mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-08-02 23:14:49 +08:00
Unified Weight Adapter system for better maintainability and future feature of Lora system (#7540)
This commit is contained in:
321
comfy/lora.py
321
comfy/lora.py
@@ -20,6 +20,7 @@ from __future__ import annotations
|
||||
import comfy.utils
|
||||
import comfy.model_management
|
||||
import comfy.model_base
|
||||
import comfy.weight_adapter as weight_adapter
|
||||
import logging
|
||||
import torch
|
||||
|
||||
@@ -49,139 +50,12 @@ def load_lora(lora, to_load, log_missing=True):
|
||||
dora_scale = lora[dora_scale_name]
|
||||
loaded_keys.add(dora_scale_name)
|
||||
|
||||
reshape_name = "{}.reshape_weight".format(x)
|
||||
reshape = None
|
||||
if reshape_name in lora.keys():
|
||||
try:
|
||||
reshape = lora[reshape_name].tolist()
|
||||
loaded_keys.add(reshape_name)
|
||||
except:
|
||||
pass
|
||||
|
||||
regular_lora = "{}.lora_up.weight".format(x)
|
||||
diffusers_lora = "{}_lora.up.weight".format(x)
|
||||
diffusers2_lora = "{}.lora_B.weight".format(x)
|
||||
diffusers3_lora = "{}.lora.up.weight".format(x)
|
||||
mochi_lora = "{}.lora_B".format(x)
|
||||
transformers_lora = "{}.lora_linear_layer.up.weight".format(x)
|
||||
A_name = None
|
||||
|
||||
if regular_lora in lora.keys():
|
||||
A_name = regular_lora
|
||||
B_name = "{}.lora_down.weight".format(x)
|
||||
mid_name = "{}.lora_mid.weight".format(x)
|
||||
elif diffusers_lora in lora.keys():
|
||||
A_name = diffusers_lora
|
||||
B_name = "{}_lora.down.weight".format(x)
|
||||
mid_name = None
|
||||
elif diffusers2_lora in lora.keys():
|
||||
A_name = diffusers2_lora
|
||||
B_name = "{}.lora_A.weight".format(x)
|
||||
mid_name = None
|
||||
elif diffusers3_lora in lora.keys():
|
||||
A_name = diffusers3_lora
|
||||
B_name = "{}.lora.down.weight".format(x)
|
||||
mid_name = None
|
||||
elif mochi_lora in lora.keys():
|
||||
A_name = mochi_lora
|
||||
B_name = "{}.lora_A".format(x)
|
||||
mid_name = None
|
||||
elif transformers_lora in lora.keys():
|
||||
A_name = transformers_lora
|
||||
B_name ="{}.lora_linear_layer.down.weight".format(x)
|
||||
mid_name = None
|
||||
|
||||
if A_name is not None:
|
||||
mid = None
|
||||
if mid_name is not None and mid_name in lora.keys():
|
||||
mid = lora[mid_name]
|
||||
loaded_keys.add(mid_name)
|
||||
patch_dict[to_load[x]] = ("lora", (lora[A_name], lora[B_name], alpha, mid, dora_scale, reshape))
|
||||
loaded_keys.add(A_name)
|
||||
loaded_keys.add(B_name)
|
||||
|
||||
|
||||
######## loha
|
||||
hada_w1_a_name = "{}.hada_w1_a".format(x)
|
||||
hada_w1_b_name = "{}.hada_w1_b".format(x)
|
||||
hada_w2_a_name = "{}.hada_w2_a".format(x)
|
||||
hada_w2_b_name = "{}.hada_w2_b".format(x)
|
||||
hada_t1_name = "{}.hada_t1".format(x)
|
||||
hada_t2_name = "{}.hada_t2".format(x)
|
||||
if hada_w1_a_name in lora.keys():
|
||||
hada_t1 = None
|
||||
hada_t2 = None
|
||||
if hada_t1_name in lora.keys():
|
||||
hada_t1 = lora[hada_t1_name]
|
||||
hada_t2 = lora[hada_t2_name]
|
||||
loaded_keys.add(hada_t1_name)
|
||||
loaded_keys.add(hada_t2_name)
|
||||
|
||||
patch_dict[to_load[x]] = ("loha", (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2, dora_scale))
|
||||
loaded_keys.add(hada_w1_a_name)
|
||||
loaded_keys.add(hada_w1_b_name)
|
||||
loaded_keys.add(hada_w2_a_name)
|
||||
loaded_keys.add(hada_w2_b_name)
|
||||
|
||||
|
||||
######## lokr
|
||||
lokr_w1_name = "{}.lokr_w1".format(x)
|
||||
lokr_w2_name = "{}.lokr_w2".format(x)
|
||||
lokr_w1_a_name = "{}.lokr_w1_a".format(x)
|
||||
lokr_w1_b_name = "{}.lokr_w1_b".format(x)
|
||||
lokr_t2_name = "{}.lokr_t2".format(x)
|
||||
lokr_w2_a_name = "{}.lokr_w2_a".format(x)
|
||||
lokr_w2_b_name = "{}.lokr_w2_b".format(x)
|
||||
|
||||
lokr_w1 = None
|
||||
if lokr_w1_name in lora.keys():
|
||||
lokr_w1 = lora[lokr_w1_name]
|
||||
loaded_keys.add(lokr_w1_name)
|
||||
|
||||
lokr_w2 = None
|
||||
if lokr_w2_name in lora.keys():
|
||||
lokr_w2 = lora[lokr_w2_name]
|
||||
loaded_keys.add(lokr_w2_name)
|
||||
|
||||
lokr_w1_a = None
|
||||
if lokr_w1_a_name in lora.keys():
|
||||
lokr_w1_a = lora[lokr_w1_a_name]
|
||||
loaded_keys.add(lokr_w1_a_name)
|
||||
|
||||
lokr_w1_b = None
|
||||
if lokr_w1_b_name in lora.keys():
|
||||
lokr_w1_b = lora[lokr_w1_b_name]
|
||||
loaded_keys.add(lokr_w1_b_name)
|
||||
|
||||
lokr_w2_a = None
|
||||
if lokr_w2_a_name in lora.keys():
|
||||
lokr_w2_a = lora[lokr_w2_a_name]
|
||||
loaded_keys.add(lokr_w2_a_name)
|
||||
|
||||
lokr_w2_b = None
|
||||
if lokr_w2_b_name in lora.keys():
|
||||
lokr_w2_b = lora[lokr_w2_b_name]
|
||||
loaded_keys.add(lokr_w2_b_name)
|
||||
|
||||
lokr_t2 = None
|
||||
if lokr_t2_name in lora.keys():
|
||||
lokr_t2 = lora[lokr_t2_name]
|
||||
loaded_keys.add(lokr_t2_name)
|
||||
|
||||
if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
|
||||
patch_dict[to_load[x]] = ("lokr", (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2, dora_scale))
|
||||
|
||||
#glora
|
||||
a1_name = "{}.a1.weight".format(x)
|
||||
a2_name = "{}.a2.weight".format(x)
|
||||
b1_name = "{}.b1.weight".format(x)
|
||||
b2_name = "{}.b2.weight".format(x)
|
||||
if a1_name in lora:
|
||||
patch_dict[to_load[x]] = ("glora", (lora[a1_name], lora[a2_name], lora[b1_name], lora[b2_name], alpha, dora_scale))
|
||||
loaded_keys.add(a1_name)
|
||||
loaded_keys.add(a2_name)
|
||||
loaded_keys.add(b1_name)
|
||||
loaded_keys.add(b2_name)
|
||||
for adapter_cls in weight_adapter.adapters:
|
||||
adapter = adapter_cls.load(x, lora, alpha, dora_scale, loaded_keys)
|
||||
if adapter is not None:
|
||||
patch_dict[to_load[x]] = adapter
|
||||
loaded_keys.update(adapter.loaded_keys)
|
||||
continue
|
||||
|
||||
w_norm_name = "{}.w_norm".format(x)
|
||||
b_norm_name = "{}.b_norm".format(x)
|
||||
@@ -408,26 +282,6 @@ def model_lora_keys_unet(model, key_map={}):
|
||||
return key_map
|
||||
|
||||
|
||||
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function):
|
||||
dora_scale = comfy.model_management.cast_to_device(dora_scale, weight.device, intermediate_dtype)
|
||||
lora_diff *= alpha
|
||||
weight_calc = weight + function(lora_diff).type(weight.dtype)
|
||||
weight_norm = (
|
||||
weight_calc.transpose(0, 1)
|
||||
.reshape(weight_calc.shape[1], -1)
|
||||
.norm(dim=1, keepdim=True)
|
||||
.reshape(weight_calc.shape[1], *[1] * (weight_calc.dim() - 1))
|
||||
.transpose(0, 1)
|
||||
)
|
||||
|
||||
weight_calc *= (dora_scale / weight_norm).type(weight.dtype)
|
||||
if strength != 1.0:
|
||||
weight_calc -= weight
|
||||
weight += strength * (weight_calc)
|
||||
else:
|
||||
weight[:] = weight_calc
|
||||
return weight
|
||||
|
||||
def pad_tensor_to_shape(tensor: torch.Tensor, new_shape: list[int]) -> torch.Tensor:
|
||||
"""
|
||||
Pad a tensor to a new shape with zeros.
|
||||
@@ -482,6 +336,16 @@ def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32, ori
|
||||
if isinstance(v, list):
|
||||
v = (calculate_weight(v[1:], v[0][1](comfy.model_management.cast_to_device(v[0][0], weight.device, intermediate_dtype, copy=True), inplace=True), key, intermediate_dtype=intermediate_dtype), )
|
||||
|
||||
if isinstance(v, weight_adapter.WeightAdapterBase):
|
||||
output = v.calculate_weight(weight, key, strength, strength_model, offset, function, intermediate_dtype, original_weights)
|
||||
if output is None:
|
||||
logging.warning("Calculate Weight Failed: {} {}".format(v.name, key))
|
||||
else:
|
||||
weight = output
|
||||
if old_weight is not None:
|
||||
weight = old_weight
|
||||
continue
|
||||
|
||||
if len(v) == 1:
|
||||
patch_type = "diff"
|
||||
elif len(v) == 2:
|
||||
@@ -508,157 +372,6 @@ def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32, ori
|
||||
diff_weight = comfy.model_management.cast_to_device(target_weight, weight.device, intermediate_dtype) - \
|
||||
comfy.model_management.cast_to_device(original_weights[key][0][0], weight.device, intermediate_dtype)
|
||||
weight += function(strength * comfy.model_management.cast_to_device(diff_weight, weight.device, weight.dtype))
|
||||
elif patch_type == "lora": #lora/locon
|
||||
mat1 = comfy.model_management.cast_to_device(v[0], weight.device, intermediate_dtype)
|
||||
mat2 = comfy.model_management.cast_to_device(v[1], weight.device, intermediate_dtype)
|
||||
dora_scale = v[4]
|
||||
reshape = v[5]
|
||||
|
||||
if reshape is not None:
|
||||
weight = pad_tensor_to_shape(weight, reshape)
|
||||
|
||||
if v[2] is not None:
|
||||
alpha = v[2] / mat2.shape[0]
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
if v[3] is not None:
|
||||
#locon mid weights, hopefully the math is fine because I didn't properly test it
|
||||
mat3 = comfy.model_management.cast_to_device(v[3], weight.device, intermediate_dtype)
|
||||
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
|
||||
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
|
||||
try:
|
||||
lora_diff = torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)).reshape(weight.shape)
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
elif patch_type == "lokr":
|
||||
w1 = v[0]
|
||||
w2 = v[1]
|
||||
w1_a = v[3]
|
||||
w1_b = v[4]
|
||||
w2_a = v[5]
|
||||
w2_b = v[6]
|
||||
t2 = v[7]
|
||||
dora_scale = v[8]
|
||||
dim = None
|
||||
|
||||
if w1 is None:
|
||||
dim = w1_b.shape[0]
|
||||
w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w1_b, weight.device, intermediate_dtype))
|
||||
else:
|
||||
w1 = comfy.model_management.cast_to_device(w1, weight.device, intermediate_dtype)
|
||||
|
||||
if w2 is None:
|
||||
dim = w2_b.shape[0]
|
||||
if t2 is None:
|
||||
w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype))
|
||||
else:
|
||||
w2 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype))
|
||||
else:
|
||||
w2 = comfy.model_management.cast_to_device(w2, weight.device, intermediate_dtype)
|
||||
|
||||
if len(w2.shape) == 4:
|
||||
w1 = w1.unsqueeze(2).unsqueeze(2)
|
||||
if v[2] is not None and dim is not None:
|
||||
alpha = v[2] / dim
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
try:
|
||||
lora_diff = torch.kron(w1, w2).reshape(weight.shape)
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
elif patch_type == "loha":
|
||||
w1a = v[0]
|
||||
w1b = v[1]
|
||||
if v[2] is not None:
|
||||
alpha = v[2] / w1b.shape[0]
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
w2a = v[3]
|
||||
w2b = v[4]
|
||||
dora_scale = v[7]
|
||||
if v[5] is not None: #cp decomposition
|
||||
t1 = v[5]
|
||||
t2 = v[6]
|
||||
m1 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t1, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype))
|
||||
|
||||
m2 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype))
|
||||
else:
|
||||
m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype))
|
||||
m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype),
|
||||
comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype))
|
||||
|
||||
try:
|
||||
lora_diff = (m1 * m2).reshape(weight.shape)
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
elif patch_type == "glora":
|
||||
dora_scale = v[5]
|
||||
|
||||
old_glora = False
|
||||
if v[3].shape[1] == v[2].shape[0] == v[0].shape[0] == v[1].shape[1]:
|
||||
rank = v[0].shape[0]
|
||||
old_glora = True
|
||||
|
||||
if v[3].shape[0] == v[2].shape[1] == v[0].shape[1] == v[1].shape[0]:
|
||||
if old_glora and v[1].shape[0] == weight.shape[0] and weight.shape[0] == weight.shape[1]:
|
||||
pass
|
||||
else:
|
||||
old_glora = False
|
||||
rank = v[1].shape[0]
|
||||
|
||||
a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, intermediate_dtype)
|
||||
|
||||
if v[4] is not None:
|
||||
alpha = v[4] / rank
|
||||
else:
|
||||
alpha = 1.0
|
||||
|
||||
try:
|
||||
if old_glora:
|
||||
lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1).to(dtype=intermediate_dtype), a2), a1)).reshape(weight.shape) #old lycoris glora
|
||||
else:
|
||||
if weight.dim() > 2:
|
||||
lora_diff = torch.einsum("o i ..., i j -> o j ...", torch.einsum("o i ..., i j -> o j ...", weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
|
||||
else:
|
||||
lora_diff = torch.mm(torch.mm(weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
|
||||
lora_diff += torch.mm(b1, b2).reshape(weight.shape)
|
||||
|
||||
if dora_scale is not None:
|
||||
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
|
||||
else:
|
||||
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
|
||||
except Exception as e:
|
||||
logging.error("ERROR {} {} {}".format(patch_type, key, e))
|
||||
else:
|
||||
logging.warning("patch type not recognized {} {}".format(patch_type, key))
|
||||
|
||||
|
Reference in New Issue
Block a user