1
mirror of https://github.com/comfyanonymous/ComfyUI.git synced 2025-08-02 23:14:49 +08:00

Add a T2IAdapterLoader node to load T2I-Adapter models.

They are loaded as CONTROL_NET objects because they are similar.
This commit is contained in:
comfyanonymous
2023-02-25 00:55:42 -05:00
parent fcb25d37db
commit 4e6b83a80a
4 changed files with 233 additions and 1 deletions

View File

@@ -8,6 +8,7 @@ from ldm.util import instantiate_from_config
from ldm.models.autoencoder import AutoencoderKL
from omegaconf import OmegaConf
from .cldm import cldm
from .t2i_adapter import adapter
from . import utils
@@ -388,7 +389,7 @@ class ControlNet:
self.control_model = model_management.load_if_low_vram(self.control_model)
control = self.control_model(x=x_noisy, hint=self.cond_hint, timesteps=t, context=cond_txt)
self.control_model = model_management.unload_if_low_vram(self.control_model)
out = {'input':[], 'middle':[], 'output': []}
out = {'middle':[], 'output': []}
autocast_enabled = torch.is_autocast_enabled()
for i in range(len(control)):
@@ -504,6 +505,95 @@ def load_controlnet(ckpt_path, model=None):
control = ControlNet(control_model)
return control
class T2IAdapter:
def __init__(self, t2i_model, channels_in, device="cuda"):
self.t2i_model = t2i_model
self.channels_in = channels_in
self.strength = 1.0
self.device = device
self.previous_controlnet = None
self.control_input = None
self.cond_hint_original = None
self.cond_hint = None
def get_control(self, x_noisy, t, cond_txt):
control_prev = None
if self.previous_controlnet is not None:
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond_txt)
if self.cond_hint is None or x_noisy.shape[2] * 8 != self.cond_hint.shape[2] or x_noisy.shape[3] * 8 != self.cond_hint.shape[3]:
if self.cond_hint is not None:
del self.cond_hint
self.cond_hint = None
self.cond_hint = utils.common_upscale(self.cond_hint_original, x_noisy.shape[3] * 8, x_noisy.shape[2] * 8, 'nearest-exact', "center").float().to(self.device)
if self.channels_in == 1 and self.cond_hint.shape[1] > 1:
self.cond_hint = torch.mean(self.cond_hint, 1, keepdim=True)
self.t2i_model.to(self.device)
self.control_input = self.t2i_model(self.cond_hint)
self.t2i_model.cpu()
output_dtype = x_noisy.dtype
out = {'input':[]}
for i in range(len(self.control_input)):
key = 'input'
x = self.control_input[i] * self.strength
if x.dtype != output_dtype and not autocast_enabled:
x = x.to(output_dtype)
if control_prev is not None and key in control_prev:
index = len(control_prev[key]) - i * 3 - 3
prev = control_prev[key][index]
if prev is not None:
x += prev
out[key].insert(0, None)
out[key].insert(0, None)
out[key].insert(0, x)
if control_prev is not None and 'input' in control_prev:
for i in range(len(out['input'])):
if out['input'][i] is None:
out['input'][i] = control_prev['input'][i]
if control_prev is not None and 'middle' in control_prev:
out['middle'] = control_prev['middle']
if control_prev is not None and 'output' in control_prev:
out['output'] = control_prev['output']
return out
def set_cond_hint(self, cond_hint, strength=1.0):
self.cond_hint_original = cond_hint
self.strength = strength
return self
def set_previous_controlnet(self, controlnet):
self.previous_controlnet = controlnet
return self
def copy(self):
c = T2IAdapter(self.t2i_model, self.channels_in)
c.cond_hint_original = self.cond_hint_original
c.strength = self.strength
return c
def cleanup(self):
if self.previous_controlnet is not None:
self.previous_controlnet.cleanup()
if self.cond_hint is not None:
del self.cond_hint
self.cond_hint = None
def get_control_models(self):
out = []
if self.previous_controlnet is not None:
out += self.previous_controlnet.get_control_models()
return out
def load_t2i_adapter(ckpt_path, model=None):
t2i_data = load_torch_file(ckpt_path)
cin = t2i_data['conv_in.weight'].shape[1]
model_ad = adapter.Adapter(cin=cin, channels=[320, 640, 1280, 1280][:4], nums_rb=2, ksize=1, sk=True, use_conv=False)
model_ad.load_state_dict(t2i_data)
return T2IAdapter(model_ad, cin // 64)
def load_clip(ckpt_path, embedding_directory=None):
clip_data = load_torch_file(ckpt_path)