mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-08-02 15:04:50 +08:00
Refactor comfy.ops
comfy.ops -> comfy.ops.disable_weight_init This should make it more clear what they actually do. Some unused code has also been removed.
This commit is contained in:
119
comfy/ops.py
119
comfy/ops.py
@@ -1,66 +1,26 @@
|
||||
import torch
|
||||
from contextlib import contextmanager
|
||||
|
||||
class Linear(torch.nn.Linear):
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
class disable_weight_init:
|
||||
class Linear(torch.nn.Linear):
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
class Conv2d(torch.nn.Conv2d):
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
class Conv2d(torch.nn.Conv2d):
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
class Conv3d(torch.nn.Conv3d):
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
class Conv3d(torch.nn.Conv3d):
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
class GroupNorm(torch.nn.GroupNorm):
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
class GroupNorm(torch.nn.GroupNorm):
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
class LayerNorm(torch.nn.LayerNorm):
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
def conv_nd(dims, *args, **kwargs):
|
||||
if dims == 2:
|
||||
return Conv2d(*args, **kwargs)
|
||||
elif dims == 3:
|
||||
return Conv3d(*args, **kwargs)
|
||||
else:
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
def cast_bias_weight(s, input):
|
||||
bias = None
|
||||
if s.bias is not None:
|
||||
bias = s.bias.to(device=input.device, dtype=input.dtype)
|
||||
weight = s.weight.to(device=input.device, dtype=input.dtype)
|
||||
return weight, bias
|
||||
|
||||
class manual_cast:
|
||||
class Linear(Linear):
|
||||
def forward(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.linear(input, weight, bias)
|
||||
|
||||
class Conv2d(Conv2d):
|
||||
def forward(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return self._conv_forward(input, weight, bias)
|
||||
|
||||
class Conv3d(Conv3d):
|
||||
def forward(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return self._conv_forward(input, weight, bias)
|
||||
|
||||
class GroupNorm(GroupNorm):
|
||||
def forward(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
|
||||
|
||||
class LayerNorm(LayerNorm):
|
||||
def forward(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)
|
||||
class LayerNorm(torch.nn.LayerNorm):
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
@classmethod
|
||||
def conv_nd(s, dims, *args, **kwargs):
|
||||
@@ -71,20 +31,35 @@ class manual_cast:
|
||||
else:
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
@contextmanager
|
||||
def use_comfy_ops(device=None, dtype=None): # Kind of an ugly hack but I can't think of a better way
|
||||
old_torch_nn_linear = torch.nn.Linear
|
||||
force_device = device
|
||||
force_dtype = dtype
|
||||
def linear_with_dtype(in_features: int, out_features: int, bias: bool = True, device=None, dtype=None):
|
||||
if force_device is not None:
|
||||
device = force_device
|
||||
if force_dtype is not None:
|
||||
dtype = force_dtype
|
||||
return Linear(in_features, out_features, bias=bias, device=device, dtype=dtype)
|
||||
def cast_bias_weight(s, input):
|
||||
bias = None
|
||||
if s.bias is not None:
|
||||
bias = s.bias.to(device=input.device, dtype=input.dtype)
|
||||
weight = s.weight.to(device=input.device, dtype=input.dtype)
|
||||
return weight, bias
|
||||
|
||||
torch.nn.Linear = linear_with_dtype
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
torch.nn.Linear = old_torch_nn_linear
|
||||
class manual_cast(disable_weight_init):
|
||||
class Linear(disable_weight_init.Linear):
|
||||
def forward(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.linear(input, weight, bias)
|
||||
|
||||
class Conv2d(disable_weight_init.Conv2d):
|
||||
def forward(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return self._conv_forward(input, weight, bias)
|
||||
|
||||
class Conv3d(disable_weight_init.Conv3d):
|
||||
def forward(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return self._conv_forward(input, weight, bias)
|
||||
|
||||
class GroupNorm(disable_weight_init.GroupNorm):
|
||||
def forward(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
|
||||
|
||||
class LayerNorm(disable_weight_init.LayerNorm):
|
||||
def forward(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)
|
||||
|
Reference in New Issue
Block a user