mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-08-02 23:14:49 +08:00
dora_scale support for lora file.
This commit is contained in:
@@ -7,6 +7,18 @@ import uuid
|
||||
import comfy.utils
|
||||
import comfy.model_management
|
||||
|
||||
def apply_weight_decompose(dora_scale, weight):
|
||||
weight_norm = (
|
||||
weight.transpose(0, 1)
|
||||
.reshape(weight.shape[1], -1)
|
||||
.norm(dim=1, keepdim=True)
|
||||
.reshape(weight.shape[1], *[1] * (weight.dim() - 1))
|
||||
.transpose(0, 1)
|
||||
)
|
||||
|
||||
return weight * (dora_scale / weight_norm)
|
||||
|
||||
|
||||
class ModelPatcher:
|
||||
def __init__(self, model, load_device, offload_device, size=0, current_device=None, weight_inplace_update=False):
|
||||
self.size = size
|
||||
@@ -309,6 +321,7 @@ class ModelPatcher:
|
||||
elif patch_type == "lora": #lora/locon
|
||||
mat1 = comfy.model_management.cast_to_device(v[0], weight.device, torch.float32)
|
||||
mat2 = comfy.model_management.cast_to_device(v[1], weight.device, torch.float32)
|
||||
dora_scale = v[4]
|
||||
if v[2] is not None:
|
||||
alpha *= v[2] / mat2.shape[0]
|
||||
if v[3] is not None:
|
||||
@@ -318,6 +331,8 @@ class ModelPatcher:
|
||||
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
|
||||
try:
|
||||
weight += (alpha * torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1))).reshape(weight.shape).type(weight.dtype)
|
||||
if dora_scale is not None:
|
||||
weight = apply_weight_decompose(comfy.model_management.cast_to_device(dora_scale, weight.device, torch.float32), weight)
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
elif patch_type == "lokr":
|
||||
@@ -328,6 +343,7 @@ class ModelPatcher:
|
||||
w2_a = v[5]
|
||||
w2_b = v[6]
|
||||
t2 = v[7]
|
||||
dora_scale = v[8]
|
||||
dim = None
|
||||
|
||||
if w1 is None:
|
||||
@@ -357,6 +373,8 @@ class ModelPatcher:
|
||||
|
||||
try:
|
||||
weight += alpha * torch.kron(w1, w2).reshape(weight.shape).type(weight.dtype)
|
||||
if dora_scale is not None:
|
||||
weight = apply_weight_decompose(comfy.model_management.cast_to_device(dora_scale, weight.device, torch.float32), weight)
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
elif patch_type == "loha":
|
||||
@@ -366,6 +384,7 @@ class ModelPatcher:
|
||||
alpha *= v[2] / w1b.shape[0]
|
||||
w2a = v[3]
|
||||
w2b = v[4]
|
||||
dora_scale = v[7]
|
||||
if v[5] is not None: #cp decomposition
|
||||
t1 = v[5]
|
||||
t2 = v[6]
|
||||
@@ -386,12 +405,16 @@ class ModelPatcher:
|
||||
|
||||
try:
|
||||
weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype)
|
||||
if dora_scale is not None:
|
||||
weight = apply_weight_decompose(comfy.model_management.cast_to_device(dora_scale, weight.device, torch.float32), weight)
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
elif patch_type == "glora":
|
||||
if v[4] is not None:
|
||||
alpha *= v[4] / v[0].shape[0]
|
||||
|
||||
dora_scale = v[5]
|
||||
|
||||
a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, torch.float32)
|
||||
a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, torch.float32)
|
||||
b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, torch.float32)
|
||||
@@ -399,6 +422,8 @@ class ModelPatcher:
|
||||
|
||||
try:
|
||||
weight += ((torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)) * alpha).reshape(weight.shape).type(weight.dtype)
|
||||
if dora_scale is not None:
|
||||
weight = apply_weight_decompose(comfy.model_management.cast_to_device(dora_scale, weight.device, torch.float32), weight)
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
else:
|
||||
|
Reference in New Issue
Block a user