mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-08-03 07:26:31 +08:00
Initial commit.
This commit is contained in:
22
comfy/ldm/models/diffusion/sampling_util.py
Normal file
22
comfy/ldm/models/diffusion/sampling_util.py
Normal file
@@ -0,0 +1,22 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
|
||||
def append_dims(x, target_dims):
|
||||
"""Appends dimensions to the end of a tensor until it has target_dims dimensions.
|
||||
From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py"""
|
||||
dims_to_append = target_dims - x.ndim
|
||||
if dims_to_append < 0:
|
||||
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
|
||||
return x[(...,) + (None,) * dims_to_append]
|
||||
|
||||
|
||||
def norm_thresholding(x0, value):
|
||||
s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim)
|
||||
return x0 * (value / s)
|
||||
|
||||
|
||||
def spatial_norm_thresholding(x0, value):
|
||||
# b c h w
|
||||
s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value)
|
||||
return x0 * (value / s)
|
Reference in New Issue
Block a user