mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-08-02 23:14:49 +08:00
Only do the cast on the device if the device supports it.
This commit is contained in:
@@ -3,6 +3,7 @@ import copy
|
||||
import inspect
|
||||
|
||||
import comfy.utils
|
||||
import comfy.model_management
|
||||
|
||||
class ModelPatcher:
|
||||
def __init__(self, model, load_device, offload_device, size=0, current_device=None):
|
||||
@@ -154,7 +155,7 @@ class ModelPatcher:
|
||||
self.backup[key] = weight.to(self.offload_device)
|
||||
|
||||
if device_to is not None:
|
||||
temp_weight = weight.float().to(device_to, copy=True)
|
||||
temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True)
|
||||
else:
|
||||
temp_weight = weight.to(torch.float32, copy=True)
|
||||
out_weight = self.calculate_weight(self.patches[key], temp_weight, key).to(weight.dtype)
|
||||
@@ -185,15 +186,15 @@ class ModelPatcher:
|
||||
if w1.shape != weight.shape:
|
||||
print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
|
||||
else:
|
||||
weight += alpha * w1.type(weight.dtype).to(weight.device)
|
||||
weight += alpha * comfy.model_management.cast_to_device(w1, weight.device, weight.dtype)
|
||||
elif len(v) == 4: #lora/locon
|
||||
mat1 = v[0].to(weight.device).float()
|
||||
mat2 = v[1].to(weight.device).float()
|
||||
mat1 = comfy.model_management.cast_to_device(v[0], weight.device, torch.float32)
|
||||
mat2 = comfy.model_management.cast_to_device(v[1], weight.device, torch.float32)
|
||||
if v[2] is not None:
|
||||
alpha *= v[2] / mat2.shape[0]
|
||||
if v[3] is not None:
|
||||
#locon mid weights, hopefully the math is fine because I didn't properly test it
|
||||
mat3 = v[3].to(weight.device).float()
|
||||
mat3 = comfy.model_management.cast_to_device(v[3], weight.device, torch.float32)
|
||||
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
|
||||
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
|
||||
try:
|
||||
@@ -212,18 +213,23 @@ class ModelPatcher:
|
||||
|
||||
if w1 is None:
|
||||
dim = w1_b.shape[0]
|
||||
w1 = torch.mm(w1_a.to(weight.device).float(), w1_b.to(weight.device).float())
|
||||
w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w1_b, weight.device, torch.float32))
|
||||
else:
|
||||
w1 = w1.to(weight.device).float()
|
||||
w1 = comfy.model_management.cast_to_device(w1, weight.device, torch.float32)
|
||||
|
||||
if w2 is None:
|
||||
dim = w2_b.shape[0]
|
||||
if t2 is None:
|
||||
w2 = torch.mm(w2_a.to(weight.device).float(), w2_b.to(weight.device).float())
|
||||
w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32))
|
||||
else:
|
||||
w2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.to(weight.device).float(), w2_b.to(weight.device).float(), w2_a.to(weight.device).float())
|
||||
w2 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t2, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w2_b, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w2_a, weight.device, torch.float32))
|
||||
else:
|
||||
w2 = w2.to(weight.device).float()
|
||||
w2 = comfy.model_management.cast_to_device(w2, weight.device, torch.float32)
|
||||
|
||||
if len(w2.shape) == 4:
|
||||
w1 = w1.unsqueeze(2).unsqueeze(2)
|
||||
@@ -244,11 +250,20 @@ class ModelPatcher:
|
||||
if v[5] is not None: #cp decomposition
|
||||
t1 = v[5]
|
||||
t2 = v[6]
|
||||
m1 = torch.einsum('i j k l, j r, i p -> p r k l', t1.to(weight.device).float(), w1b.to(weight.device).float(), w1a.to(weight.device).float())
|
||||
m2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.to(weight.device).float(), w2b.to(weight.device).float(), w2a.to(weight.device).float())
|
||||
m1 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t1, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w1b, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w1a, weight.device, torch.float32))
|
||||
|
||||
m2 = torch.einsum('i j k l, j r, i p -> p r k l',
|
||||
comfy.model_management.cast_to_device(t2, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w2b, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w2a, weight.device, torch.float32))
|
||||
else:
|
||||
m1 = torch.mm(w1a.to(weight.device).float(), w1b.to(weight.device).float())
|
||||
m2 = torch.mm(w2a.to(weight.device).float(), w2b.to(weight.device).float())
|
||||
m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w1b, weight.device, torch.float32))
|
||||
m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, torch.float32),
|
||||
comfy.model_management.cast_to_device(w2b, weight.device, torch.float32))
|
||||
|
||||
try:
|
||||
weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype)
|
||||
|
Reference in New Issue
Block a user