mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-08-02 23:14:49 +08:00
Greatly improve lowvram sampling speed by getting rid of accelerate.
Let me know if this breaks anything.
This commit is contained in:
92
comfy/ops.py
92
comfy/ops.py
@@ -1,27 +1,93 @@
|
||||
import torch
|
||||
from contextlib import contextmanager
|
||||
import comfy.model_management
|
||||
|
||||
def cast_bias_weight(s, input):
|
||||
bias = None
|
||||
non_blocking = comfy.model_management.device_supports_non_blocking(input.device)
|
||||
if s.bias is not None:
|
||||
bias = s.bias.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking)
|
||||
weight = s.weight.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking)
|
||||
return weight, bias
|
||||
|
||||
|
||||
class disable_weight_init:
|
||||
class Linear(torch.nn.Linear):
|
||||
comfy_cast_weights = False
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.linear(input, weight, bias)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
if self.comfy_cast_weights:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
return super().forward(*args, **kwargs)
|
||||
|
||||
class Conv2d(torch.nn.Conv2d):
|
||||
comfy_cast_weights = False
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return self._conv_forward(input, weight, bias)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
if self.comfy_cast_weights:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
return super().forward(*args, **kwargs)
|
||||
|
||||
class Conv3d(torch.nn.Conv3d):
|
||||
comfy_cast_weights = False
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return self._conv_forward(input, weight, bias)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
if self.comfy_cast_weights:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
return super().forward(*args, **kwargs)
|
||||
|
||||
class GroupNorm(torch.nn.GroupNorm):
|
||||
comfy_cast_weights = False
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
if self.comfy_cast_weights:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
return super().forward(*args, **kwargs)
|
||||
|
||||
|
||||
class LayerNorm(torch.nn.LayerNorm):
|
||||
comfy_cast_weights = False
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
def forward_comfy_cast_weights(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)
|
||||
|
||||
def forward(self, *args, **kwargs):
|
||||
if self.comfy_cast_weights:
|
||||
return self.forward_comfy_cast_weights(*args, **kwargs)
|
||||
else:
|
||||
return super().forward(*args, **kwargs)
|
||||
|
||||
@classmethod
|
||||
def conv_nd(s, dims, *args, **kwargs):
|
||||
if dims == 2:
|
||||
@@ -31,35 +97,19 @@ class disable_weight_init:
|
||||
else:
|
||||
raise ValueError(f"unsupported dimensions: {dims}")
|
||||
|
||||
def cast_bias_weight(s, input):
|
||||
bias = None
|
||||
if s.bias is not None:
|
||||
bias = s.bias.to(device=input.device, dtype=input.dtype)
|
||||
weight = s.weight.to(device=input.device, dtype=input.dtype)
|
||||
return weight, bias
|
||||
|
||||
class manual_cast(disable_weight_init):
|
||||
class Linear(disable_weight_init.Linear):
|
||||
def forward(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.linear(input, weight, bias)
|
||||
comfy_cast_weights = True
|
||||
|
||||
class Conv2d(disable_weight_init.Conv2d):
|
||||
def forward(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return self._conv_forward(input, weight, bias)
|
||||
comfy_cast_weights = True
|
||||
|
||||
class Conv3d(disable_weight_init.Conv3d):
|
||||
def forward(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return self._conv_forward(input, weight, bias)
|
||||
comfy_cast_weights = True
|
||||
|
||||
class GroupNorm(disable_weight_init.GroupNorm):
|
||||
def forward(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps)
|
||||
comfy_cast_weights = True
|
||||
|
||||
class LayerNorm(disable_weight_init.LayerNorm):
|
||||
def forward(self, input):
|
||||
weight, bias = cast_bias_weight(self, input)
|
||||
return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps)
|
||||
comfy_cast_weights = True
|
||||
|
Reference in New Issue
Block a user