mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-08-02 15:04:50 +08:00
Execution Model Inversion (#2666)
* Execution Model Inversion This PR inverts the execution model -- from recursively calling nodes to using a topological sort of the nodes. This change allows for modification of the node graph during execution. This allows for two major advantages: 1. The implementation of lazy evaluation in nodes. For example, if a "Mix Images" node has a mix factor of exactly 0.0, the second image input doesn't even need to be evaluated (and visa-versa if the mix factor is 1.0). 2. Dynamic expansion of nodes. This allows for the creation of dynamic "node groups". Specifically, custom nodes can return subgraphs that replace the original node in the graph. This is an incredibly powerful concept. Using this functionality, it was easy to implement: a. Components (a.k.a. node groups) b. Flow control (i.e. while loops) via tail recursion c. All-in-one nodes that replicate the WebUI functionality d. and more All of those were able to be implemented entirely via custom nodes, so those features are *not* a part of this PR. (There are some front-end changes that should occur before that functionality is made widely available, particularly around variant sockets.) The custom nodes associated with this PR can be found at: https://github.com/BadCafeCode/execution-inversion-demo-comfyui Note that some of them require that variant socket types ("*") be enabled. * Allow `input_info` to be of type `None` * Handle errors (like OOM) more gracefully * Add a command-line argument to enable variants This allows the use of nodes that have sockets of type '*' without applying a patch to the code. * Fix an overly aggressive assertion. This could happen when attempting to evaluate `IS_CHANGED` for a node during the creation of the cache (in order to create the cache key). * Fix Pyright warnings * Add execution model unit tests * Fix issue with unused literals Behavior should now match the master branch with regard to undeclared inputs. Undeclared inputs that are socket connections will be used while undeclared inputs that are literals will be ignored. * Make custom VALIDATE_INPUTS skip normal validation Additionally, if `VALIDATE_INPUTS` takes an argument named `input_types`, that variable will be a dictionary of the socket type of all incoming connections. If that argument exists, normal socket type validation will not occur. This removes the last hurdle for enabling variant types entirely from custom nodes, so I've removed that command-line option. I've added appropriate unit tests for these changes. * Fix example in unit test This wouldn't have caused any issues in the unit test, but it would have bugged the UI if someone copy+pasted it into their own node pack. * Use fstrings instead of '%' formatting syntax * Use custom exception types. * Display an error for dependency cycles Previously, dependency cycles that were created during node expansion would cause the application to quit (due to an uncaught exception). Now, we'll throw a proper error to the UI. We also make an attempt to 'blame' the most relevant node in the UI. * Add docs on when ExecutionBlocker should be used * Remove unused functionality * Rename ExecutionResult.SLEEPING to PENDING * Remove superfluous function parameter * Pass None for uneval inputs instead of default This applies to `VALIDATE_INPUTS`, `check_lazy_status`, and lazy values in evaluation functions. * Add a test for mixed node expansion This test ensures that a node that returns a combination of expanded subgraphs and literal values functions correctly. * Raise exception for bad get_node calls. * Minor refactor of IsChangedCache.get * Refactor `map_node_over_list` function * Fix ui output for duplicated nodes * Add documentation on `check_lazy_status` * Add file for execution model unit tests * Clean up Javascript code as per review * Improve documentation Converted some comments to docstrings as per review * Add a new unit test for mixed lazy results This test validates that when an output list is fed to a lazy node, the node will properly evaluate previous nodes that are needed by any inputs to the lazy node. No code in the execution model has been changed. The test already passes. * Allow kwargs in VALIDATE_INPUTS functions When kwargs are used, validation is skipped for all inputs as if they had been mentioned explicitly. * List cached nodes in `execution_cached` message This was previously just bugged in this PR.
This commit is contained in:
4
tests/inference/extra_model_paths.yaml
Normal file
4
tests/inference/extra_model_paths.yaml
Normal file
@@ -0,0 +1,4 @@
|
||||
# Config for testing nodes
|
||||
testing:
|
||||
custom_nodes: tests/inference/testing_nodes
|
||||
|
461
tests/inference/test_execution.py
Normal file
461
tests/inference/test_execution.py
Normal file
@@ -0,0 +1,461 @@
|
||||
from io import BytesIO
|
||||
import numpy
|
||||
from PIL import Image
|
||||
import pytest
|
||||
from pytest import fixture
|
||||
import time
|
||||
import torch
|
||||
from typing import Union, Dict
|
||||
import json
|
||||
import subprocess
|
||||
import websocket #NOTE: websocket-client (https://github.com/websocket-client/websocket-client)
|
||||
import uuid
|
||||
import urllib.request
|
||||
import urllib.parse
|
||||
import urllib.error
|
||||
from comfy.graph_utils import GraphBuilder, Node
|
||||
|
||||
class RunResult:
|
||||
def __init__(self, prompt_id: str):
|
||||
self.outputs: Dict[str,Dict] = {}
|
||||
self.runs: Dict[str,bool] = {}
|
||||
self.prompt_id: str = prompt_id
|
||||
|
||||
def get_output(self, node: Node):
|
||||
return self.outputs.get(node.id, None)
|
||||
|
||||
def did_run(self, node: Node):
|
||||
return self.runs.get(node.id, False)
|
||||
|
||||
def get_images(self, node: Node):
|
||||
output = self.get_output(node)
|
||||
if output is None:
|
||||
return []
|
||||
return output.get('image_objects', [])
|
||||
|
||||
def get_prompt_id(self):
|
||||
return self.prompt_id
|
||||
|
||||
class ComfyClient:
|
||||
def __init__(self):
|
||||
self.test_name = ""
|
||||
|
||||
def connect(self,
|
||||
listen:str = '127.0.0.1',
|
||||
port:Union[str,int] = 8188,
|
||||
client_id: str = str(uuid.uuid4())
|
||||
):
|
||||
self.client_id = client_id
|
||||
self.server_address = f"{listen}:{port}"
|
||||
ws = websocket.WebSocket()
|
||||
ws.connect("ws://{}/ws?clientId={}".format(self.server_address, self.client_id))
|
||||
self.ws = ws
|
||||
|
||||
def queue_prompt(self, prompt):
|
||||
p = {"prompt": prompt, "client_id": self.client_id}
|
||||
data = json.dumps(p).encode('utf-8')
|
||||
req = urllib.request.Request("http://{}/prompt".format(self.server_address), data=data)
|
||||
return json.loads(urllib.request.urlopen(req).read())
|
||||
|
||||
def get_image(self, filename, subfolder, folder_type):
|
||||
data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
|
||||
url_values = urllib.parse.urlencode(data)
|
||||
with urllib.request.urlopen("http://{}/view?{}".format(self.server_address, url_values)) as response:
|
||||
return response.read()
|
||||
|
||||
def get_history(self, prompt_id):
|
||||
with urllib.request.urlopen("http://{}/history/{}".format(self.server_address, prompt_id)) as response:
|
||||
return json.loads(response.read())
|
||||
|
||||
def set_test_name(self, name):
|
||||
self.test_name = name
|
||||
|
||||
def run(self, graph):
|
||||
prompt = graph.finalize()
|
||||
for node in graph.nodes.values():
|
||||
if node.class_type == 'SaveImage':
|
||||
node.inputs['filename_prefix'] = self.test_name
|
||||
|
||||
prompt_id = self.queue_prompt(prompt)['prompt_id']
|
||||
result = RunResult(prompt_id)
|
||||
while True:
|
||||
out = self.ws.recv()
|
||||
if isinstance(out, str):
|
||||
message = json.loads(out)
|
||||
if message['type'] == 'executing':
|
||||
data = message['data']
|
||||
if data['prompt_id'] != prompt_id:
|
||||
continue
|
||||
if data['node'] is None:
|
||||
break
|
||||
result.runs[data['node']] = True
|
||||
elif message['type'] == 'execution_error':
|
||||
raise Exception(message['data'])
|
||||
elif message['type'] == 'execution_cached':
|
||||
pass # Probably want to store this off for testing
|
||||
|
||||
history = self.get_history(prompt_id)[prompt_id]
|
||||
for o in history['outputs']:
|
||||
for node_id in history['outputs']:
|
||||
node_output = history['outputs'][node_id]
|
||||
result.outputs[node_id] = node_output
|
||||
if 'images' in node_output:
|
||||
images_output = []
|
||||
for image in node_output['images']:
|
||||
image_data = self.get_image(image['filename'], image['subfolder'], image['type'])
|
||||
image_obj = Image.open(BytesIO(image_data))
|
||||
images_output.append(image_obj)
|
||||
node_output['image_objects'] = images_output
|
||||
|
||||
return result
|
||||
|
||||
#
|
||||
# Loop through these variables
|
||||
#
|
||||
@pytest.mark.execution
|
||||
class TestExecution:
|
||||
#
|
||||
# Initialize server and client
|
||||
#
|
||||
@fixture(scope="class", autouse=True, params=[
|
||||
# (use_lru, lru_size)
|
||||
(False, 0),
|
||||
(True, 0),
|
||||
(True, 100),
|
||||
])
|
||||
def _server(self, args_pytest, request):
|
||||
# Start server
|
||||
pargs = [
|
||||
'python','main.py',
|
||||
'--output-directory', args_pytest["output_dir"],
|
||||
'--listen', args_pytest["listen"],
|
||||
'--port', str(args_pytest["port"]),
|
||||
'--extra-model-paths-config', 'tests/inference/extra_model_paths.yaml',
|
||||
]
|
||||
use_lru, lru_size = request.param
|
||||
if use_lru:
|
||||
pargs += ['--cache-lru', str(lru_size)]
|
||||
print("Running server with args:", pargs)
|
||||
p = subprocess.Popen(pargs)
|
||||
yield
|
||||
p.kill()
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def start_client(self, listen:str, port:int):
|
||||
# Start client
|
||||
comfy_client = ComfyClient()
|
||||
# Connect to server (with retries)
|
||||
n_tries = 5
|
||||
for i in range(n_tries):
|
||||
time.sleep(4)
|
||||
try:
|
||||
comfy_client.connect(listen=listen, port=port)
|
||||
except ConnectionRefusedError as e:
|
||||
print(e)
|
||||
print(f"({i+1}/{n_tries}) Retrying...")
|
||||
else:
|
||||
break
|
||||
return comfy_client
|
||||
|
||||
@fixture(scope="class", autouse=True)
|
||||
def shared_client(self, args_pytest, _server):
|
||||
client = self.start_client(args_pytest["listen"], args_pytest["port"])
|
||||
yield client
|
||||
del client
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
@fixture
|
||||
def client(self, shared_client, request):
|
||||
shared_client.set_test_name(f"execution[{request.node.name}]")
|
||||
yield shared_client
|
||||
|
||||
@fixture
|
||||
def builder(self, request):
|
||||
yield GraphBuilder(prefix=request.node.name)
|
||||
|
||||
def test_lazy_input(self, client: ComfyClient, builder: GraphBuilder):
|
||||
g = builder
|
||||
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
||||
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
|
||||
mask = g.node("StubMask", value=0.0, height=512, width=512, batch_size=1)
|
||||
|
||||
lazy_mix = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0))
|
||||
output = g.node("SaveImage", images=lazy_mix.out(0))
|
||||
result = client.run(g)
|
||||
|
||||
result_image = result.get_images(output)[0]
|
||||
assert numpy.array(result_image).any() == 0, "Image should be black"
|
||||
assert result.did_run(input1)
|
||||
assert not result.did_run(input2)
|
||||
assert result.did_run(mask)
|
||||
assert result.did_run(lazy_mix)
|
||||
|
||||
def test_full_cache(self, client: ComfyClient, builder: GraphBuilder):
|
||||
g = builder
|
||||
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
||||
input2 = g.node("StubImage", content="NOISE", height=512, width=512, batch_size=1)
|
||||
mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1)
|
||||
|
||||
lazy_mix = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0))
|
||||
g.node("SaveImage", images=lazy_mix.out(0))
|
||||
|
||||
client.run(g)
|
||||
result2 = client.run(g)
|
||||
for node_id, node in g.nodes.items():
|
||||
assert not result2.did_run(node), f"Node {node_id} ran, but should have been cached"
|
||||
|
||||
def test_partial_cache(self, client: ComfyClient, builder: GraphBuilder):
|
||||
g = builder
|
||||
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
||||
input2 = g.node("StubImage", content="NOISE", height=512, width=512, batch_size=1)
|
||||
mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1)
|
||||
|
||||
lazy_mix = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0))
|
||||
g.node("SaveImage", images=lazy_mix.out(0))
|
||||
|
||||
client.run(g)
|
||||
mask.inputs['value'] = 0.4
|
||||
result2 = client.run(g)
|
||||
assert not result2.did_run(input1), "Input1 should have been cached"
|
||||
assert not result2.did_run(input2), "Input2 should have been cached"
|
||||
|
||||
def test_error(self, client: ComfyClient, builder: GraphBuilder):
|
||||
g = builder
|
||||
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
||||
# Different size of the two images
|
||||
input2 = g.node("StubImage", content="NOISE", height=256, width=256, batch_size=1)
|
||||
mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1)
|
||||
|
||||
lazy_mix = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0))
|
||||
g.node("SaveImage", images=lazy_mix.out(0))
|
||||
|
||||
try:
|
||||
client.run(g)
|
||||
assert False, "Should have raised an error"
|
||||
except Exception as e:
|
||||
assert 'prompt_id' in e.args[0], f"Did not get back a proper error message: {e}"
|
||||
|
||||
@pytest.mark.parametrize("test_value, expect_error", [
|
||||
(5, True),
|
||||
("foo", True),
|
||||
(5.0, False),
|
||||
])
|
||||
def test_validation_error_literal(self, test_value, expect_error, client: ComfyClient, builder: GraphBuilder):
|
||||
g = builder
|
||||
validation1 = g.node("TestCustomValidation1", input1=test_value, input2=3.0)
|
||||
g.node("SaveImage", images=validation1.out(0))
|
||||
|
||||
if expect_error:
|
||||
with pytest.raises(urllib.error.HTTPError):
|
||||
client.run(g)
|
||||
else:
|
||||
client.run(g)
|
||||
|
||||
@pytest.mark.parametrize("test_type, test_value", [
|
||||
("StubInt", 5),
|
||||
("StubFloat", 5.0)
|
||||
])
|
||||
def test_validation_error_edge1(self, test_type, test_value, client: ComfyClient, builder: GraphBuilder):
|
||||
g = builder
|
||||
stub = g.node(test_type, value=test_value)
|
||||
validation1 = g.node("TestCustomValidation1", input1=stub.out(0), input2=3.0)
|
||||
g.node("SaveImage", images=validation1.out(0))
|
||||
|
||||
with pytest.raises(urllib.error.HTTPError):
|
||||
client.run(g)
|
||||
|
||||
@pytest.mark.parametrize("test_type, test_value, expect_error", [
|
||||
("StubInt", 5, True),
|
||||
("StubFloat", 5.0, False)
|
||||
])
|
||||
def test_validation_error_edge2(self, test_type, test_value, expect_error, client: ComfyClient, builder: GraphBuilder):
|
||||
g = builder
|
||||
stub = g.node(test_type, value=test_value)
|
||||
validation2 = g.node("TestCustomValidation2", input1=stub.out(0), input2=3.0)
|
||||
g.node("SaveImage", images=validation2.out(0))
|
||||
|
||||
if expect_error:
|
||||
with pytest.raises(urllib.error.HTTPError):
|
||||
client.run(g)
|
||||
else:
|
||||
client.run(g)
|
||||
|
||||
@pytest.mark.parametrize("test_type, test_value, expect_error", [
|
||||
("StubInt", 5, True),
|
||||
("StubFloat", 5.0, False)
|
||||
])
|
||||
def test_validation_error_edge3(self, test_type, test_value, expect_error, client: ComfyClient, builder: GraphBuilder):
|
||||
g = builder
|
||||
stub = g.node(test_type, value=test_value)
|
||||
validation3 = g.node("TestCustomValidation3", input1=stub.out(0), input2=3.0)
|
||||
g.node("SaveImage", images=validation3.out(0))
|
||||
|
||||
if expect_error:
|
||||
with pytest.raises(urllib.error.HTTPError):
|
||||
client.run(g)
|
||||
else:
|
||||
client.run(g)
|
||||
|
||||
@pytest.mark.parametrize("test_type, test_value, expect_error", [
|
||||
("StubInt", 5, True),
|
||||
("StubFloat", 5.0, False)
|
||||
])
|
||||
def test_validation_error_edge4(self, test_type, test_value, expect_error, client: ComfyClient, builder: GraphBuilder):
|
||||
g = builder
|
||||
stub = g.node(test_type, value=test_value)
|
||||
validation4 = g.node("TestCustomValidation4", input1=stub.out(0), input2=3.0)
|
||||
g.node("SaveImage", images=validation4.out(0))
|
||||
|
||||
if expect_error:
|
||||
with pytest.raises(urllib.error.HTTPError):
|
||||
client.run(g)
|
||||
else:
|
||||
client.run(g)
|
||||
|
||||
@pytest.mark.parametrize("test_value1, test_value2, expect_error", [
|
||||
(0.0, 0.5, False),
|
||||
(0.0, 5.0, False),
|
||||
(0.0, 7.0, True)
|
||||
])
|
||||
def test_validation_error_kwargs(self, test_value1, test_value2, expect_error, client: ComfyClient, builder: GraphBuilder):
|
||||
g = builder
|
||||
validation5 = g.node("TestCustomValidation5", input1=test_value1, input2=test_value2)
|
||||
g.node("SaveImage", images=validation5.out(0))
|
||||
|
||||
if expect_error:
|
||||
with pytest.raises(urllib.error.HTTPError):
|
||||
client.run(g)
|
||||
else:
|
||||
client.run(g)
|
||||
|
||||
def test_cycle_error(self, client: ComfyClient, builder: GraphBuilder):
|
||||
g = builder
|
||||
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
||||
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
|
||||
mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1)
|
||||
|
||||
lazy_mix1 = g.node("TestLazyMixImages", image1=input1.out(0), mask=mask.out(0))
|
||||
lazy_mix2 = g.node("TestLazyMixImages", image1=lazy_mix1.out(0), image2=input2.out(0), mask=mask.out(0))
|
||||
g.node("SaveImage", images=lazy_mix2.out(0))
|
||||
|
||||
# When the cycle exists on initial submission, it should raise a validation error
|
||||
with pytest.raises(urllib.error.HTTPError):
|
||||
client.run(g)
|
||||
|
||||
def test_dynamic_cycle_error(self, client: ComfyClient, builder: GraphBuilder):
|
||||
g = builder
|
||||
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
||||
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
|
||||
generator = g.node("TestDynamicDependencyCycle", input1=input1.out(0), input2=input2.out(0))
|
||||
g.node("SaveImage", images=generator.out(0))
|
||||
|
||||
# When the cycle is in a graph that is generated dynamically, it should raise a runtime error
|
||||
try:
|
||||
client.run(g)
|
||||
assert False, "Should have raised an error"
|
||||
except Exception as e:
|
||||
assert 'prompt_id' in e.args[0], f"Did not get back a proper error message: {e}"
|
||||
assert e.args[0]['node_id'] == generator.id, "Error should have been on the generator node"
|
||||
|
||||
def test_custom_is_changed(self, client: ComfyClient, builder: GraphBuilder):
|
||||
g = builder
|
||||
# Creating the nodes in this specific order previously caused a bug
|
||||
save = g.node("SaveImage")
|
||||
is_changed = g.node("TestCustomIsChanged", should_change=False)
|
||||
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
||||
|
||||
save.set_input('images', is_changed.out(0))
|
||||
is_changed.set_input('image', input1.out(0))
|
||||
|
||||
result1 = client.run(g)
|
||||
result2 = client.run(g)
|
||||
is_changed.set_input('should_change', True)
|
||||
result3 = client.run(g)
|
||||
result4 = client.run(g)
|
||||
assert result1.did_run(is_changed), "is_changed should have been run"
|
||||
assert not result2.did_run(is_changed), "is_changed should have been cached"
|
||||
assert result3.did_run(is_changed), "is_changed should have been re-run"
|
||||
assert result4.did_run(is_changed), "is_changed should not have been cached"
|
||||
|
||||
def test_undeclared_inputs(self, client: ComfyClient, builder: GraphBuilder):
|
||||
g = builder
|
||||
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
||||
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
|
||||
input3 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
||||
input4 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
||||
average = g.node("TestVariadicAverage", input1=input1.out(0), input2=input2.out(0), input3=input3.out(0), input4=input4.out(0))
|
||||
output = g.node("SaveImage", images=average.out(0))
|
||||
|
||||
result = client.run(g)
|
||||
result_image = result.get_images(output)[0]
|
||||
expected = 255 // 4
|
||||
assert numpy.array(result_image).min() == expected and numpy.array(result_image).max() == expected, "Image should be grey"
|
||||
|
||||
def test_for_loop(self, client: ComfyClient, builder: GraphBuilder):
|
||||
g = builder
|
||||
iterations = 4
|
||||
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
||||
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
|
||||
is_changed = g.node("TestCustomIsChanged", should_change=True, image=input2.out(0))
|
||||
for_open = g.node("TestForLoopOpen", remaining=iterations, initial_value1=is_changed.out(0))
|
||||
average = g.node("TestVariadicAverage", input1=input1.out(0), input2=for_open.out(2))
|
||||
for_close = g.node("TestForLoopClose", flow_control=for_open.out(0), initial_value1=average.out(0))
|
||||
output = g.node("SaveImage", images=for_close.out(0))
|
||||
|
||||
for iterations in range(1, 5):
|
||||
for_open.set_input('remaining', iterations)
|
||||
result = client.run(g)
|
||||
result_image = result.get_images(output)[0]
|
||||
expected = 255 // (2 ** iterations)
|
||||
assert numpy.array(result_image).min() == expected and numpy.array(result_image).max() == expected, "Image should be grey"
|
||||
assert result.did_run(is_changed)
|
||||
|
||||
def test_mixed_expansion_returns(self, client: ComfyClient, builder: GraphBuilder):
|
||||
g = builder
|
||||
val_list = g.node("TestMakeListNode", value1=0.1, value2=0.2, value3=0.3)
|
||||
mixed = g.node("TestMixedExpansionReturns", input1=val_list.out(0))
|
||||
output_dynamic = g.node("SaveImage", images=mixed.out(0))
|
||||
output_literal = g.node("SaveImage", images=mixed.out(1))
|
||||
|
||||
result = client.run(g)
|
||||
images_dynamic = result.get_images(output_dynamic)
|
||||
assert len(images_dynamic) == 3, "Should have 2 images"
|
||||
assert numpy.array(images_dynamic[0]).min() == 25 and numpy.array(images_dynamic[0]).max() == 25, "First image should be 0.1"
|
||||
assert numpy.array(images_dynamic[1]).min() == 51 and numpy.array(images_dynamic[1]).max() == 51, "Second image should be 0.2"
|
||||
assert numpy.array(images_dynamic[2]).min() == 76 and numpy.array(images_dynamic[2]).max() == 76, "Third image should be 0.3"
|
||||
|
||||
images_literal = result.get_images(output_literal)
|
||||
assert len(images_literal) == 3, "Should have 2 images"
|
||||
for i in range(3):
|
||||
assert numpy.array(images_literal[i]).min() == 255 and numpy.array(images_literal[i]).max() == 255, "All images should be white"
|
||||
|
||||
def test_mixed_lazy_results(self, client: ComfyClient, builder: GraphBuilder):
|
||||
g = builder
|
||||
val_list = g.node("TestMakeListNode", value1=0.0, value2=0.5, value3=1.0)
|
||||
mask = g.node("StubMask", value=val_list.out(0), height=512, width=512, batch_size=1)
|
||||
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
||||
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
|
||||
mix = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0))
|
||||
rebatch = g.node("RebatchImages", images=mix.out(0), batch_size=3)
|
||||
output = g.node("SaveImage", images=rebatch.out(0))
|
||||
|
||||
result = client.run(g)
|
||||
images = result.get_images(output)
|
||||
assert len(images) == 3, "Should have 3 image"
|
||||
assert numpy.array(images[0]).min() == 0 and numpy.array(images[0]).max() == 0, "First image should be 0.0"
|
||||
assert numpy.array(images[1]).min() == 127 and numpy.array(images[1]).max() == 127, "Second image should be 0.5"
|
||||
assert numpy.array(images[2]).min() == 255 and numpy.array(images[2]).max() == 255, "Third image should be 1.0"
|
||||
|
||||
def test_output_reuse(self, client: ComfyClient, builder: GraphBuilder):
|
||||
g = builder
|
||||
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
||||
|
||||
output1 = g.node("PreviewImage", images=input1.out(0))
|
||||
output2 = g.node("PreviewImage", images=input1.out(0))
|
||||
|
||||
result = client.run(g)
|
||||
images1 = result.get_images(output1)
|
||||
images2 = result.get_images(output2)
|
||||
assert len(images1) == 1, "Should have 1 image"
|
||||
assert len(images2) == 1, "Should have 1 image"
|
||||
|
23
tests/inference/testing_nodes/testing-pack/__init__.py
Normal file
23
tests/inference/testing_nodes/testing-pack/__init__.py
Normal file
@@ -0,0 +1,23 @@
|
||||
from .specific_tests import TEST_NODE_CLASS_MAPPINGS, TEST_NODE_DISPLAY_NAME_MAPPINGS
|
||||
from .flow_control import FLOW_CONTROL_NODE_CLASS_MAPPINGS, FLOW_CONTROL_NODE_DISPLAY_NAME_MAPPINGS
|
||||
from .util import UTILITY_NODE_CLASS_MAPPINGS, UTILITY_NODE_DISPLAY_NAME_MAPPINGS
|
||||
from .conditions import CONDITION_NODE_CLASS_MAPPINGS, CONDITION_NODE_DISPLAY_NAME_MAPPINGS
|
||||
from .stubs import TEST_STUB_NODE_CLASS_MAPPINGS, TEST_STUB_NODE_DISPLAY_NAME_MAPPINGS
|
||||
|
||||
# NODE_CLASS_MAPPINGS = GENERAL_NODE_CLASS_MAPPINGS.update(COMPONENT_NODE_CLASS_MAPPINGS)
|
||||
# NODE_DISPLAY_NAME_MAPPINGS = GENERAL_NODE_DISPLAY_NAME_MAPPINGS.update(COMPONENT_NODE_DISPLAY_NAME_MAPPINGS)
|
||||
|
||||
NODE_CLASS_MAPPINGS = {}
|
||||
NODE_CLASS_MAPPINGS.update(TEST_NODE_CLASS_MAPPINGS)
|
||||
NODE_CLASS_MAPPINGS.update(FLOW_CONTROL_NODE_CLASS_MAPPINGS)
|
||||
NODE_CLASS_MAPPINGS.update(UTILITY_NODE_CLASS_MAPPINGS)
|
||||
NODE_CLASS_MAPPINGS.update(CONDITION_NODE_CLASS_MAPPINGS)
|
||||
NODE_CLASS_MAPPINGS.update(TEST_STUB_NODE_CLASS_MAPPINGS)
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {}
|
||||
NODE_DISPLAY_NAME_MAPPINGS.update(TEST_NODE_DISPLAY_NAME_MAPPINGS)
|
||||
NODE_DISPLAY_NAME_MAPPINGS.update(FLOW_CONTROL_NODE_DISPLAY_NAME_MAPPINGS)
|
||||
NODE_DISPLAY_NAME_MAPPINGS.update(UTILITY_NODE_DISPLAY_NAME_MAPPINGS)
|
||||
NODE_DISPLAY_NAME_MAPPINGS.update(CONDITION_NODE_DISPLAY_NAME_MAPPINGS)
|
||||
NODE_DISPLAY_NAME_MAPPINGS.update(TEST_STUB_NODE_DISPLAY_NAME_MAPPINGS)
|
||||
|
194
tests/inference/testing_nodes/testing-pack/conditions.py
Normal file
194
tests/inference/testing_nodes/testing-pack/conditions.py
Normal file
@@ -0,0 +1,194 @@
|
||||
import re
|
||||
import torch
|
||||
|
||||
class TestIntConditions:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"a": ("INT", {"default": 0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 1}),
|
||||
"b": ("INT", {"default": 0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 1}),
|
||||
"operation": (["==", "!=", "<", ">", "<=", ">="],),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("BOOLEAN",)
|
||||
FUNCTION = "int_condition"
|
||||
|
||||
CATEGORY = "Testing/Logic"
|
||||
|
||||
def int_condition(self, a, b, operation):
|
||||
if operation == "==":
|
||||
return (a == b,)
|
||||
elif operation == "!=":
|
||||
return (a != b,)
|
||||
elif operation == "<":
|
||||
return (a < b,)
|
||||
elif operation == ">":
|
||||
return (a > b,)
|
||||
elif operation == "<=":
|
||||
return (a <= b,)
|
||||
elif operation == ">=":
|
||||
return (a >= b,)
|
||||
|
||||
|
||||
class TestFloatConditions:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"a": ("FLOAT", {"default": 0, "min": -999999999999.0, "max": 999999999999.0, "step": 1}),
|
||||
"b": ("FLOAT", {"default": 0, "min": -999999999999.0, "max": 999999999999.0, "step": 1}),
|
||||
"operation": (["==", "!=", "<", ">", "<=", ">="],),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("BOOLEAN",)
|
||||
FUNCTION = "float_condition"
|
||||
|
||||
CATEGORY = "Testing/Logic"
|
||||
|
||||
def float_condition(self, a, b, operation):
|
||||
if operation == "==":
|
||||
return (a == b,)
|
||||
elif operation == "!=":
|
||||
return (a != b,)
|
||||
elif operation == "<":
|
||||
return (a < b,)
|
||||
elif operation == ">":
|
||||
return (a > b,)
|
||||
elif operation == "<=":
|
||||
return (a <= b,)
|
||||
elif operation == ">=":
|
||||
return (a >= b,)
|
||||
|
||||
class TestStringConditions:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"a": ("STRING", {"multiline": False}),
|
||||
"b": ("STRING", {"multiline": False}),
|
||||
"operation": (["a == b", "a != b", "a IN b", "a MATCH REGEX(b)", "a BEGINSWITH b", "a ENDSWITH b"],),
|
||||
"case_sensitive": ("BOOLEAN", {"default": True}),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("BOOLEAN",)
|
||||
FUNCTION = "string_condition"
|
||||
|
||||
CATEGORY = "Testing/Logic"
|
||||
|
||||
def string_condition(self, a, b, operation, case_sensitive):
|
||||
if not case_sensitive:
|
||||
a = a.lower()
|
||||
b = b.lower()
|
||||
|
||||
if operation == "a == b":
|
||||
return (a == b,)
|
||||
elif operation == "a != b":
|
||||
return (a != b,)
|
||||
elif operation == "a IN b":
|
||||
return (a in b,)
|
||||
elif operation == "a MATCH REGEX(b)":
|
||||
try:
|
||||
return (re.match(b, a) is not None,)
|
||||
except:
|
||||
return (False,)
|
||||
elif operation == "a BEGINSWITH b":
|
||||
return (a.startswith(b),)
|
||||
elif operation == "a ENDSWITH b":
|
||||
return (a.endswith(b),)
|
||||
|
||||
class TestToBoolNode:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"value": ("*",),
|
||||
},
|
||||
"optional": {
|
||||
"invert": ("BOOLEAN", {"default": False}),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("BOOLEAN",)
|
||||
FUNCTION = "to_bool"
|
||||
|
||||
CATEGORY = "Testing/Logic"
|
||||
|
||||
def to_bool(self, value, invert = False):
|
||||
if isinstance(value, torch.Tensor):
|
||||
if value.max().item() == 0 and value.min().item() == 0:
|
||||
result = False
|
||||
else:
|
||||
result = True
|
||||
else:
|
||||
try:
|
||||
result = bool(value)
|
||||
except:
|
||||
# Can't convert it? Well then it's something or other. I dunno, I'm not a Python programmer.
|
||||
result = True
|
||||
|
||||
if invert:
|
||||
result = not result
|
||||
|
||||
return (result,)
|
||||
|
||||
class TestBoolOperationNode:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"a": ("BOOLEAN",),
|
||||
"b": ("BOOLEAN",),
|
||||
"op": (["a AND b", "a OR b", "a XOR b", "NOT a"],),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("BOOLEAN",)
|
||||
FUNCTION = "bool_operation"
|
||||
|
||||
CATEGORY = "Testing/Logic"
|
||||
|
||||
def bool_operation(self, a, b, op):
|
||||
if op == "a AND b":
|
||||
return (a and b,)
|
||||
elif op == "a OR b":
|
||||
return (a or b,)
|
||||
elif op == "a XOR b":
|
||||
return (a ^ b,)
|
||||
elif op == "NOT a":
|
||||
return (not a,)
|
||||
|
||||
|
||||
CONDITION_NODE_CLASS_MAPPINGS = {
|
||||
"TestIntConditions": TestIntConditions,
|
||||
"TestFloatConditions": TestFloatConditions,
|
||||
"TestStringConditions": TestStringConditions,
|
||||
"TestToBoolNode": TestToBoolNode,
|
||||
"TestBoolOperationNode": TestBoolOperationNode,
|
||||
}
|
||||
|
||||
CONDITION_NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"TestIntConditions": "Int Condition",
|
||||
"TestFloatConditions": "Float Condition",
|
||||
"TestStringConditions": "String Condition",
|
||||
"TestToBoolNode": "To Bool",
|
||||
"TestBoolOperationNode": "Bool Operation",
|
||||
}
|
173
tests/inference/testing_nodes/testing-pack/flow_control.py
Normal file
173
tests/inference/testing_nodes/testing-pack/flow_control.py
Normal file
@@ -0,0 +1,173 @@
|
||||
from comfy.graph_utils import GraphBuilder, is_link
|
||||
from comfy.graph import ExecutionBlocker
|
||||
from .tools import VariantSupport
|
||||
|
||||
NUM_FLOW_SOCKETS = 5
|
||||
@VariantSupport()
|
||||
class TestWhileLoopOpen:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
inputs = {
|
||||
"required": {
|
||||
"condition": ("BOOLEAN", {"default": True}),
|
||||
},
|
||||
"optional": {
|
||||
},
|
||||
}
|
||||
for i in range(NUM_FLOW_SOCKETS):
|
||||
inputs["optional"][f"initial_value{i}"] = ("*",)
|
||||
return inputs
|
||||
|
||||
RETURN_TYPES = tuple(["FLOW_CONTROL"] + ["*"] * NUM_FLOW_SOCKETS)
|
||||
RETURN_NAMES = tuple(["FLOW_CONTROL"] + [f"value{i}" for i in range(NUM_FLOW_SOCKETS)])
|
||||
FUNCTION = "while_loop_open"
|
||||
|
||||
CATEGORY = "Testing/Flow"
|
||||
|
||||
def while_loop_open(self, condition, **kwargs):
|
||||
values = []
|
||||
for i in range(NUM_FLOW_SOCKETS):
|
||||
values.append(kwargs.get(f"initial_value{i}", None))
|
||||
return tuple(["stub"] + values)
|
||||
|
||||
@VariantSupport()
|
||||
class TestWhileLoopClose:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
inputs = {
|
||||
"required": {
|
||||
"flow_control": ("FLOW_CONTROL", {"rawLink": True}),
|
||||
"condition": ("BOOLEAN", {"forceInput": True}),
|
||||
},
|
||||
"optional": {
|
||||
},
|
||||
"hidden": {
|
||||
"dynprompt": "DYNPROMPT",
|
||||
"unique_id": "UNIQUE_ID",
|
||||
}
|
||||
}
|
||||
for i in range(NUM_FLOW_SOCKETS):
|
||||
inputs["optional"][f"initial_value{i}"] = ("*",)
|
||||
return inputs
|
||||
|
||||
RETURN_TYPES = tuple(["*"] * NUM_FLOW_SOCKETS)
|
||||
RETURN_NAMES = tuple([f"value{i}" for i in range(NUM_FLOW_SOCKETS)])
|
||||
FUNCTION = "while_loop_close"
|
||||
|
||||
CATEGORY = "Testing/Flow"
|
||||
|
||||
def explore_dependencies(self, node_id, dynprompt, upstream):
|
||||
node_info = dynprompt.get_node(node_id)
|
||||
if "inputs" not in node_info:
|
||||
return
|
||||
for k, v in node_info["inputs"].items():
|
||||
if is_link(v):
|
||||
parent_id = v[0]
|
||||
if parent_id not in upstream:
|
||||
upstream[parent_id] = []
|
||||
self.explore_dependencies(parent_id, dynprompt, upstream)
|
||||
upstream[parent_id].append(node_id)
|
||||
|
||||
def collect_contained(self, node_id, upstream, contained):
|
||||
if node_id not in upstream:
|
||||
return
|
||||
for child_id in upstream[node_id]:
|
||||
if child_id not in contained:
|
||||
contained[child_id] = True
|
||||
self.collect_contained(child_id, upstream, contained)
|
||||
|
||||
|
||||
def while_loop_close(self, flow_control, condition, dynprompt=None, unique_id=None, **kwargs):
|
||||
assert dynprompt is not None
|
||||
if not condition:
|
||||
# We're done with the loop
|
||||
values = []
|
||||
for i in range(NUM_FLOW_SOCKETS):
|
||||
values.append(kwargs.get(f"initial_value{i}", None))
|
||||
return tuple(values)
|
||||
|
||||
# We want to loop
|
||||
upstream = {}
|
||||
# Get the list of all nodes between the open and close nodes
|
||||
self.explore_dependencies(unique_id, dynprompt, upstream)
|
||||
|
||||
contained = {}
|
||||
open_node = flow_control[0]
|
||||
self.collect_contained(open_node, upstream, contained)
|
||||
contained[unique_id] = True
|
||||
contained[open_node] = True
|
||||
|
||||
# We'll use the default prefix, but to avoid having node names grow exponentially in size,
|
||||
# we'll use "Recurse" for the name of the recursively-generated copy of this node.
|
||||
graph = GraphBuilder()
|
||||
for node_id in contained:
|
||||
original_node = dynprompt.get_node(node_id)
|
||||
node = graph.node(original_node["class_type"], "Recurse" if node_id == unique_id else node_id)
|
||||
node.set_override_display_id(node_id)
|
||||
for node_id in contained:
|
||||
original_node = dynprompt.get_node(node_id)
|
||||
node = graph.lookup_node("Recurse" if node_id == unique_id else node_id)
|
||||
assert node is not None
|
||||
for k, v in original_node["inputs"].items():
|
||||
if is_link(v) and v[0] in contained:
|
||||
parent = graph.lookup_node(v[0])
|
||||
assert parent is not None
|
||||
node.set_input(k, parent.out(v[1]))
|
||||
else:
|
||||
node.set_input(k, v)
|
||||
new_open = graph.lookup_node(open_node)
|
||||
assert new_open is not None
|
||||
for i in range(NUM_FLOW_SOCKETS):
|
||||
key = f"initial_value{i}"
|
||||
new_open.set_input(key, kwargs.get(key, None))
|
||||
my_clone = graph.lookup_node("Recurse")
|
||||
assert my_clone is not None
|
||||
result = map(lambda x: my_clone.out(x), range(NUM_FLOW_SOCKETS))
|
||||
return {
|
||||
"result": tuple(result),
|
||||
"expand": graph.finalize(),
|
||||
}
|
||||
|
||||
@VariantSupport()
|
||||
class TestExecutionBlockerNode:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
inputs = {
|
||||
"required": {
|
||||
"input": ("*",),
|
||||
"block": ("BOOLEAN",),
|
||||
"verbose": ("BOOLEAN", {"default": False}),
|
||||
},
|
||||
}
|
||||
return inputs
|
||||
|
||||
RETURN_TYPES = ("*",)
|
||||
RETURN_NAMES = ("output",)
|
||||
FUNCTION = "execution_blocker"
|
||||
|
||||
CATEGORY = "Testing/Flow"
|
||||
|
||||
def execution_blocker(self, input, block, verbose):
|
||||
if block:
|
||||
return (ExecutionBlocker("Blocked Execution" if verbose else None),)
|
||||
return (input,)
|
||||
|
||||
FLOW_CONTROL_NODE_CLASS_MAPPINGS = {
|
||||
"TestWhileLoopOpen": TestWhileLoopOpen,
|
||||
"TestWhileLoopClose": TestWhileLoopClose,
|
||||
"TestExecutionBlocker": TestExecutionBlockerNode,
|
||||
}
|
||||
FLOW_CONTROL_NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"TestWhileLoopOpen": "While Loop Open",
|
||||
"TestWhileLoopClose": "While Loop Close",
|
||||
"TestExecutionBlocker": "Execution Blocker",
|
||||
}
|
335
tests/inference/testing_nodes/testing-pack/specific_tests.py
Normal file
335
tests/inference/testing_nodes/testing-pack/specific_tests.py
Normal file
@@ -0,0 +1,335 @@
|
||||
import torch
|
||||
from .tools import VariantSupport
|
||||
from comfy.graph_utils import GraphBuilder
|
||||
|
||||
class TestLazyMixImages:
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"image1": ("IMAGE",{"lazy": True}),
|
||||
"image2": ("IMAGE",{"lazy": True}),
|
||||
"mask": ("MASK",),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
FUNCTION = "mix"
|
||||
|
||||
CATEGORY = "Testing/Nodes"
|
||||
|
||||
def check_lazy_status(self, mask, image1, image2):
|
||||
mask_min = mask.min()
|
||||
mask_max = mask.max()
|
||||
needed = []
|
||||
if image1 is None and (mask_min != 1.0 or mask_max != 1.0):
|
||||
needed.append("image1")
|
||||
if image2 is None and (mask_min != 0.0 or mask_max != 0.0):
|
||||
needed.append("image2")
|
||||
return needed
|
||||
|
||||
# Not trying to handle different batch sizes here just to keep the demo simple
|
||||
def mix(self, mask, image1, image2):
|
||||
mask_min = mask.min()
|
||||
mask_max = mask.max()
|
||||
if mask_min == 0.0 and mask_max == 0.0:
|
||||
return (image1,)
|
||||
elif mask_min == 1.0 and mask_max == 1.0:
|
||||
return (image2,)
|
||||
|
||||
if len(mask.shape) == 2:
|
||||
mask = mask.unsqueeze(0)
|
||||
if len(mask.shape) == 3:
|
||||
mask = mask.unsqueeze(3)
|
||||
if mask.shape[3] < image1.shape[3]:
|
||||
mask = mask.repeat(1, 1, 1, image1.shape[3])
|
||||
|
||||
result = image1 * (1. - mask) + image2 * mask,
|
||||
return (result[0],)
|
||||
|
||||
class TestVariadicAverage:
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"input1": ("IMAGE",),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
FUNCTION = "variadic_average"
|
||||
|
||||
CATEGORY = "Testing/Nodes"
|
||||
|
||||
def variadic_average(self, input1, **kwargs):
|
||||
inputs = [input1]
|
||||
while 'input' + str(len(inputs) + 1) in kwargs:
|
||||
inputs.append(kwargs['input' + str(len(inputs) + 1)])
|
||||
return (torch.stack(inputs).mean(dim=0),)
|
||||
|
||||
|
||||
class TestCustomIsChanged:
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"image": ("IMAGE",),
|
||||
},
|
||||
"optional": {
|
||||
"should_change": ("BOOL", {"default": False}),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
FUNCTION = "custom_is_changed"
|
||||
|
||||
CATEGORY = "Testing/Nodes"
|
||||
|
||||
def custom_is_changed(self, image, should_change=False):
|
||||
return (image,)
|
||||
|
||||
@classmethod
|
||||
def IS_CHANGED(cls, should_change=False, *args, **kwargs):
|
||||
if should_change:
|
||||
return float("NaN")
|
||||
else:
|
||||
return False
|
||||
|
||||
class TestCustomValidation1:
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"input1": ("IMAGE,FLOAT",),
|
||||
"input2": ("IMAGE,FLOAT",),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
FUNCTION = "custom_validation1"
|
||||
|
||||
CATEGORY = "Testing/Nodes"
|
||||
|
||||
def custom_validation1(self, input1, input2):
|
||||
if isinstance(input1, float) and isinstance(input2, float):
|
||||
result = torch.ones([1, 512, 512, 3]) * input1 * input2
|
||||
else:
|
||||
result = input1 * input2
|
||||
return (result,)
|
||||
|
||||
@classmethod
|
||||
def VALIDATE_INPUTS(cls, input1=None, input2=None):
|
||||
if input1 is not None:
|
||||
if not isinstance(input1, (torch.Tensor, float)):
|
||||
return f"Invalid type of input1: {type(input1)}"
|
||||
if input2 is not None:
|
||||
if not isinstance(input2, (torch.Tensor, float)):
|
||||
return f"Invalid type of input2: {type(input2)}"
|
||||
|
||||
return True
|
||||
|
||||
class TestCustomValidation2:
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"input1": ("IMAGE,FLOAT",),
|
||||
"input2": ("IMAGE,FLOAT",),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
FUNCTION = "custom_validation2"
|
||||
|
||||
CATEGORY = "Testing/Nodes"
|
||||
|
||||
def custom_validation2(self, input1, input2):
|
||||
if isinstance(input1, float) and isinstance(input2, float):
|
||||
result = torch.ones([1, 512, 512, 3]) * input1 * input2
|
||||
else:
|
||||
result = input1 * input2
|
||||
return (result,)
|
||||
|
||||
@classmethod
|
||||
def VALIDATE_INPUTS(cls, input_types, input1=None, input2=None):
|
||||
if input1 is not None:
|
||||
if not isinstance(input1, (torch.Tensor, float)):
|
||||
return f"Invalid type of input1: {type(input1)}"
|
||||
if input2 is not None:
|
||||
if not isinstance(input2, (torch.Tensor, float)):
|
||||
return f"Invalid type of input2: {type(input2)}"
|
||||
|
||||
if 'input1' in input_types:
|
||||
if input_types['input1'] not in ["IMAGE", "FLOAT"]:
|
||||
return f"Invalid type of input1: {input_types['input1']}"
|
||||
if 'input2' in input_types:
|
||||
if input_types['input2'] not in ["IMAGE", "FLOAT"]:
|
||||
return f"Invalid type of input2: {input_types['input2']}"
|
||||
|
||||
return True
|
||||
|
||||
@VariantSupport()
|
||||
class TestCustomValidation3:
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"input1": ("IMAGE,FLOAT",),
|
||||
"input2": ("IMAGE,FLOAT",),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
FUNCTION = "custom_validation3"
|
||||
|
||||
CATEGORY = "Testing/Nodes"
|
||||
|
||||
def custom_validation3(self, input1, input2):
|
||||
if isinstance(input1, float) and isinstance(input2, float):
|
||||
result = torch.ones([1, 512, 512, 3]) * input1 * input2
|
||||
else:
|
||||
result = input1 * input2
|
||||
return (result,)
|
||||
|
||||
class TestCustomValidation4:
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"input1": ("FLOAT",),
|
||||
"input2": ("FLOAT",),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
FUNCTION = "custom_validation4"
|
||||
|
||||
CATEGORY = "Testing/Nodes"
|
||||
|
||||
def custom_validation4(self, input1, input2):
|
||||
result = torch.ones([1, 512, 512, 3]) * input1 * input2
|
||||
return (result,)
|
||||
|
||||
@classmethod
|
||||
def VALIDATE_INPUTS(cls, input1, input2):
|
||||
if input1 is not None:
|
||||
if not isinstance(input1, float):
|
||||
return f"Invalid type of input1: {type(input1)}"
|
||||
if input2 is not None:
|
||||
if not isinstance(input2, float):
|
||||
return f"Invalid type of input2: {type(input2)}"
|
||||
|
||||
return True
|
||||
|
||||
class TestCustomValidation5:
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"input1": ("FLOAT", {"min": 0.0, "max": 1.0}),
|
||||
"input2": ("FLOAT", {"min": 0.0, "max": 1.0}),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
FUNCTION = "custom_validation5"
|
||||
|
||||
CATEGORY = "Testing/Nodes"
|
||||
|
||||
def custom_validation5(self, input1, input2):
|
||||
value = input1 * input2
|
||||
return (torch.ones([1, 512, 512, 3]) * value,)
|
||||
|
||||
@classmethod
|
||||
def VALIDATE_INPUTS(cls, **kwargs):
|
||||
if kwargs['input2'] == 7.0:
|
||||
return "7s are not allowed. I've never liked 7s."
|
||||
return True
|
||||
|
||||
class TestDynamicDependencyCycle:
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"input1": ("IMAGE",),
|
||||
"input2": ("IMAGE",),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
FUNCTION = "dynamic_dependency_cycle"
|
||||
|
||||
CATEGORY = "Testing/Nodes"
|
||||
|
||||
def dynamic_dependency_cycle(self, input1, input2):
|
||||
g = GraphBuilder()
|
||||
mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1)
|
||||
mix1 = g.node("TestLazyMixImages", image1=input1, mask=mask.out(0))
|
||||
mix2 = g.node("TestLazyMixImages", image1=mix1.out(0), image2=input2, mask=mask.out(0))
|
||||
|
||||
# Create the cyle
|
||||
mix1.set_input("image2", mix2.out(0))
|
||||
|
||||
return {
|
||||
"result": (mix2.out(0),),
|
||||
"expand": g.finalize(),
|
||||
}
|
||||
|
||||
class TestMixedExpansionReturns:
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"input1": ("FLOAT",),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("IMAGE","IMAGE")
|
||||
FUNCTION = "mixed_expansion_returns"
|
||||
|
||||
CATEGORY = "Testing/Nodes"
|
||||
|
||||
def mixed_expansion_returns(self, input1):
|
||||
white_image = torch.ones([1, 512, 512, 3])
|
||||
if input1 <= 0.1:
|
||||
return (torch.ones([1, 512, 512, 3]) * 0.1, white_image)
|
||||
elif input1 <= 0.2:
|
||||
return {
|
||||
"result": (torch.ones([1, 512, 512, 3]) * 0.2, white_image),
|
||||
}
|
||||
else:
|
||||
g = GraphBuilder()
|
||||
mask = g.node("StubMask", value=0.3, height=512, width=512, batch_size=1)
|
||||
black = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
||||
white = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
|
||||
mix = g.node("TestLazyMixImages", image1=black.out(0), image2=white.out(0), mask=mask.out(0))
|
||||
return {
|
||||
"result": (mix.out(0), white_image),
|
||||
"expand": g.finalize(),
|
||||
}
|
||||
|
||||
TEST_NODE_CLASS_MAPPINGS = {
|
||||
"TestLazyMixImages": TestLazyMixImages,
|
||||
"TestVariadicAverage": TestVariadicAverage,
|
||||
"TestCustomIsChanged": TestCustomIsChanged,
|
||||
"TestCustomValidation1": TestCustomValidation1,
|
||||
"TestCustomValidation2": TestCustomValidation2,
|
||||
"TestCustomValidation3": TestCustomValidation3,
|
||||
"TestCustomValidation4": TestCustomValidation4,
|
||||
"TestCustomValidation5": TestCustomValidation5,
|
||||
"TestDynamicDependencyCycle": TestDynamicDependencyCycle,
|
||||
"TestMixedExpansionReturns": TestMixedExpansionReturns,
|
||||
}
|
||||
|
||||
TEST_NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"TestLazyMixImages": "Lazy Mix Images",
|
||||
"TestVariadicAverage": "Variadic Average",
|
||||
"TestCustomIsChanged": "Custom IsChanged",
|
||||
"TestCustomValidation1": "Custom Validation 1",
|
||||
"TestCustomValidation2": "Custom Validation 2",
|
||||
"TestCustomValidation3": "Custom Validation 3",
|
||||
"TestCustomValidation4": "Custom Validation 4",
|
||||
"TestCustomValidation5": "Custom Validation 5",
|
||||
"TestDynamicDependencyCycle": "Dynamic Dependency Cycle",
|
||||
"TestMixedExpansionReturns": "Mixed Expansion Returns",
|
||||
}
|
105
tests/inference/testing_nodes/testing-pack/stubs.py
Normal file
105
tests/inference/testing_nodes/testing-pack/stubs.py
Normal file
@@ -0,0 +1,105 @@
|
||||
import torch
|
||||
|
||||
class StubImage:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"content": (['WHITE', 'BLACK', 'NOISE'],),
|
||||
"height": ("INT", {"default": 512, "min": 1, "max": 1024 ** 3, "step": 1}),
|
||||
"width": ("INT", {"default": 512, "min": 1, "max": 4096 ** 3, "step": 1}),
|
||||
"batch_size": ("INT", {"default": 1, "min": 1, "max": 1024 ** 3, "step": 1}),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
FUNCTION = "stub_image"
|
||||
|
||||
CATEGORY = "Testing/Stub Nodes"
|
||||
|
||||
def stub_image(self, content, height, width, batch_size):
|
||||
if content == "WHITE":
|
||||
return (torch.ones(batch_size, height, width, 3),)
|
||||
elif content == "BLACK":
|
||||
return (torch.zeros(batch_size, height, width, 3),)
|
||||
elif content == "NOISE":
|
||||
return (torch.rand(batch_size, height, width, 3),)
|
||||
|
||||
class StubMask:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"value": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
|
||||
"height": ("INT", {"default": 512, "min": 1, "max": 1024 ** 3, "step": 1}),
|
||||
"width": ("INT", {"default": 512, "min": 1, "max": 4096 ** 3, "step": 1}),
|
||||
"batch_size": ("INT", {"default": 1, "min": 1, "max": 1024 ** 3, "step": 1}),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("MASK",)
|
||||
FUNCTION = "stub_mask"
|
||||
|
||||
CATEGORY = "Testing/Stub Nodes"
|
||||
|
||||
def stub_mask(self, value, height, width, batch_size):
|
||||
return (torch.ones(batch_size, height, width) * value,)
|
||||
|
||||
class StubInt:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"value": ("INT", {"default": 0, "min": -0xffffffff, "max": 0xffffffff, "step": 1}),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("INT",)
|
||||
FUNCTION = "stub_int"
|
||||
|
||||
CATEGORY = "Testing/Stub Nodes"
|
||||
|
||||
def stub_int(self, value):
|
||||
return (value,)
|
||||
|
||||
class StubFloat:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"value": ("FLOAT", {"default": 0.0, "min": -1.0e38, "max": 1.0e38, "step": 0.01}),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("FLOAT",)
|
||||
FUNCTION = "stub_float"
|
||||
|
||||
CATEGORY = "Testing/Stub Nodes"
|
||||
|
||||
def stub_float(self, value):
|
||||
return (value,)
|
||||
|
||||
TEST_STUB_NODE_CLASS_MAPPINGS = {
|
||||
"StubImage": StubImage,
|
||||
"StubMask": StubMask,
|
||||
"StubInt": StubInt,
|
||||
"StubFloat": StubFloat,
|
||||
}
|
||||
TEST_STUB_NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"StubImage": "Stub Image",
|
||||
"StubMask": "Stub Mask",
|
||||
"StubInt": "Stub Int",
|
||||
"StubFloat": "Stub Float",
|
||||
}
|
53
tests/inference/testing_nodes/testing-pack/tools.py
Normal file
53
tests/inference/testing_nodes/testing-pack/tools.py
Normal file
@@ -0,0 +1,53 @@
|
||||
|
||||
def MakeSmartType(t):
|
||||
if isinstance(t, str):
|
||||
return SmartType(t)
|
||||
return t
|
||||
|
||||
class SmartType(str):
|
||||
def __ne__(self, other):
|
||||
if self == "*" or other == "*":
|
||||
return False
|
||||
selfset = set(self.split(','))
|
||||
otherset = set(other.split(','))
|
||||
return not selfset.issubset(otherset)
|
||||
|
||||
def VariantSupport():
|
||||
def decorator(cls):
|
||||
if hasattr(cls, "INPUT_TYPES"):
|
||||
old_input_types = getattr(cls, "INPUT_TYPES")
|
||||
def new_input_types(*args, **kwargs):
|
||||
types = old_input_types(*args, **kwargs)
|
||||
for category in ["required", "optional"]:
|
||||
if category not in types:
|
||||
continue
|
||||
for key, value in types[category].items():
|
||||
if isinstance(value, tuple):
|
||||
types[category][key] = (MakeSmartType(value[0]),) + value[1:]
|
||||
return types
|
||||
setattr(cls, "INPUT_TYPES", new_input_types)
|
||||
if hasattr(cls, "RETURN_TYPES"):
|
||||
old_return_types = cls.RETURN_TYPES
|
||||
setattr(cls, "RETURN_TYPES", tuple(MakeSmartType(x) for x in old_return_types))
|
||||
if hasattr(cls, "VALIDATE_INPUTS"):
|
||||
# Reflection is used to determine what the function signature is, so we can't just change the function signature
|
||||
raise NotImplementedError("VariantSupport does not support VALIDATE_INPUTS yet")
|
||||
else:
|
||||
def validate_inputs(input_types):
|
||||
inputs = cls.INPUT_TYPES()
|
||||
for key, value in input_types.items():
|
||||
if isinstance(value, SmartType):
|
||||
continue
|
||||
if "required" in inputs and key in inputs["required"]:
|
||||
expected_type = inputs["required"][key][0]
|
||||
elif "optional" in inputs and key in inputs["optional"]:
|
||||
expected_type = inputs["optional"][key][0]
|
||||
else:
|
||||
expected_type = None
|
||||
if expected_type is not None and MakeSmartType(value) != expected_type:
|
||||
return f"Invalid type of {key}: {value} (expected {expected_type})"
|
||||
return True
|
||||
setattr(cls, "VALIDATE_INPUTS", validate_inputs)
|
||||
return cls
|
||||
return decorator
|
||||
|
364
tests/inference/testing_nodes/testing-pack/util.py
Normal file
364
tests/inference/testing_nodes/testing-pack/util.py
Normal file
@@ -0,0 +1,364 @@
|
||||
from comfy.graph_utils import GraphBuilder
|
||||
from .tools import VariantSupport
|
||||
|
||||
@VariantSupport()
|
||||
class TestAccumulateNode:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"to_add": ("*",),
|
||||
},
|
||||
"optional": {
|
||||
"accumulation": ("ACCUMULATION",),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("ACCUMULATION",)
|
||||
FUNCTION = "accumulate"
|
||||
|
||||
CATEGORY = "Testing/Lists"
|
||||
|
||||
def accumulate(self, to_add, accumulation = None):
|
||||
if accumulation is None:
|
||||
value = [to_add]
|
||||
else:
|
||||
value = accumulation["accum"] + [to_add]
|
||||
return ({"accum": value},)
|
||||
|
||||
@VariantSupport()
|
||||
class TestAccumulationHeadNode:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"accumulation": ("ACCUMULATION",),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("ACCUMULATION", "*",)
|
||||
FUNCTION = "accumulation_head"
|
||||
|
||||
CATEGORY = "Testing/Lists"
|
||||
|
||||
def accumulation_head(self, accumulation):
|
||||
accum = accumulation["accum"]
|
||||
if len(accum) == 0:
|
||||
return (accumulation, None)
|
||||
else:
|
||||
return ({"accum": accum[1:]}, accum[0])
|
||||
|
||||
class TestAccumulationTailNode:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"accumulation": ("ACCUMULATION",),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("ACCUMULATION", "*",)
|
||||
FUNCTION = "accumulation_tail"
|
||||
|
||||
CATEGORY = "Testing/Lists"
|
||||
|
||||
def accumulation_tail(self, accumulation):
|
||||
accum = accumulation["accum"]
|
||||
if len(accum) == 0:
|
||||
return (None, accumulation)
|
||||
else:
|
||||
return ({"accum": accum[:-1]}, accum[-1])
|
||||
|
||||
@VariantSupport()
|
||||
class TestAccumulationToListNode:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"accumulation": ("ACCUMULATION",),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("*",)
|
||||
OUTPUT_IS_LIST = (True,)
|
||||
|
||||
FUNCTION = "accumulation_to_list"
|
||||
|
||||
CATEGORY = "Testing/Lists"
|
||||
|
||||
def accumulation_to_list(self, accumulation):
|
||||
return (accumulation["accum"],)
|
||||
|
||||
@VariantSupport()
|
||||
class TestListToAccumulationNode:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"list": ("*",),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("ACCUMULATION",)
|
||||
INPUT_IS_LIST = (True,)
|
||||
|
||||
FUNCTION = "list_to_accumulation"
|
||||
|
||||
CATEGORY = "Testing/Lists"
|
||||
|
||||
def list_to_accumulation(self, list):
|
||||
return ({"accum": list},)
|
||||
|
||||
@VariantSupport()
|
||||
class TestAccumulationGetLengthNode:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"accumulation": ("ACCUMULATION",),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("INT",)
|
||||
|
||||
FUNCTION = "accumlength"
|
||||
|
||||
CATEGORY = "Testing/Lists"
|
||||
|
||||
def accumlength(self, accumulation):
|
||||
return (len(accumulation['accum']),)
|
||||
|
||||
@VariantSupport()
|
||||
class TestAccumulationGetItemNode:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"accumulation": ("ACCUMULATION",),
|
||||
"index": ("INT", {"default":0, "step":1})
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("*",)
|
||||
|
||||
FUNCTION = "get_item"
|
||||
|
||||
CATEGORY = "Testing/Lists"
|
||||
|
||||
def get_item(self, accumulation, index):
|
||||
return (accumulation['accum'][index],)
|
||||
|
||||
@VariantSupport()
|
||||
class TestAccumulationSetItemNode:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"accumulation": ("ACCUMULATION",),
|
||||
"index": ("INT", {"default":0, "step":1}),
|
||||
"value": ("*",),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("ACCUMULATION",)
|
||||
|
||||
FUNCTION = "set_item"
|
||||
|
||||
CATEGORY = "Testing/Lists"
|
||||
|
||||
def set_item(self, accumulation, index, value):
|
||||
new_accum = accumulation['accum'][:]
|
||||
new_accum[index] = value
|
||||
return ({"accum": new_accum},)
|
||||
|
||||
class TestIntMathOperation:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"a": ("INT", {"default": 0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 1}),
|
||||
"b": ("INT", {"default": 0, "min": -0xffffffffffffffff, "max": 0xffffffffffffffff, "step": 1}),
|
||||
"operation": (["add", "subtract", "multiply", "divide", "modulo", "power"],),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("INT",)
|
||||
FUNCTION = "int_math_operation"
|
||||
|
||||
CATEGORY = "Testing/Logic"
|
||||
|
||||
def int_math_operation(self, a, b, operation):
|
||||
if operation == "add":
|
||||
return (a + b,)
|
||||
elif operation == "subtract":
|
||||
return (a - b,)
|
||||
elif operation == "multiply":
|
||||
return (a * b,)
|
||||
elif operation == "divide":
|
||||
return (a // b,)
|
||||
elif operation == "modulo":
|
||||
return (a % b,)
|
||||
elif operation == "power":
|
||||
return (a ** b,)
|
||||
|
||||
|
||||
from .flow_control import NUM_FLOW_SOCKETS
|
||||
@VariantSupport()
|
||||
class TestForLoopOpen:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"remaining": ("INT", {"default": 1, "min": 0, "max": 100000, "step": 1}),
|
||||
},
|
||||
"optional": {
|
||||
f"initial_value{i}": ("*",) for i in range(1, NUM_FLOW_SOCKETS)
|
||||
},
|
||||
"hidden": {
|
||||
"initial_value0": ("*",)
|
||||
}
|
||||
}
|
||||
|
||||
RETURN_TYPES = tuple(["FLOW_CONTROL", "INT",] + ["*"] * (NUM_FLOW_SOCKETS-1))
|
||||
RETURN_NAMES = tuple(["flow_control", "remaining"] + [f"value{i}" for i in range(1, NUM_FLOW_SOCKETS)])
|
||||
FUNCTION = "for_loop_open"
|
||||
|
||||
CATEGORY = "Testing/Flow"
|
||||
|
||||
def for_loop_open(self, remaining, **kwargs):
|
||||
graph = GraphBuilder()
|
||||
if "initial_value0" in kwargs:
|
||||
remaining = kwargs["initial_value0"]
|
||||
while_open = graph.node("TestWhileLoopOpen", condition=remaining, initial_value0=remaining, **{(f"initial_value{i}"): kwargs.get(f"initial_value{i}", None) for i in range(1, NUM_FLOW_SOCKETS)})
|
||||
outputs = [kwargs.get(f"initial_value{i}", None) for i in range(1, NUM_FLOW_SOCKETS)]
|
||||
return {
|
||||
"result": tuple(["stub", remaining] + outputs),
|
||||
"expand": graph.finalize(),
|
||||
}
|
||||
|
||||
@VariantSupport()
|
||||
class TestForLoopClose:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"flow_control": ("FLOW_CONTROL", {"rawLink": True}),
|
||||
},
|
||||
"optional": {
|
||||
f"initial_value{i}": ("*",{"rawLink": True}) for i in range(1, NUM_FLOW_SOCKETS)
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = tuple(["*"] * (NUM_FLOW_SOCKETS-1))
|
||||
RETURN_NAMES = tuple([f"value{i}" for i in range(1, NUM_FLOW_SOCKETS)])
|
||||
FUNCTION = "for_loop_close"
|
||||
|
||||
CATEGORY = "Testing/Flow"
|
||||
|
||||
def for_loop_close(self, flow_control, **kwargs):
|
||||
graph = GraphBuilder()
|
||||
while_open = flow_control[0]
|
||||
sub = graph.node("TestIntMathOperation", operation="subtract", a=[while_open,1], b=1)
|
||||
cond = graph.node("TestToBoolNode", value=sub.out(0))
|
||||
input_values = {f"initial_value{i}": kwargs.get(f"initial_value{i}", None) for i in range(1, NUM_FLOW_SOCKETS)}
|
||||
while_close = graph.node("TestWhileLoopClose",
|
||||
flow_control=flow_control,
|
||||
condition=cond.out(0),
|
||||
initial_value0=sub.out(0),
|
||||
**input_values)
|
||||
return {
|
||||
"result": tuple([while_close.out(i) for i in range(1, NUM_FLOW_SOCKETS)]),
|
||||
"expand": graph.finalize(),
|
||||
}
|
||||
|
||||
NUM_LIST_SOCKETS = 10
|
||||
@VariantSupport()
|
||||
class TestMakeListNode:
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"value1": ("*",),
|
||||
},
|
||||
"optional": {
|
||||
f"value{i}": ("*",) for i in range(1, NUM_LIST_SOCKETS)
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("*",)
|
||||
FUNCTION = "make_list"
|
||||
OUTPUT_IS_LIST = (True,)
|
||||
|
||||
CATEGORY = "Testing/Lists"
|
||||
|
||||
def make_list(self, **kwargs):
|
||||
result = []
|
||||
for i in range(NUM_LIST_SOCKETS):
|
||||
if f"value{i}" in kwargs:
|
||||
result.append(kwargs[f"value{i}"])
|
||||
return (result,)
|
||||
|
||||
UTILITY_NODE_CLASS_MAPPINGS = {
|
||||
"TestAccumulateNode": TestAccumulateNode,
|
||||
"TestAccumulationHeadNode": TestAccumulationHeadNode,
|
||||
"TestAccumulationTailNode": TestAccumulationTailNode,
|
||||
"TestAccumulationToListNode": TestAccumulationToListNode,
|
||||
"TestListToAccumulationNode": TestListToAccumulationNode,
|
||||
"TestAccumulationGetLengthNode": TestAccumulationGetLengthNode,
|
||||
"TestAccumulationGetItemNode": TestAccumulationGetItemNode,
|
||||
"TestAccumulationSetItemNode": TestAccumulationSetItemNode,
|
||||
"TestForLoopOpen": TestForLoopOpen,
|
||||
"TestForLoopClose": TestForLoopClose,
|
||||
"TestIntMathOperation": TestIntMathOperation,
|
||||
"TestMakeListNode": TestMakeListNode,
|
||||
}
|
||||
UTILITY_NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"TestAccumulateNode": "Accumulate",
|
||||
"TestAccumulationHeadNode": "Accumulation Head",
|
||||
"TestAccumulationTailNode": "Accumulation Tail",
|
||||
"TestAccumulationToListNode": "Accumulation to List",
|
||||
"TestListToAccumulationNode": "List to Accumulation",
|
||||
"TestAccumulationGetLengthNode": "Accumulation Get Length",
|
||||
"TestAccumulationGetItemNode": "Accumulation Get Item",
|
||||
"TestAccumulationSetItemNode": "Accumulation Set Item",
|
||||
"TestForLoopOpen": "For Loop Open",
|
||||
"TestForLoopClose": "For Loop Close",
|
||||
"TestIntMathOperation": "Int Math Operation",
|
||||
"TestMakeListNode": "Make List",
|
||||
}
|
Reference in New Issue
Block a user