vae, metadata=None):
try:
model.patch_model()