mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-08-02 15:04:50 +08:00
Make applying embeddings more efficient.
Adding new tokens no longer makes a whole copy of the embeddings weight which can be massive on certain models.
This commit is contained in:
@@ -158,71 +158,75 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
self.layer_idx = self.options_default[1]
|
||||
self.return_projected_pooled = self.options_default[2]
|
||||
|
||||
def set_up_textual_embeddings(self, tokens, current_embeds):
|
||||
out_tokens = []
|
||||
next_new_token = token_dict_size = current_embeds.weight.shape[0]
|
||||
embedding_weights = []
|
||||
def process_tokens(self, tokens, device):
|
||||
end_token = self.special_tokens.get("end", None)
|
||||
if end_token is None:
|
||||
cmp_token = self.special_tokens.get("pad", -1)
|
||||
else:
|
||||
cmp_token = end_token
|
||||
|
||||
embeds_out = []
|
||||
attention_masks = []
|
||||
num_tokens = []
|
||||
|
||||
for x in tokens:
|
||||
attention_mask = []
|
||||
tokens_temp = []
|
||||
other_embeds = []
|
||||
eos = False
|
||||
index = 0
|
||||
for y in x:
|
||||
if isinstance(y, numbers.Integral):
|
||||
tokens_temp += [int(y)]
|
||||
else:
|
||||
if y.shape[0] == current_embeds.weight.shape[1]:
|
||||
embedding_weights += [y]
|
||||
tokens_temp += [next_new_token]
|
||||
next_new_token += 1
|
||||
if eos:
|
||||
attention_mask.append(0)
|
||||
else:
|
||||
logging.warning("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored {} != {}".format(y.shape[0], current_embeds.weight.shape[1]))
|
||||
while len(tokens_temp) < len(x):
|
||||
tokens_temp += [self.special_tokens["pad"]]
|
||||
out_tokens += [tokens_temp]
|
||||
attention_mask.append(1)
|
||||
token = int(y)
|
||||
tokens_temp += [token]
|
||||
if not eos and token == cmp_token:
|
||||
if end_token is None:
|
||||
attention_mask[-1] = 0
|
||||
eos = True
|
||||
else:
|
||||
other_embeds.append((index, y))
|
||||
index += 1
|
||||
|
||||
n = token_dict_size
|
||||
if len(embedding_weights) > 0:
|
||||
new_embedding = self.operations.Embedding(next_new_token + 1, current_embeds.weight.shape[1], device=current_embeds.weight.device, dtype=current_embeds.weight.dtype)
|
||||
new_embedding.weight[:token_dict_size] = current_embeds.weight
|
||||
for x in embedding_weights:
|
||||
new_embedding.weight[n] = x
|
||||
n += 1
|
||||
self.transformer.set_input_embeddings(new_embedding)
|
||||
tokens_embed = torch.tensor([tokens_temp], device=device, dtype=torch.long)
|
||||
tokens_embed = self.transformer.get_input_embeddings()(tokens_embed, out_dtype=torch.float32)
|
||||
index = 0
|
||||
pad_extra = 0
|
||||
for o in other_embeds:
|
||||
ind = index + o[0]
|
||||
emb = o[1].view(1, -1, o[1].shape[-1]).to(device=device, dtype=torch.float32)
|
||||
emb_shape = emb.shape[1]
|
||||
if emb.shape[-1] == tokens_embed.shape[-1]:
|
||||
tokens_embed = torch.cat([tokens_embed[:, :ind], emb, tokens_embed[:, ind:]], dim=1)
|
||||
attention_mask = attention_mask[:ind] + [1] * emb_shape + attention_mask[ind:]
|
||||
index += emb_shape - 1
|
||||
else:
|
||||
index += -1
|
||||
pad_extra += emb_shape
|
||||
logging.warning("WARNING: shape mismatch when trying to apply embedding, embedding will be ignored {} != {}".format(emb.shape[-1], tokens_embed.shape[-1]))
|
||||
|
||||
processed_tokens = []
|
||||
for x in out_tokens:
|
||||
processed_tokens += [list(map(lambda a: n if a == -1 else a, x))] #The EOS token should always be the largest one
|
||||
if pad_extra > 0:
|
||||
padd_embed = self.transformer.get_input_embeddings()(torch.tensor([[self.special_tokens["pad"]] * pad_extra], device=device, dtype=torch.long), out_dtype=torch.float32)
|
||||
tokens_embed = torch.cat([tokens_embed, padd_embed], dim=1)
|
||||
|
||||
return processed_tokens
|
||||
embeds_out.append(tokens_embed)
|
||||
attention_masks.append(attention_mask)
|
||||
num_tokens.append(sum(attention_mask))
|
||||
|
||||
return torch.cat(embeds_out), torch.tensor(attention_masks, device=device, dtype=torch.long), num_tokens
|
||||
|
||||
def forward(self, tokens):
|
||||
backup_embeds = self.transformer.get_input_embeddings()
|
||||
device = backup_embeds.weight.device
|
||||
tokens = self.set_up_textual_embeddings(tokens, backup_embeds)
|
||||
tokens = torch.LongTensor(tokens).to(device)
|
||||
|
||||
attention_mask = None
|
||||
if self.enable_attention_masks or self.zero_out_masked or self.return_attention_masks:
|
||||
attention_mask = torch.zeros_like(tokens)
|
||||
end_token = self.special_tokens.get("end", None)
|
||||
if end_token is None:
|
||||
cmp_token = self.special_tokens.get("pad", -1)
|
||||
else:
|
||||
cmp_token = end_token
|
||||
|
||||
for x in range(attention_mask.shape[0]):
|
||||
for y in range(attention_mask.shape[1]):
|
||||
attention_mask[x, y] = 1
|
||||
if tokens[x, y] == cmp_token:
|
||||
if end_token is None:
|
||||
attention_mask[x, y] = 0
|
||||
break
|
||||
device = self.transformer.get_input_embeddings().weight.device
|
||||
embeds, attention_mask, num_tokens = self.process_tokens(tokens, device)
|
||||
|
||||
attention_mask_model = None
|
||||
if self.enable_attention_masks:
|
||||
attention_mask_model = attention_mask
|
||||
|
||||
outputs = self.transformer(tokens, attention_mask_model, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32)
|
||||
self.transformer.set_input_embeddings(backup_embeds)
|
||||
outputs = self.transformer(None, attention_mask_model, embeds=embeds, num_tokens=num_tokens, intermediate_output=self.layer_idx, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32)
|
||||
|
||||
if self.layer == "last":
|
||||
z = outputs[0].float()
|
||||
|
Reference in New Issue
Block a user